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Abstract. The errors and uncertainties associated with gap-
filling algorithms of water, carbon, and energy fluxes data
have always been one of the main challenges of the global
network of microclimatological tower sites that use the
eddy covariance (EC) technique. To address these concerns
and find more efficient gap-filling algorithms, we reviewed
eight algorithms to estimate missing values of environmental
drivers and nine algorithms for the three major fluxes typi-
cally found in EC time series. We then examined the algo-
rithms’ performance for different gap-filling scenarios util-
ising the data from five EC towers during 2013. This re-
search’s objectives were (a) to evaluate the impact of the gap
lengths on the performance of each algorithm and (b) to com-
pare the performance of traditional and new gap-filling tech-
niques for the EC data, for fluxes, and separately for their cor-
responding meteorological drivers. The algorithms’ perfor-
mance was evaluated by generating nine gap windows with
different lengths, ranging from a day to 365 d. In each sce-
nario, a gap period was chosen randomly, and the data were
removed from the dataset accordingly. After running each
scenario, a variety of statistical metrics were used to eval-
uate the algorithms’ performance. The algorithms showed
different levels of sensitivity to the gap lengths; the Prophet
Forecast Model (FBP) revealed the most sensitivity, whilst
the performance of artificial neural networks (ANNs), for in-
stance, did not vary as much by changing the gap length.
The algorithms’ performance generally decreased with in-

creasing the gap length, yet the differences were not signif-
icant for windows smaller than 30 d. No significant differ-
ences between the algorithms were recognised for the me-
teorological and environmental drivers. However, the linear
algorithms showed slight superiority over those of machine
learning (ML), except the random forest (RF) algorithm esti-
mating the ground heat flux (root mean square errors – RM-
SEs – of 28.91 and 33.92 for RF and classic linear regres-
sion – CLR, respectively). However, for the major fluxes, ML
algorithms and the MDS showed superiority over the other
algorithms. Even though ANNs, random forest (RF), and
eXtreme Gradient Boost (XGB) showed comparable perfor-
mance in gap-filling of the major fluxes, RF provided more
consistent results with slightly less bias against the other ML
algorithms. The results indicated no single algorithm that
outperforms in all situations, but the RF is a potential alter-
native for the MDS and ANNs as regards flux gap-filling.

1 Introduction

To address the global challenges of climatological and eco-
logical changes, environmental scientists and policy makers
are demanding data that are continuous in time and space.
In addition, there is a need to quantify and reduce uncer-
tainties in such data, including observations of carbon, wa-
ter, and energy exchanges that are crucial components in
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national and international flux networks as well as global
Earth-observing systems. Satellites partially fill this gap as
they provide excellent spatial coverage but have limited tem-
poral resolution and do not measure at a point scale. As
such, high-quality long-term site observations of ecosys-
tem processes and fluxes are needed that are continuous in
time and space. The global eddy covariance (EC) flux tower
network (FLUXNET) consists of its regional counterparts
(i.e. AmeriFlux, EUROFLUX, OzFlux) and was established
in the late 1990s to address the global demand for such infor-
mation (Aubinet et al., 1999; Baldocchi et al., 2001; Beringer
et al., 2016; Hollinger et al., 1999; Menzer et al., 2013; Ten-
hunen et al., 1998). Despite EC data being frequently used
to validate process modelling analyses, field surveys, and
remote sensing assessments (Hagen et al., 2006), there are
some serious concerns regarding the technique’s challenges,
e.g. data gaps and uncertainties. Hence, filling data gaps and
reducing uncertainties through better gap-filling techniques
are highly needed.

Even though the EC is a common technique to measure
fluxes of carbon, water, and energy, there are some chal-
lenges in providing robust, high-quality, continuous obser-
vations. One of the challenges regarding the technique and
therefore the flux networks is addressing data gaps and the
uncertainties associated with the gap-filling process, mainly
when the gap windows are long (longer than 12 consecutive
days, as described by Moffat et al., 2007). These gaps hap-
pen quite often for a variety of reasons, such as values out
of range, spike detection or manual exclusion of date and
time ranges, instrument or power failure, herbivores, fire, ea-
gles’ nests, lightning, and/or researchers on leave (Beringer
et al., 2017). Since EC flux towers are often located in harsh
climates, their data are more susceptible to adverse weather
(i.e. rain conditions), and they sometimes prevent quick ac-
cess to sites for repair and maintenance. As a result, this is-
sue can, in turn, produce gaps which might be relatively long
(Isaac et al., 2017) and thus problematic, as explained in the
following. Firstly, loss of data is considered a threat to scien-
tific studies depending on the missing data quantity, pattern,
mechanism, and nature (Altman and Bland, 2007; Molen-
berghs et al., 2014; Tannenbaum, 2010). That is because us-
ing an incomplete dataset might lead to biased, invalid, and
unreliable results (Allison, 2000; Kang, 2013; Little, 2002).
Second, continuous gap-filled data are required to calculate
the annual or monthly budgets of carbon and water balance
components (Hutley et al., 2005).

Other than the challenges caused by missing data, there
are several sources of errors and uncertainties in the EC tech-
nique. Firstly, random error is associated with the stochastic
nature of turbulence, associated sampling errors (incomplete
sampling of large eddies, uncertainty in the calculated co-
variance between the vertical wind velocity and the scalar of
interest), instrument errors, and footprint variability (Aubi-
net et al., 2012). For instance, Dragoni et al. (2007) anal-
ysed EC-based data from the Morgan–Monroe State For-

est for 8 years (1999–2006) and assessed instrument uncer-
tainty as equal to 3 % of the total annual net ecosystem ex-
change (NEE). Another primary source of uncertainty in EC
measurements is systematic errors caused by methodological
challenges and instrument calibration problems (e.g. sonic
anemometer errors, spikes, gas analyser errors). Finally, one
of the sources of uncertainties is data processing, espe-
cially data gap-filling (Isaac et al., 2017; Moffat et al., 2007;
Richardson et al., 2012; Richardson and Hollinger, 2007).

There are several uncertainties pertaining to gap-filling
of missing values, including measurement uncertainty
(Richardson and Hollinger, 2007), lengths and timing of the
gaps (Falge et al., 2001; Richardson and Hollinger, 2007),
and the particular gap-filling algorithm that is used (Falge
et al., 2001; Moffat et al., 2007). However, there are two
dominant issues with long data gaps and the choice of a par-
ticular gap-filling algorithm (Aubinet et al., 2012). Firstly,
long gaps can significantly increase the total amount of
uncertainty as the ecosystem behaviour might change be-
cause of different agricultural periods or phenological phases
(e.g. growing season, harvest period, bushfire) and thereby
show different responses under similar meteorological condi-
tions (Aubinet et al., 2012; Isaac et al., 2017; Richardson and
Hollinger, 2007). Consequently, the period in which a long
gap happens is important. For example, research undertaken
by Richardson and Hollinger (2007) on data from a range
of FLUXNET sites revealed that a week data gap during
spring green-up in a forest led to a higher uncertainty over a
3-week gap period during winter. Second, each gap-filling al-
gorithm has its strengths and weaknesses; for instance, Mof-
fat et al. (2007) compared 15 different commonly used gap-
filling algorithms. They found no significant difference be-
tween the performance of the algorithms with “good” relia-
bility based on analysis of variance of the root mean square
error (RMSE). The overall gap-filling uncertainty was within
±25 g C m−2 yr−1 for most of the proper algorithms, whereas
the other algorithms generated higher uncertainties of up to
±75 g C m−2 yr−1, showing that the uncertainty provided by
reliable methods can be considerably smaller. This result is
similar to the findings of Richardson and Hollinger (2007),
who found that for the datasets used in their study that uncer-
tainties of up to ±30 g C m−2 yr−1 were from long gaps by
appropriate algorithms. Considering that the data provided
by EC tower networks are of use for research, government,
and policy makers, robust gap-filling is a need to quantify
and reduce uncertainties in flux estimations.

