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Abstract. Historic measurements are often temporally in-
complete and may contain longer periods of missing data,
whereas climatological analyses require continuous mea-
surement records. This is also valid for historic manual snow
depth (HS) measurement time series, for which even whole
winters can be missing in a station record, and suitable meth-
ods have to be found to reconstruct the missing data. Daily
in situ HS data from 126 nivo-meteorological stations in
Switzerland in an altitudinal range of 230 to 2536 m above
sea level are used to compare six different methods for recon-
structing long gaps in manual HS time series by performing
a “leave-one-winter-out” cross-validation in 21 winters at 33
evaluation stations. Synthetic gaps of one winter length are
filled with bias-corrected data from the best-correlated neigh-
boring station (BSC), inverse distance-weighted (IDW) spa-
tial interpolation, a weighted normal ratio (WNR) method,
elastic net (ENET) regression, random forest (RF) regres-
sion and a temperature index snow model (SM). Methods
that use neighboring station data are tested in two station net-
works with different density. The ENET, RF, SM and WNR
methods are able to reconstruct missing data with a coeffi-
cient of determination (r2) above 0.8 regardless of the two
station networks used. The median root mean square error
(RMSE) in the filled winters is below 5 cm for all meth-
ods. The two annual climate indicators, average snow depth
in a winter (HSavg) and maximum snow depth in a winter
(HSmax), can be reproduced by ENET, RF, SM and WNR
well, with r2 above 0.85 in both station networks. For the
inter-station approaches, scores for the number of snow days
with HS> 1 cm (dHS1) are clearly weaker and, except for
BCS, positively biased with RMSE of 18–33 d. SM reveals
the best performance with r2 of 0.93 and RMSE of 15 d for
dHS1. Snow depth seems to be a relatively good-natured pa-

rameter when it comes to gap filling of HS data with neigh-
boring stations in a climatological use case. However, when
station networks get sparse and if the focus is set on dHS1,
temperature index snow models can serve as a suitable alter-
native to classic inter-station gap filling approaches.

1 Introduction

Climatological analyses require continuous measurement se-
ries of meteorological data. Unluckily, historical measure-
ment series are prone to containing periods of missing data.
Longer data gaps can, for example, originate from tempo-
rally abandoning a measurement site, not properly report-
ing measurements or archiving errors. Therefore, periods of
missing data ideally need to be interpolated prior to execu-
tion of any analysis. This is also valid for manual snow depth
(HS) measurement time series. For example, many instances
of a whole winter of missing data are present in the manual
station HS data records in Switzerland. On the other hand,
long-term continuous records of HS are, for example, nec-
essary to perform climatological trend analyses (e.g., Matiu
et al., 2021), to verify modeling studies (e.g., Olefs et al.,
2020) or to calculate return levels of extreme events for con-
structional guidelines (e.g., Marty and Blanchet, 2012).

A number of studies have evaluated and compared meth-
ods for reconstructing missing data, mostly for the two vari-
ables temperature and precipitation (e.g., Kanda et al., 2018;
Woldesenbet et al., 2017; Yozgatligil et al., 2013; Kemp
et al., 1983). For longer gaps, inter-station approaches are
usually used whereby missing data from one station are
imputed with the help of one or more neighboring sta-
tions (Massetti, 2014). For this purpose, most often multi-
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ple regressions, weighted averages or ratios of average val-
ues between the neighboring station and the station to be
filled are used (Woldesenbet et al., 2017; Tardivo and Berti,
2012; Auer et al., 2007). More recently, machine-learning
approaches have also been used to estimate missing values
(Kim and Pachepsky, 2010; Kashani and Dinpashoh, 2012).

Snow depth is the result of an interplay between temper-
ature and precipitation as well as the radiation-driven en-
ergy budget. Therefore, it is unclear if the methods devel-
oped for the reconstruction of other meteorological param-
eters are also easily applicable for snow depth time series.
Additionally, for inter-station approaches there might be the
problem of different relationships during the accumulation
and ablation phase between stations, which could hinder such
approaches (Bales et al., 2018). This might be especially true
for stations at different elevations. Inter-station approaches
are limited by the fact that a suitable set of reference sta-
tions needs to be available. Additionally, different predom-
inant macroscale weather patterns from one winter to the
other can lead to the violation of the assumption that relation-
ships between stations are stationary. If other meteorological
parameters have been continuously measured in the period
of missing HS at the target station, HS can also be derived
from these parameters with snow models. For the climato-
logical use case in which measured data are often limited by
the number of input variables and the temporal resolution,
temperature index models can be used for this task as they
only need daily precipitation and mean temperature as input
variables. Although temperature index models are very sim-
plistic and, for example, neglect effects such as snow redistri-
bution by wind, they have been used in snow climatological
impact studies (e.g., Marke et al., 2018; Notaro et al., 2011).
Flat field locations, which are often characteristic for snow
measurement sites, are thought to be less affected by such
kinds of effects.

Reconstruction of HS data has been done by several stud-
ies (e.g., Brown, 1996; Brown et al., 2003; Witmer, 1984;
Falarz, 2002; Avanzi et al., 2020). Some of the studies fo-
cus on shorter gaps in hourly automatic measured snow data
(Avanzi et al., 2020), while other studies focus on monthly
means and employ very simple statistical models based
on temperature only (Hughes and Robinson, 1993; Brown
et al., 1995). For daily data, weighted averages of HS data
from neighboring stations are employed (Matiu et al., 2021).
Schöner and Koch (2016) use spatial averages and a temper-
ature index model to reconstruct missing daily HS data in a
project of the Austrian meteorological service. However, ex-
cept for Witmer (1984), who compare spatial interpolation
methods for short gaps, no general comparison of different
methods for reconstructing long gaps in daily HS time series
exists to our knowledge. It remains unclear which methods
are most appropriate for climatological analyses because the
existing methods from different studies are not easily com-
parable and are also only applicable for specific setups. For
climatological analyses covering snow, most often annual or

seasonal snow climate indicators are used to evaluate trends
and changes in the snow cover rather than the daily values
(e.g., Marty, 2008; Beniston, 2012; Buchmann et al., 2021;
Marke et al., 2018; Olefs et al., 2020). These snow climate
indicators are derived from daily data such as, for example,
mean snow depth or duration of the snow cover. However,
no such studies evaluate the influence of missing data and
gap filling procedures on these snow climate indicators. With
this study, we perform a quantitative comparison of different
methods for reconstructing typical year-long gaps in manual
daily HS time series with a focus on climatological analyses
and the ability to reproduce important annual snow climate
indicators. A specific aim is to test the performance of sim-
ple temperature index models because gaps often occur at
the beginning of a measurements series (i.e., in the fist half
of the 20th century) when no suitable neighboring stations
are typically available. We compare different spatial interpo-
lation methods as well as a simple snow model by imputing
synthetic gaps in a “leave-one-winter-out” cross-validation
study. The remainder of the paper is structured as follows:
the data and methods used are described in Sect. 2, results
are presented and discussed in Sect. 3, and concluding re-
marks are given in Sect. 4.