Several methods have typically been used to fill data gaps
in both fluxes and their meteorological drivers to manage the
missing data problem. Due to computational constraints of
complex algorithms, early works to impute EC data gaps
used interpolation methods based mostly on linear regres-
sion or temporal autocorrelation (Falge et al., 2001; Lee et
al., 1999). These approaches were quickly replaced by more
sophisticated methods such as non-linear regressions (Barr
et al., 2004; Falge et al., 2001; Moffat et al., 2007; Richard-
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son et al., 2006), look-up tables (Falge et al., 2001; Law
et al., 2002; Zhao and Huang, 2015), artificial neural net-
works (ANNs) (Aubinet et al., 1999; Beringer et al., 2016;
Cleverly et al., 2013; Hagen et al., 2006; Isaac et al., 2017;
Kunwor et al., 2017; Moffat et al., 2007; Papale and Valen-
tini, 2003; Pilegaard et al., 2001; Staebler, 1999), mean diur-
nal variation (Falge et al., 2001; Moffat et al., 2007; Zhao and
Huang, 2015), and multiple imputations (Hui et al., 2004;
Moffat et al., 2007). Each of these methods has its pros and
cons as follows: (a) interpolation methods such as the mean
diurnal variation (MDV) do not need any drivers, yet their ac-
curacy is lower than other approaches (Aubinet et al., 2012).
Moreover, this method may provide biased results on ex-
tremely clear or cloudy days (Falge et al., 2001). MDV is
not recommended when a gap is longer than 2 weeks be-
cause it cannot consider the non-linear relations between the
drivers and the flux, leading to a high level of uncertainty
(Falge et al., 2001). (b) The look-up table, especially its mod-
ified version – marginal distribution sampling (MDS) – has
provided performance close to ANNs and is more reliable
and consistent than the other algorithms so far. Hence, MDS
was chosen as one of the standard gap-filling methods in
EUROFLUX (Aubinet et al., 2012). Nevertheless, the per-
formance of MDS in gap-filling of extra long gaps is not
well known (Kim et al., 2020). (c) ANNs have commonly
been used to gap-fill EC fluxes since 2000, and because of
their robust and consistent results they are considered a stan-
dard gap-filling algorithm in several networks, e.g. ICOS,
FLUXNET, and OzFlux (Aubinet et al., 2012; Beringer et
al., 2017; Isaac et al., 2017). Despite their reliable perfor-
mance, ANNs – and generally all other ML algorithms – face
some challenges. Over-fitting, for instance, is a big concern
and can happen when the number of degrees of freedom is
high, while the training window is not long enough or the
quality of the training dataset is low. This challenge becomes
acute when the gaps happen while the ecosystem behaviour is
changing and shows different responses under similar mete-
orological conditions. Furthermore, there is a desire to have
the training windows short so that the algorithm can track
the ecosystem behaviour shift. Yet, this increases the risk
of over-fitting depending on the algorithm. In other words,
the training window length should be neither so short that it
causes over-fitting nor so long that it leads to algorithms ig-
noring ecological condition changes. Long gaps are consid-
ered one of the primary uncertainty sources of CO2 flux in
FLUXNET (Aubinet et al., 2012). As a result, studying the
effects of the gap lengths and studying the window length
whereby an algorithm is trained are both critical challenges
associated with environmental data gap-filling.

Apart from the limitations and disadvantages of the men-
tioned algorithms, gap-filling of fluxes (e.g. NEE) experi-
ences some other challenges that make it necessary to find
or develop new gap-filling algorithms. That is because the
current methods are not flexible enough to perform well on
special occasions or with extreme values (Kunwor et al.,

2017), and there is almost no room to optimise them to im-
prove their outcome (Moffat et al., 2007). Moreover, even
using the best available algorithm, such as ANNs, the model
(gap-filling) uncertainty still accounts for a sizable propor-
tion of the total uncertainties, especially when the gaps are
relatively long. Since the 2000s when MDS and ANNs were
chosen as the most reliable gap-filling methods for EC flux
observations, many new ML and optimisation algorithms
have been developed and used in various scientific fields.
Some have shown superiority over ANNs, either individu-
ally or as a part of a hybrid or ensemble model (e.g. Gani
et al., 2016). As a result, comparing the cutting-edge algo-
rithms with the current standard ones can show whether there
is any room to improve the gap-filling process within the
field. According to the concerns mentioned above, this pa-
per has two objectives: (a) to find out the impact of differ-
ent gap lengths on the performance of each algorithm and
(b) to compare the performance of traditional with new gap-
filling techniques separately for fluxes and their meteorolog-
ical drivers, particularly soil moisture, because this has al-
ways been a challenging variable to gap-fill due to the biol-
ogy and heterogeneity of soil parameters. To address these
objectives, we utilised nine different algorithms – eXtreme
Gradient Boost (XGB), random forest (RF) algorithm, arti-
ficial neural networks (ANNs), marginal distribution sam-
pling (MDS), classic linear regression (CLR), support vec-
tor regression (SVR), elastic net regularisation (ELN), panel
data (PD), and the Prophet Forecast Model (FBP) – to fill
the gaps of the major fluxes and eight of them (excluding
MDS) to fill the gaps of the environmental drivers. We then
assessed their relative performance to evaluate potentially
better ways to fill EC flux data. To test the approaches, we
used five flux towers from the OzFlux network. To evaluate
the performance of these algorithms, nine scenarios for gaps
were planned – from a day to a whole year – and applied
to the datasets, and different common performance metrics
(e.g. RMSE, MBE) and visual graphs were used.

2 Materials and methods

In order to address the first objective of this research, nine
different gap lengths were superimposed to the datasets,
i.e. 1, 5, 10, 20, 30, 60, 90, 180, and 365 d. To address
the second objective, we chose nine different algorithms
to fill the gaps, including a wide variety of different ap-
proaches, e.g. from a simple algorithm like CLR to the
cutting-edge ML algorithms like XGB (MDS was not used to
gap-fill the environmental drivers). The data used in this pa-
per came from five EC towers of the OzFlux network, i.e. Al-
ice Springs Mulga, Calperum, Gingin, Howard Springs, and
Tumbarumba, from 2012 to 2013, with a time resolution of
30 min, except for Tumbarumba (60 min). Additionally, data
coming from three additional sources outside the network
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were also used as ancillary data to help the algorithms fill
environmental driver gaps.

2.1 Data

The data used for this research came from OzFlux, which
is the regional Australian and New Zealand flux tower net-
work that aims to provide a continental-scale national re-
search facility to monitor and assess Australia’s terrestrial
biosphere and climate (Beringer et al., 2016). As described
in Isaac et al. (2017), all OzFlux towers continuously mea-
sure and record meteorological and flux variables at resolu-
tions up to 10 Hz and use a 30 min averaging period, with
a few exceptions (data are available from http://data.ozflux.
org.au/portal, last access: 16 July 2018). The network ac-
quires additional data from the Australian Bureau of Me-
teorology (BoM), the European Centre for Medium-Range
Weather Forecasts (ECMWF), and the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) on the TERRA
and AQUA satellites for alternative data for gap-filling flux
tower datasets (Isaac et al., 2017). As explained by Isaac
et al. (2017), OzFlux uses the BoM automated weather sta-
tion (AWS) datasets to gap-fill the meteorological data, the
BoM weather forecasting model (ACCESS-R) for radiation
and soil data from 2011 onward, and MODIS MOD13Q1 for
the normalised difference vegetation index (NDVI) and en-
hanced vegetation index (EVI). Moreover, the data provided
by BIOS2, a physically based model–data integration envi-
ronment for tracking Australian carbon and water (Haverd
et al., 2015), were also used as another ancillary source for
varieties of environmental features. Current ACCESS-R and
MODIS data are available from the BoM OPeNDAP (http:
//www.opendap.org/, last access: 21 April 2018) server and
TERN–AusCover data (http://www.auscover.org.au/, last ac-
cess: 23 April 2018), respectively.

The datasets used in this research came from five tow-
ers from the OzFlux network between 2012 and 2013, each
representative of a different climate and land cover for Aus-
tralian ecological conditions (Alice Springs Mulga: tropical
and subtropical desert, Calperum: steppe, Gingin: Mediter-
ranean, Howard Springs: tropical savanna, Tumbarumba:
oceanic; Table 1 and Beringer et al., 2016). The datasets
included 15 meteorological drivers and three major fluxes
recorded (Table 2) based upon the EC technique at a 30 min
temporal resolution, except for Tumbarumba, which was
hourly. Additionally, relevant ancillary datasets for the men-
tioned towers were used to follow the OzFlux network gap-
filling protocol (Table 3). Each dataset was quality checked
at three levels based on the OzFlux network protocol de-
scribed in Isaac et al. (2017) and applied using PyFluxPro
version 0.9.2. To address the underestimation of canopy res-
piration by EC measurements at night, we used the change-
point detection (CPD) method (Barr et al., 2013) to reject
nightly records when the friction velocity fell below each
site’s threshold value. After dismissing the inappropriate

measurements, overall coverage of 72 %–88 % and 21 %–
48 % was achieved for diurnal and nocturnal records dur-
ing 2013 (the year to which the artificial gaps were super-
imposed), respectively.

The datasets whereby each environmental variable was
gap-filled are shown in Table 3. For each of these variables,
the same variable of the ancillary source was used to fill the
gaps. For instance, to gap-fill Ah, the Ah records of AWS,
ACCESS-R, and BIOS2 were used. To gap-fill the missing
values of fluxes, i.e. Fc (NEE), Fh (H ), and Fe (LE), eight
drivers were used as follows: Ta, Ws, Sws, Fg, vapour pres-
sure deficit (VPD), Fn, q, and Ts based on a combination of
random forest (RF) feature selection and testing out a series
of feature combinations. Different Python programming lan-
guage libraries (version 3.6.4) were utilised for training and
testing the algorithms, i.e. XGBoost for XGB, fbprophet for
FBP, statsmodels for PD, and sklearn for the rest of the algo-
rithms. Each algorithm was tuned individually using a grid
search, and the numbers of nodes, layers, and irritations were
chosen accordingly.

2.2 Gap-filling algorithms

Eight imputation algorithms for estimating 15 environmental
drivers and nine algorithms for the three major fluxes were
chosen to make the comparison. These algorithms were se-
lected in such a way that a variety of approaches were tested,
from the standard methods like ANNs and MDS to the newer
algorithms which have rarely or never been used in the field,
such as eXtreme Gradient Boosting and panel data (Table 4).

2.2.1 Marginal distribution sampling (MDS)

Reichstein et al. (2005) introduced the MDS as an enhanced
look-up table method, which considers both the covariation
of fluxes with meteorological variables and the temporal au-
tocorrelation of the fluxes (Aubinet et al., 2012). Alongside
the ANNs, the MDS is considered one of the standard gap-
filling methods for flux data amongst FLUXNET and is se-
lected in this study to help the community have a clear idea
of the performance of other algorithms. Unlike the other al-
gorithms used in this research, we used Fsd, Ta, and VPD as
the input features for the MDS to be consistent with stan-
dard application of the MDS; for using more than three or
four drivers it is not generally recommended (Aubinet et al.,
2012). The PyFluxPro version 0.9.2 was used to apply the
algorithm (modified code used for gaps longer than 10 d).

2.2.2 Artificial neural networks (ANNs)

Rooted in the 1950s, artificial neural networks are ML meth-
ods inspired by biological neural networks and are classi-
fied as supervised learning methods (Dreyfus, 1990; Far-
ley and Clark, 1954). ANNs work based on several con-
nected units called nodes, which are used to mimic a neu-
ron’s functionality in an animal brain by sending and receiv-

Geosci. Instrum. Method. Data Syst., 10, 123–140, 2021 https://doi.org/10.5194/gi-10-123-2021

http://data.ozflux.org.au/portal
http://data.ozflux.org.au/portal
http://www.opendap.org/
http://www.opendap.org/
http://www.auscover.org.au/


A. Mahabbati et al.: A comparison of gap-filling algorithms for eddy covariance fluxes and their drivers 127

Table 1. Information on the five towers from which data were used, including their name, location, dominant species, and climate.

Site Location Species Climate Latitude,
longitude
(◦)

Alice Springs Mulga Pine Hill cattle Semi-arid mulga Tropical and −22.2828◦ N,
(AU-ASM) station, near Alice (Acacia aneura) subtropical desert 133.2493◦ E

Springs, Northern ecosystem climate (Bwh)
Territory

Calperum (AU-Cpr) Calperum station, Recovering mallee Steppe climate −34.0027◦ N,
25 km NW of woodland (Bsk) 140.5877◦ E
Renmark, South
Australia

Gingin (AU-Gin) Swan Coastal Plain, Coastal heath Banksia Mediterranean −31.3764◦ N,
70 km north of woodland climate (Csa) 115.7139◦ E
Perth, Western
Australia

Howard Springs E of Darwin, NT Tropical savanna Tropical savanna −12.4943◦ N,
(AU-How) (wet) climate (Aw) 131.1523◦ E

Tumbarumba Near Wet temperate Oceanic climate −35.6566◦ N,
(AU-Tum) Tumbarumba, sclerophyll eucalypt (Cfb) 148.1517◦ E

NSW

Table 2. List of variables and their units used in this research, in-
cluding the three main fluxes and their environmental drivers.

List of variables Units

Drivers

Ah Absolute humidity (g m−3)
Fa Available energy (W m−2)
Fg Ground heat flux (W m−2)
Fld Downwelling longwave radiation (W m−2)
Flu Upwelling longwave radiation (W m−2)
Fn Net radiation (W m−2)
Fsd Downwelling shortwave radiation (W m−2)
Fsu Upwelling shortwave radiation (W m−2)
ps Surface pressure (kPa)
Sws Soil water content (m m−1)
Ta Air temperature (◦C)
Ts Soil temperature (◦C)
Ws Wind speed (m s−1)
Wd Wind direction (◦)
Precip Precipitation (mm)
q Specific humidity (kg kg−1)

Fluxes

Fc (also NEE) CO2 flux (µmol m−2 s−1)
Fh (also H ) Sensible heat flux (W m−2)
Fe (also LE) Latent heat flux (W m−2)

Table 3. The ancillary sources used to gap-fill each environmental
driver.

List of Ancillary source
variables
(y)

Drivers

Ah AWS, ACCESS-R, BIOS2
Fa ACCESS-R, BIOS2
Fg ACCESS-R, BIOS2
Fld ACCESS-R, BIOS2
Flu ACCESS-R, BIOS2
Fn ACCESS-R, BIOS2
Fsd ACCESS-R, BIOS2
Fsu ACCESS-R, BIOS2
ps AWS, ACCESS-R
Sws ACCESS-R, BIOS2
Ta AWS, ACCESS-R, BIOS2
Ts ACCESS-R, BIOS2
Ws AWS, ACCESS-R
Wd AWS, ACCESS-R
Precip AWS, ACCESS-R, BIOS2

ing signals to other nodes. The ANN technique used in this
paper was the Multi-Layer Perceptron regressor, which op-
timises the squared loss using stochastic gradient descent.
Sklearn.neural_network.MLPRegressor was used to apply
this method in Python, and its hyperparameters were 800
and 500 for “hidden_layer_sizes” and “max_iter”, respec-
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Table 4. The name and the abbreviation of the gap-filling algo-
rithms.

Algorithm Full name
abbreviation

XGB eXtreme Gradient Boost
RF random forest algorithm
ANNs artificial neural networks
MDS marginal distribution sampling
SVR support vector regression
CLR classical linear regression
PD panel data
ELN elastic net regularisation
FBP the Prophet Forecasting Model (Facebook Prophet)

tively, based on a grid search. ANNs are one of the cur-
rent standard approaches for gap-filling in FLUXNET and
in this research were picked out as a performance reference
for other algorithms.

2.2.3 Classical linear regression (CLR)

A classical linear regression is an equation developed to es-
timate the value of the dependent variable (y) based on inde-
pendent values (xi). In contrast, each xi has its specific coeffi-
cient and an overall intercept value. In this method, these co-
efficients are determined by minimising the squared residuals
(errors) of estimated vs. observed values, called least squares.
A CLR algorithm can be formulated as follows (Freedman,
2009):

y = α+β1X1+β2X2+β3X3+ . . . +βiXi + ε, (1)

where y is the dependent variable, α is the interception,
Xi represent independent variables, βi is the coefficient
of Xi , and ε is the error term. We chose this algorithm as
a baseline to find out how much better more complicated al-
gorithms can comparatively estimate dependent variables.

2.2.4 Random forests (RFs)

Random forest, a supervised ML algorithm used for both
classification and regression, consists of multiple trees con-
structed systematically by pseudo-randomly selecting sub-
sets of components of the feature vector: that is, trees
constructed in randomly chosen subspaces (Ho, 1998).
The RF algorithm has been developed to overcome the
over-fitting problem, a commonplace limitation of its
preceding decision-tree-based methods (Ho, 1995, 1998).
Sklearn.ensemble.RandomForestRegressor was used to ap-
ply this method in Python, and the hyperparameters used
were 5 and 1000 for “max_depth” and “n_estimators”, re-
spectively, based on a grid search.

2.2.5 Support vector regression (SVR)

As a non-linear method, support vector regression was de-
veloped based on Vapnik’s concept of support vector theory
(Drucker et al., 1997). An SVR algorithm is trained by trying
to solve the following problem:

minimise
1
2
‖w‖2

subject to
(
yi −〈w,xi〉− b ≤ ε,

〈w,xi〉+ b− yi ≤ ε,

)
,

where xi and yi are the training sample and target value in a
row. The inner product plus intercept 〈w,xi〉+b is the predic-
tion for that sample, and ε is a free parameter that serves as
a threshold. sklearn.svm.SVR was used to apply this method
in Python, and the hyperparameters used were 1 and 0.001
for “C” and “γ ”, respectively, based on a grid search.

2.2.6 Elastic net regularisation (ELN)

The elastic net is a linear regularised regression method that
exerts small amounts of bias by adding two penalty compo-
nents to the regressed line to decline the coefficients of inde-
pendent variables. It thus provides better long-term predic-
tions. Given that these two penalty components come from
ridge regression and LASSO, the elastic net is considered a
hybrid model consisting of ridge and LASSO regressions,
thereby overcoming the limitations of both. The estimates
from the ELN method can be formulated as below (Zou and
Hastie, 2005):

β̂(elastic net)=

(∣∣∣β̂(OLS)
∣∣∣− λ1/2

)
1+ λ2

sgn{β̂(OLS)}, (2)

where β̂ is the coefficient of each ELN independent variable,
λ1 and λ2 are penalty coefficients of LASSO and ridge re-
gression, respectively, β̂(OLS) is the coefficient of an inde-
pendent variable calculated based on ordinary least squares,
and “sgn” stands for the sign function:

sgn(x)=

 1 x > 0
0 x = 0
−1 x < 0

. (3)

The ELN regression is good at addressing situa-
tions when the training datasets have small samples
or when there are correlations between parameters.
sklearn.linear_model.ElasticNet was used to apply this
method in Python, and the hyperparameters used were as fol-
lows: {“alpha”: 0.01, “fit_intercept”: True, “max_iter”: 5000,
“normalize”: False} based on a grid search.

2.2.7 Panel data (PD)

The panel data method is a multidimensional statistical
method mainly used in econometrics to analyse datasets

Geosci. Instrum. Method. Data Syst., 10, 123–140, 2021 https://doi.org/10.5194/gi-10-123-2021



A. Mahabbati et al.: A comparison of gap-filling algorithms for eddy covariance fluxes and their drivers 129

which involve time series of observations amongst individ-
ual cross sections (Baltagi, 1995), usually based on ordinary
least squares (OLS) or generalised least squares (GLS). A
two-way panel data model consists of two extra components
beyond a CLR as follows (Baltagi, 1995; Hsiao et al., 2002;
Wooldridge, 2002):

yit = α+βXit + uit i = 1,2, . . ., N; t = 1,2, . . ., T , (4)
yit = α+βXit +µi + λt , (5)

where i and t denote the cross section and time series di-
mension in a row, y is a dependent-variable vector, X is
an independent-variable matrix, α is a scalar, β is the co-
efficient of the independent-variable matrix, µi is the unob-
servable individual-specific effect, and λt is the unobservable
time-specific effect. The panel data method has the ability to
provide a holistic analysis of different individuals and deter-
mine the specific impact of every single time, which caused
its superiority over CLR. Since PD requires cross sections
to be applied, we used a cross section tower for each of the
five main towers as follows: Ti Tree East for Alice Springs
Mulga, Whroo for Calperum, Great Western Woodlands for
Gingin, Daly River for Howard Springs, and Cumberland
Plain for Tumbarumba. The cross section towers were cho-
sen based on their distances (the closest ones with common
years of data).

2.2.8 eXtreme Gradient Boost (XGB)

The eXtreme Gradient Boost algorithm is a reinforced
method of gradient boost introduced in 1999 that works
based on parallel boosted decision trees. Similar to RF, it
can be used for a variety of data processing purposes in-
cluding classification and regression (Friedman, 2001, 2002;
Ye et al., 2009). The XGB method is resistant to over-
fitting and provides a robust, portable, and scalable al-
gorithm for large-scale boosting decision-tree-based tech-
niques. sklearn.ensemble.GradientBoostingRegressor was
used to apply this method in Python, and its hyperpa-
rameters were chosen based on a grid search as follows:
{“learning_rate”: 0.001, “max_depth”: 8, “reg_alpha”: 0.1,
“subsample”: 0.5}.

2.2.9 The Prophet Forecasting Model (FBP)

The Prophet Forecasting Model, also known as “Prophet”,
is a time series forecasting model developed by Facebook to
manage the common features of business time series. It is de-
signed to have intuitive parameters that can be adjusted with-
out knowing the details of the underlying model (Taylor and
Letham, 2018). A decomposable time series model was used
(Harvey and Peters, 1990) to develop this model, with three
main components: trend, seasonality, and holidays (Taylor
and Letham, 2018):

y(t)= g(t)+ s(t)+h(t), (6)

where g(t) is the trend function, which models non-periodic
changes, s(t) is a function to represent periodic changes,
e.g. seasonality, and h(t) assesses the effects of potential
anomalies which occur over one or more days, e.g. holidays.

2.3 The gap scenarios

In order to find out the effect of gap size on the performance
of our gap-filling algorithms, the data were removed ran-
domly from nine different gap windows (i.e. 1, 5, 10, 20,
30, 60, 90, 180, and 365 consecutive days) during 2013. Af-
terwards, the data from 2012 to 2013 were used to train the
algorithms (excluding the superimposed gaps). Finally, the
trained algorithms were used to fill the artificial gaps su-
perimposed to the datasets. The entire process permutated
five times in each scenario to ensure the performance was
not sensitive to the gap position (i.e. seasonally). As such,
15 variables, nine window lengths, eight gap-filling methods
(MDS excluded), and five permutations across five towers
resulted in 27 000 computations for the meteorological fea-
tures. Similarly, three fluxes, nine window lengths, nine gap-
filling methods, and five permutations across five towers re-
sulted in 6075 computations for the major fluxes overall.

2.4 Statistical performance measures

Different statistical metrics were used to evaluate algorithms’
performance and enable comparison between measured val-
ues from the flux towers with each gap-filling algorithm pre-
diction. These metrics included the coefficient of determina-
tion (R2) to measure the square of the coefficient of multiple
correlations (Devore, 1991), the variance of measured and
modelled values (S2) to indicate how well algorithms could
follow the variations of the recorded data, the root mean
square error (RMSE), the mean bias error (MBE) to capture
the distribution and bias of residuals, the variance ratio (VR)
to compare the variance of estimated values with those of
measured, and the index of agreement (IoAd) to compare the
sum of the squared error to the potential error (Bennett et
al., 2013). Abbreviations and formulas for these metrics are
illustrated as follows (Bennett et al., 2013).

R2
=

[∑
(pi −p)(oi − o)

]2∑
(pi −p)

2∑
(oi − o)

2 (7)

S2
=

∑
(xi − x)

2

N − 1
(8)

RMSE=

√∑
(pi − oi)

2

N − 1
(9)

MBE=
∑
oi −pi

N − 1
(10)

VR=
σ 2
p

σ 2
o

(11)
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Table 5. The average performance metrics for each gap-filling al-
gorithm regarding Fc, which includes all window lengths and sites,
ranked by RMSE using the Tukey’s HSD test at the level of 0.05.

Algorithm Mean Mean Mean Mean Mean
RMSE R2 MBE IoAd VR

XGB 3.07a 0.59 −0.43 0.90 0.66
RF 3.12a 0.58 −0.37 0.91 0.71
ANNs 3.13a 0.56 −0.33 0.90 0.69
SVR 3.34b 0.47 −0.32 0.86 0.75
MDS 3.35b 0.51 −0.41 0.85 0.70
PD 3.41b,c 0.48 −0.35 0.81 0.54
CLR 3.44b,c 0.49 −0.36 0.81 0.55
ELN 4.52c 0.43 −0.37 0.73 0.39
FBP 4.15d 0.47 −0.06 0.77 0.68

a–d Bonferroni grouping.

IoAd= 1−

n∑
i=1
(oi −pi)

2

n∑
i=1
(|pi − o| + |oi − o|)

2
(12)

Here, oi and pi are individual measured and predicted val-
ues, respectively, o and p are the means of o and p, and σ 2 is
the variance. S2 is calculated separately for the observed and
predicted values, with the respective values defined as x rep-
resenting every observed or predicted value. All of these met-
rics were calculated for each of the gap scenarios, and then
the results of five permutations were concatenated. After-
wards, the metrics were calculated to avoid Simpson’s para-
dox or any relevant averaging issue as described by Kock and
Gaskins (2016).

3 Results

3.1 Fluxes

3.1.1 CO2 flux (Fc)

Even though factors such as ground heat (Fg) and net ra-
diation (Fn) are fluxes, we dealt with them as environmen-
tal drivers since they drive the three major turbulent fluxes.
The metrics used to evaluate the algorithms’ performance
(RMSE, R2, MBE, IoAd, and VR) (Table 5) illustrated that,
overall, the performance of these algorithms, particularly the
ML ones, was similar, closely followed by the MDS. The
XGB provided the lowest values of RMSE and one of the
highest R2 values, while the FBP and ELN had the lowest
and highest values of R2 and RMSE, respectively. The algo-
rithms, however, showed different levels of sensitivity to the
gap lengths; e.g. the CLR and PD showed lower sensitivity,
while the FBP showed the most sensitivity (Fig. 1).

These outcomes were expected for the XGB as it uses a
more regularised model formalisation to control over-fitting
(Chen and Guestrin, 2016), which, on paper, leads to better
performance against its ML rivals. The relatively poor per-
formance of FBP was also foreseen because, unlike other al-
gorithms, FBP did not use any feature to estimate flux val-
ues other than the previous time series of flux values. How-
ever, the weaker performance of the ELN compared to CLR
was unforeseen as by adding two penalty components to the
regression line, the ELN is supposed to improve the long-
term prediction compared to the traditional linear regression
methods. Tukey’s HSD (honestly significant difference) test
at the level of 0.05 was applied to the results to determine
whether the difference amongst the algorithms was signifi-
cant (Table 5). When the null hypothesis is confirmed there
is no significant difference between the mean values of the
RMSE. According to the results, there were significant dif-
ferences between certain algorithms, and the XGB, RF, and
ANNs were different from the rest, showing that these three
performed considerably better. Tukey’s HSD test, however,
did not reject the second error probability between RF, XGB,
and ANNs, meaning that the three algorithms were not sig-
nificantly different from each other. This result agrees with
the results of Falge et al. (2001) and Moffat et al. (2007) in
the sense that ANNs are one of the best available gap-filling
algorithms, and there is no significant difference amongst
the appropriate algorithms. However, the test showed that
the performance of the MDS was significantly different from
the ANNs. It seems that the difference has occurred because
of the longer gaps (> 10 d) that were absent from previous
studies. Finally, it is worth mentioning that Tukey’s HSD
is well known as a conservative test. That being said, de-
spite no meaningful difference based on Tukey’s HSD, XGB
and RF might have performed better than ANNs, as the
superiority of RF in gap-filling the methane flux over the
ANNs, SVR, and MDS has recently been claimed by Kim
et al. (2020).

To address this paper’s first objective, which was to find
the sensitivity of the gap-filling algorithms to the gap win-
dow length, we used the averaged RMSE, R2, and MBE for
each gap size with the output of all algorithms for all sites
(Table 6). The outcome illustrates that the longer the win-
dow length got, the larger the RMSE became. Yet, no such
pattern was recognisable for the R2 and MBE. As a result,
generally, any consecutive gaps longer than 30 d seem to de-
crease the algorithms’ performance noticeably. A reason for
this may be that longer windows do not let the algorithms ac-
commodate seasonal changes and therefore different canopy
physiological behaviour.

According to the MBE values (Table 5), mainly, all al-
gorithms had negative MBEs, indicating an overestimation
of the Fc values. This bias varied from tower to tower and
depended on the window lengths. For instance, the MBE
absolute values were larger in Gingin and Tumbarumba,
while they were considerably smaller (closer to zero) at Al-
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Figure 1. A heat map of mean RMSE values of Fc across all sites based on nine algorithms and nine window lengths in 2013.

ice Springs Mulga and Calperum (Supplement). The lower
leaf area index of the two latter sites and thus their smaller
amounts of photosynthesis are likely to be the reason for
this. FBP, nonetheless, provided a substantially lower mean
bias (−0.06) compared to the other algorithms, which varied
between −0.32 and −0.43.

Observations from the EC technique often include ex-
tremely low or high values after quality control (QC), es-
pecially at night when some of the theoretical assumptions
might be violated. One of the practical challenges associated
with the EC technique is that it is often difficult to distin-
guish between the good data and the noise (Aubinet et al.,
2012; Burba and Anderson, 2010). This problem seems to
affect the outcomes of the gap-filling algorithms in this re-
search, as none of them performed ideally in capturing the
observed variance (Table 5). Even though RMSE, R2, and
IoAd showed the superiority of the XGB, RF, and ANNs, the
variance ratio between the estimated and measured values

revealed different information (Table 5), which is recognis-
able in Fig. 2. The variance ratios (VRs) showed that SVR
captured the extreme values of Fc better than the other algo-
rithms, with 0.75 on average. The other ML algorithms (plus
the MDS), however, performed similarly with regard to cap-
turing the extremes that match both the expectations and the
performance metrics (Table 5).

The linear algorithms, CLR, PD, and ELN, performed
worse concerning the VR compared to the ML algorithms,
with the VR of Fc for Calperum (Fig. 2) confirming this.
Based on the figure, as expected, the ELN performed the
worst in capturing the fluctuations in Fc (VR= 0.39), while
the performance of the other algorithms, apart from the top
five, was not significantly better with the exception of FBP. It
is noteworthy that CLR, PD, and ELN frequently predicted
nocturnal photosynthesis. Overall, the results showed a sig-
nificant difference between the top five algorithms (XGB,
RF, ANNs, SVR, and MDS) and remaining algorithms, par-
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Figure 2. Measured vs. estimated values of Fc for Calperum based on a 10 d gap window (22–31 March 2013): (a) the ML algorithm plus
the MDS and (b) the linear models plus FBP.

ticularly in capturing the fluctuations and the min–max range
of Fc. However, a comprehensive comparison shows a slight
superiority of the XGB and RF.

3.1.2 Latent heat flux (Fe)

The performance of algorithms for Fe was similar to that
for Fc with respect to RMSE, MBE, and R2, as shown in Ta-
ble 7. This similarity was not surprising since these processes
are partially coupled via stomatal conductance (Scanlon and
Kustas, 2010; Scanlon and Sahu, 2008). Again, the top three
ML algorithms performed better, with XGB and RF being
statistically significant as shown by the Tukey’s HSD (Ta-
ble 7). The null hypothesis was not rejected while comparing
FBP and SVR, whereas the better performance of the other
algorithms was confirmed. As a result, the FBP and SVR

provided the most unsatisfactory results in estimating Fe, ac-
cording to the average values of the RMSE. No significant
improvement in RMSE occurred when the gap lengths be-
came shorter than 60 d, meaning that the algorithms’ perfor-
mance did not vary considerably from a 30 d to a 1 d window,
especially for the top algorithms (XGB, RF, and ANNs).
CLR and PD results were very similar to those for Fc, show-
ing a lower RMSE and higher R2 values against ELN, but
the ELN led to a slightly lower MBE. The MBE values also
showed moderately high values for the SVR, meaning that
there was an absolute bias in its outcome, which might be re-
lated to over-fitting. The source of the bias shown by the SVR
algorithm (Fig. 3) was its inability to capture the minimum
values appropriately, resulting in a considerable overestima-
tion. A common issue in estimating Fe values, which affected
all algorithms other than the FBP, was the inability to capture
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Table 6. The average RMSE, R2, and MBE for Fc gap-filling based
on the window length, including the outcome of all sites; the differ-
ences of RMSE values were tested using the Tukey’s HSD test at
the level of 0.05.

Window Mean Mean Mean
length RMSE R2 MBE

1 d 3.23∗ 0.53 −0.27
5 d 3.25∗ 0.52 −0.31
10 d 3.26∗ 0.51 −0.29
20 d 3.27∗ 0.51 −0.31
30 d 3.29∗ 0.51 −0.31
60 d 3.32∗ 0.49 −0.35
90 d 3.37∗ 0.51 −0.38
180 d 3.43∗ 0.50 −0.41
365 d 3.49∗ 0.49 −0.37

∗ means there is not any significant difference
between the groups.

Table 7. The average metrics for Fe gap-filling based on the algo-
rithms, ranked by RMSE using the Tukey’s HSD test at the level
of 0.05.

Algorithm Mean Mean Mean
(Fe) RMSE R2 MBE

XGB 34.95a 0.74 −3.48
RF 35.63a 0.74 −3.33
ANNs 37.77a,b 0.67 −3.94
MDS 41.74b,c 0.64 −3.27
PD 43.28b,c 0.64 −6.35
CLR 43.51c 0.64 −6.66
Eln 44.34c 0.59 −5.13
SVR 46.63c,d 0.59 −20.45
FBP 50.53d 0.52 3.01

a–d Bonferroni grouping.

the negative values. In contrast to Fc results, the ANNs did
not perform as well as the XGB and RF, which could be due
to not capturing the maximum values compared to its rivals.

3.1.3 Sensible heat flux (Fh)

As with the other flux results, the metrics of RMSE, R2,
and MBE showed slight superiority for XGB and RF, as
well as the inferiority of the SVR and FBP to the other al-
gorithms (Table 8). Likewise, the SVR provided relatively
large negative values of MBE, showing considerable overes-
timation. The Tukey’s HSD test of the average RMSE val-
ues confirmed that the performance of the FBP was signif-
icantly different from the rest at the level of 0.05, making
FBP the weakest performer for Fh. On the other hand, al-
though there was no significant difference amongst the XGB,
RF, and ANNs, the first two were considerably superior over
the other algorithms as regards the Tukey’s HSD test. Simi-

Table 8. The average metrics for Fh gap-filling based on the algo-
rithms, ranked by RMSE using the Tukey’s HSD test at the level
of 0.05.

Algorithm Mean Mean Mean
(Fh) RMSE R2 MBE

XGB 37.23a 0.92 −0.21
RF 37.55a 0.91 −0.09
ANNs 40.13a,b 0.90 −0.08
MDS 43.30b,c 0.88 −9.51
SVR 43.80b,c 0.88 0.35
PD 44.96c 0.88 1.36
CLR 45.03c 0.88 1.64
Eln 45.19c 0.87 2.16
FBP 72.91d 0.73 1.07

a–d Bonferroni grouping.

larly to Fe, estimated values of Fh using SVR had a negative
bias (Fig. 4) because it was not able to provide appropriate
estimations of Fh minimum values. In contrast, the ANNs
performed the best in capturing the minimum values, while
the other top algorithms performed almost equally well. De-
spite the similar performance in capturing the minimum val-
ues, ANNs and MDS did not perform as well as XGB and RF
in capturing the overall values, resulting in a higher RMSE.
Finally, like the other fluxes, the PD performed slightly better
than the CLR and ELN.

3.2 Meteorological and environmental drivers

Since meteorological and environmental drivers are needed
to fill the gaps of the three turbulent fluxes (Fc, Fe, and Fh),
the eight algorithms (excluding the MDS) were used to fill
these drivers’ gaps. The metrics of R2, RMSE, and MBE
were calculated for all five towers and nine window lengths
(16 meteorological and environmental drivers). Overall, for
most meteorological drivers, the linear algorithms, especially
the CLR and PD, performed slightly better than the ML algo-
rithms such as the XGB, RF, ANNs, and SVR, except for Ah,
Fg, and Fn. This unexpected superiority can be explained
based on the following two reasons. Firstly, unlike the fluxes,
the input and output features were the same here, e.g. Ta
for Ta, which led to solid correlations (e.g. up to 0.99 for
atmospheric pressure – ps) as well as strong linear relation-
ships between the independent and dependent features. These
strong correlations helped the linear algorithms perform well
and reduced ML algorithms’ ability to capture the non-linear
behaviour of complicated problems. Second, ML algorithms’
slight inferiority could be due to data noise; simple linear al-
gorithms such as the CLR are usually relatively less sensitive
to noise. Therefore, over-fitting is not an issue for them when
the number of observations is big enough (i.e. at least 10 to
20 observations per parameter; Harrell, 2014). The excep-
tions were Ah, Fn, and Fg, for which values were estimated
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Figure 3. Measured vs. estimated values of Fe for Calperum based on a 10 d gap window (22–31 March 2013).

Figure 4. Measured vs. estimated values of Fh for Calperum based on a 10 d gap window (22–31 March 2013).

more accurately by the XGB, ANNs, and RF, especially Fg,
with the RMSE of RF and CLR for Fg being 28.91 vs. 33.92,
respectively. Tukey’s HSD test for the mean RMSE values
of Fg confirmed that the XGB, ANNs, and RF showed signif-
icantly better results, while, like all other fluxes and drivers,
the FBP was the worst algorithm (Table 9). Yet, according to
the same test for the other drivers, there was no significant
difference between the algorithms other than the FBP, which
provided the most significant mean values of the RMSE (re-
sults not shown). Importantly, though, none of the algorithms
offered adequate estimations for soil moisture (Sws), partic-
ularly in drier regions. This weak performance happened be-
cause Sws changes dramatically during rainfall in a pulsed
manner, often from zero to saturation in a short amount of
time, whereas the algorithms had been trained based on the
datasets mostly reflecting non-rainy periods. These datasets,
consequently, could not fit the algorithms in a way that they

could estimate Sws accurately when precipitation occurs and
the soil moisture increases dramatically. For instance, in a
wet region like Tumbarumba, where the soil faces rainy days
frequently, the time series are much less spiky. Thus, the
overall performance was better in these regions than the drier
ones (e.g. R2 of 0.45 and 0.26 on average for Tumbarumba
and Calperum, respectively). In addition, the dataset used to
gap-fill the soil moisture was a model derivation from grid-
ded data or regional reanalysis and therefore may not be
close to reality. Another challenge of estimating soil mois-
ture comes from the low spatial coherence of soil moisture;
it can be extremely different just a couple of hundred metres
away due to storms, topography, and soil structure hetero-
geneity (Reichle et al., 2004; Sahoo et al., 2008).
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Table 9. The average RMSE for Fg gap-filling based on the algo-
rithms using the Tukey’s HSD test at the level of 0.05.

Algorithm Mean
(Fg) RMSE

RFa 28.91
XGBa,b 29.19
ANNsb,c 29.58
SVRc 31.46
CLRd 33.92
PDd 33.93
ELNd 34.09
FBPe 39.10

a–d Bonferroni grouping.

4 Discussion

Nine gap-filling algorithms were used in this study: eXtreme
Gradient Boost (XGB), random forest (RF) algorithm, arti-
ficial neural networks (ANNs), marginal distribution sam-
pling (MDS), support vector regression (SVR), classical lin-
ear regression (CLR), panel data (PD), elastic net regularisa-
tion (ELN), and the Prophet Forecasting Model (FBP). All
algorithms performed similarly in estimating the meteoro-
logical and environmental drivers (turbulent fluxes included)
across all stations except the FBP, which performed poorly
because it did not use any ancillary data. The best results
were achieved for the 30 d gaps and shorter, while the worst
results obtained for the most extended windows of 180 and
365 d. Although most of the algorithms performed almost
equally well in estimating meteorological and environmen-
tal drivers, the linear algorithms (CLR, ELN, and PD) per-
formed slightly better, though not significantly using Tukey’s
HSD test. The only apparent exception was Fg, for which
the RF provided more accurate and robust estimations. The
ML algorithms and MDS, on the other hand, showed their
superiority over the linear algorithms while estimating the
main fluxes, Fc, Fe, and Fh. For Fc, the XGB, RF, and ANNs
performed significantly better than the FBP and all linear
algorithms (i.e. the CLR, PD, and ELN, followed closely
by the SVR and MDS). The superiority of the ML algo-
rithms and their similar performance agreed with the results
of previous researchers (Falge et al., 2001; Moffat et al.,
2007), who showed the superiority of non-linear algorithms
and no significant difference amongst the top algorithms in
estimating Fc. Also, with the slight superiorities of XGB
and RF over ANNs, our results confirm that RF performs
better for EC flux gap-filling, as noted by Kim et al. (2020)
for methane.

The XGB was the most novel ML algorithm used in this
research, and based on most performance metrics it provided
comparatively robust results in estimating the fluxes. In esti-
mating the meteorological drivers, though, the XGB did not

show any superiority over the other algorithms, especially the
linear ones. Moreover, the XGB needed 4 to 6 times longer
to be trained and tuned, making it a less feasible algorithm
when time and processing power are important factors or sev-
eral years of data need to be gap-filled. Hence, we do not rec-
ommend the XGB as an alternative to the current standard
algorithms. Nevertheless, because of its local superiorities,
this algorithm might be suitable to use in an ensemble model
alongside algorithms with different weaknesses.

The RF was the best all-around algorithm amongst the
nine algorithms used in this study, providing the best con-
sistent and robust estimates of the fluxes (similar to XGB). It
is also less complicated and performs faster than the XGB.
The RF also provided the best results for Fg, but the linear
algorithms did not perform well. This superiority of RF over
ANNs, MDS, and SVR has been shown previously by Kim et
al. (2020) for gap-filling of methane, showing that it is worth
testing the RF for other towers and fluxes across FLUXNET.

The ANNs estimated the fluxes better than the linear algo-
rithms, most notably for Fc, yet they are not as robust as the
XGB and RF in general. For Fc and Fh, the ANNs provided
a bias, mainly due to overestimating minimum values when
the window lengths were longer than 30 d. However, since
the superiority of the XGB and RF was not considerable, it
is difficult at this point to suggest using XGB or RF as better
alternatives. This is because the utility of ANNs has been val-
idated over a long time in different locations, and they have
been considered to be among the most reliable algorithms in
the field for more than a decade (Aubinet et al., 2012; Hagen
et al., 2006; Kunwor et al., 2017; Moffat et al., 2007). In other
words, the superiority of RF should be assessed in several fu-
ture studies to convince the network to suggest RF instead of
ANNs or identify it as another standard gap-filling method.
Furthermore, there are a wide variety of different ANN al-
gorithms used in the field (Beringer et al., 2017; Hagen et
al., 2006; Isaac et al., 2017; Kunwor et al., 2017; Moffat et
al., 2007), and the minor superiority of RF and XGB cannot
be generalised without additional case studies. As such, we
suggest that other researchers use the RF, especially for Fh
and Fc, alongside ANNs to find out which one performs bet-
ter in challenging scenarios (e.g. when the gaps are long).
Another option is to develop ensemble models to improve the
results over a single algorithm (Moffat et al., 2007). Ideally, a
model with a higher level of flexibility is required in the field
(Hagen et al., 2006; Kunwor et al., 2017; Richardson and
Hollinger, 2007). Finally, the ANNs, like the other ML algo-
rithms, did not show a consistent superiority over the linear
algorithms regarding the environmental drivers. Therefore,
we do not recommend using ML algorithms in such scenar-
ios, except for Fg, for which RF seems to be a better option.

The MDS performed similar to, yet not as well as, the
XGB, RF, and ANNs in gap-filling the fluxes. Its perfor-
mance was close to the SVR but was more reliable for Fe
and Fh. It is worth mentioning that this performance was
achieved despite the MDS using fewer input features. Its per-
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formance, however, was comparable with the ML algorithms,
particularly when the gap lengths were relatively shorter
(equal to or smaller than 10 d). As such, we recommend us-
ing the MDS when the gaps are not long or the available in-
put features are limited, especially considering that the MDS
performs significantly faster than the ML algorithms and is
easier to use.

The SVR showed consistent inferiority to the other ML al-
gorithms and did not fulfil our expectations for the meteoro-
logical drivers or for the major fluxes. The only strength of
the SVR was that it captured the extreme values better than
any other algorithm. However, because of the larger RMSE
the mentioned advantage seems to have been achieved sus-
piciously and might have occurred due to over-fitting. This
dubious performance shows that SVR is perhaps more vul-
nerable to the over-fitting issues regarding these data types.
Hence, we suggest the SVR not be used in environmental
modelling related to the reviewed drivers and fluxes.

The CLR, the simplest algorithm used in this research,
provided a comparatively acceptable performance in estimat-
ing the meteorological drivers, except for Fg. This algorithm,
however, did not perform well in assessing the fluxes, es-
pecially Fc, mainly because of its inability to capture the
extreme values caused by the non-linear relation of Fc to
its drivers. Overall, considering the CLR’s simple, resource-
saving, and robust performance for drivers, this algorithm
seems to be the most suitable way to fill the gaps of mete-
orological parameters in similar scenarios in which the same
ancillary datasets are available.

The PD performed slightly better than the CLR, yet it did
not show a significant superiority over the other linear al-
gorithms used in the research. This unforeseen weak perfor-
mance can be explained due to a couple of factors. First, one
of the assumptions of using the PD is that the cross-sectional
behaviour (here towers) is similar under similar conditions
(the independent variables), and the only thing that leads to
the difference is the specific characteristics of each individ-
ual cross section. Contrariwise, it seems that the five tow-
ers selected in this research violated this assumption due to
their being in widely different ecosystems. Based on previ-
ous studies in which the PD performed well (Izady et al.,
2013, 2016; Mahabbati et al., 2017), it appears that a decent
level of homogeneity is vital for the PD to perform satisfac-
torily. As in all previous cases, the cross-sectional ecosys-
tem had significant similarities, and the distance between
them was smaller. Therefore, the characteristics of cross sec-
tions, such as radiation, climate, and rainfall, had consider-
ably more similarity and homogeneity compared with the
towers used in this research. Finally, it is worth mention-
ing that PD has been commonly used to analyse time series
with a time resolution of weekly or longer, with some excep-
tions using daily time steps. In this research, the data reso-
lution was half-hourly instead, which dramatically increased
the computational demands of the algorithm and led to days
of processing for a single run. This demand happened be-

cause the algorithm creates a dummy variable for each time
step and the relevant matrix of variables becomes too large to
compute with a regular PC. Considering the computational
expense of this algorithm, we recommend other researches
not use PD when the time resolution is shorter than daily.
Despite the limitation, we still encourage further use of PD
whenever there is a decent homogeneity level amongst the
cross sections and the time resolution is daily or longer.

As a hybrid linear model, the ELN did not show any su-
periority over the CLR, despite its modifications to provide
more accurate estimations. However, ELN performed well in
estimating the drivers with slight superiority on some occa-
sions (e.g. for Fld, the CLR is a more proper algorithm to
choose for gap-filling the drivers due to its simplicity and
lower calculation requirement).

The FBP was a unique algorithm used in this research, as it
did not use any independent variables to estimate the values
of drivers and fluxes. The FBP performance was the least
satisfactory of all the algorithms. Therefore, FBP cannot be
considered a reliable alternative for current algorithms to fill
gaps, especially longer ones.

Given that some of the environmental drivers that affect Fc
are different during the day versus night, separating the diur-
nal and nocturnal datasets to train the algorithms could im-
prove the outcome. Mainly because of the u∗ threshold filter-
ing and other problems associated with the nocturnal period,
the portion of diurnal data generally far outweighs the noc-
turnal data portion, which potentially leads to a bias in the
algorithm. The same challenge is associated with soil mois-
ture estimation, as the behaviour of the system on sunny days
is utterly different from during the rainy periods. Moreover,
the system memory and the antecedent conditions are un-
deniable features associated with soil moisture (Ogle et al.,
2015). Therefore, models that can address these considera-
tions are more likely to improve the estimations.

Finally, it is noteworthy that some of the flux drivers used
in this study as input features for the gap-filling algorithms
are not commonly used or might not globally be available.
However, considering that similar relative performance has
been achieved in other research for which different sets of
input features were used (Kim et al., 2020), the relative per-
formance of the algorithms reviewed in this research should
generally provide similar relative performance while using
different input features.

5 Conclusions

Eight different gap-filling algorithms for estimating 16 me-
teorological drivers and nine algorithms for the three key
ecosystem turbulent fluxes (sensible heat flux – Fh, latent
heat flux – Fe, and net carbon flux – Fc) were investigated,
and their performance was evaluated based on datasets from
five towers in Australia. Overall, three ML algorithms, XGB,
RF, and ANNs, performed nearly equally well and signifi-
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cantly better than their linear rivals (the CLR, PD, and ELN)
in estimating the flux values. However, the linear algorithms
performed almost equally well as the ML algorithms in as-
sessing the meteorological drivers. Amongst these nine al-
gorithms, the RF and XGB showed the highest level of ro-
bustness and reliability in estimating the Fc, Fe, and Fh. The
PD was expected to perform better than the linear methods,
and it was hoped that it could compete with the ML algo-
rithms in estimating the fluxes, but it failed to do so. The
SVR was the only ML algorithm that did not perform at the
same level as the rest of the ML algorithms, which we sus-
pect was due to over-fitting issues, while the MDS performed
somewhere in between. Considering the outcomes of previ-
ous research undertaken in the OzFlux network (e.g. Clev-
erly et al., 2013; Isaac et al., 2017), none of the ML al-
gorithms used in this research were proven to provide sub-
stantially better flux estimations compared with the standard
method (ANNs). Nonetheless, amongst the algorithms tested
in this research, the RF showed potential capabilities as an
alternative due to its more consistent performance regarding
long gaps. Finally, we make suggestions below to improve
the results for prospective researchers, as well as the QC and
gap-filling procedure for flux networks.

1. Since the RF was more consistent than its competitors,
including the ANNs, we suggest it is a good idea to use
RF alongside the commonly used algorithms in chal-
lenging scenarios, such as with long gaps, to figure out
whether this superiority can be generalised.

2. It appears that even after three levels of quality control
process by the flux processing software (e.g. PyFlux-
Pro), the data are still quite noisy. These noisy data are
an essential source of both uncertainty and inaccuracy
of the outcome, regardless of the algorithm used to gap-
fill the data. As a result, another level of quality control
methods, such as wavelets or matrix factorisation, in ad-
dition to the current classical ones used by PyFluxPro
and other similar platforms can probably improve the
data quality and thereby improve the final imputation
results.

3. For future researchers, using recurrent neural net-
works (RNNs) instead of feed-forward neural net-
works (FFNNs) could improve estimations. This is
likely because RNNs help the model to consider the
temporal dynamic behaviour of time series. Unlike
FFNNs, wherein the activations flow only from the in-
put layer to the output layer, RNNs also have neuron
connections pointing backwards (Géron, 2019). The de-
mand for an algorithm capable of considering time has
been mentioned in previous research as one of the rea-
sons why testing new algorithms is needed (Richardson
and Hollinger, 2007).

4. Developing ensemble models using algorithms with dif-
ferent weaknesses and strengths may also enhance the

results when a single algorithm shows performance de-
ficiency.
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