2 Data and methods

We use daily manual snow depth, mean temperature and sum
of precipitation data from 126 nivo-meteorological stations
in Switzerland. The majority (93) of the stations primarily
measure snow-related variables and not necessarily tempera-
ture and precipitation. The stations are either operated by the
Swiss Federal Office of Meteorology and Climatology (Me-
teoSwiss) or by the WSL Institute for Snow and Avalanche
Research SLF (SLF), and data are provided by these two in-
stitutions. The data cover 21 hydrological years in the pe-
riod between 1999 and 2020. A hydrological year is defined
as the period from September until the end of August. The
snow depth is measured manually between 7:00 and 8:00 lo-
cal time each morning from a fixed snow stake and has the
date stamp of the day of measurement. Although many sta-
tions already measured snow before 1999, we decided to use
only the last 21 years in order to have as many complete and
thoroughly quality-controlled time series in our station set as
possible. The 21-year time period was chosen because we
wanted to have a long enough dataset on the one hand (con-
taining a few well-known snow-abundant and snow-scarce
years) and a common (realistic) length of available snow
depth time series for the training period (see below) on the
other hand. The daily sum of precipitation data covers the
period 07:00 of the previous day until 07:00 local time and
has the date stamp of the previous day. Mean temperature
is aggregated over the whole day and has no date shift. The
change in an HS measurement of date i relative to the pre-
ceding measurement is therefore influenced by the precip-
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Figure 1. Location of evaluation stations (blue triangles) and predictor stations (orange squares) for the cross-validation study. The back-
ground color indicates elevation.

itation of date i− 1 and a combination of the temperature
on the two dates i and i− 1. For being able to test methods
for reconstructing missing data in a controlled environment,
a leave-one-winter-out cross-validation is performed. Data
for one winter (November–April) are deleted (gap period),
and in the case that parameter training is required for the
respective method, this is done with the winter data for the
remaining 20 winters (training period). Locations of the sta-
tions used in the cross-validation study can be seen in Fig. 1.
We test the spatial interpolation methods in two different sta-
tion networks in order to assess sensitivity against sparser
station networks. Sparser networks can be expected in areas
of the world which are not as densely populated as Switzer-
land or in earlier times such as in the mid-20th century when
far fewer stations measured snow depth in Switzerland. The
dense network contains 33 evaluation stations (blue triangles
in Fig. 1) as well as an additional 93 neighboring predic-
tor stations (orange squares in Fig. 1) and covers stations in
an altitudinal range of 230 to 2536 m above sea level. The
sparser network consists of the evaluation stations only and
covers an altitudinal range of 273 to 1970 m above sea level.
If two stations were situated closer than 3 km to each other,
one of the two stations was excluded from the station sets. In
order to test every method at the same set of stations, eval-
uation stations are chosen such that they have a continuous
record for all three variables HS, temperature and precipita-
tion. Therefore, gaps are only filled at the evaluation stations
of both station networks. For the stations ARO, DAV and
ULR we combined temperature and precipitation data mea-
sured by MeteoSwiss with HS data that were measured by
the SLF at a nearby partner station. Gaps shorter than 3 d in
the HS time series (only rarely occurring) have been filled by
linear interpolation. If any variable had data gaps longer than
3 d, the corresponding station was excluded from the station
dataset.

2.1 Interpolation methods

2.1.1 Selection of neighboring stations for spatial
interpolation methods

Six different methods are employed to interpolate a missing
winter of snow depth data at a certain station with the help
of neighboring stations or by using measured meteorologi-
cal data at the gap station. In the case that neighboring sta-
tions are used as predictors for reconstructing the missing
data, these stations have to be within a radius of 200 km and
show an absolute elevation difference of less than 500 m. We
choose these limits based on a correlation analysis of Matiu
et al. (2021). For all methods which use HS data from neigh-
boring stations, the best n-correlated neighboring stations are
chosen as predictor stations. If fewer than n stations meet the
constraints defined above, the number of predictor stations
is reduced accordingly. To select the best reference stations,
Pearson correlations between the target station and neighbor-
ing stations are computed in the training period only (see
Sect. 2 for definition). The maximum number of potential
predictor stations for each of the spatial interpolation meth-
ods has been determined in another cross-validation study in
which we varied the number of maximum potential predic-
tor stations from 3 to 25 stations. This sensitivity study is
performed only on the complete station network as for the
sparse network the maximum number of 25 stations would
not be reached in many example cases. Results of this sensi-
tivity study and the maximum number of potential predictor
stations are discussed further in Sect. 3.1.

2.1.2 Best-correlated station (BCS)

The simplest approach we test for imputing missing data is
to directly use HS data from the best-correlated neighboring
station (BCS). Correlation is calculated in the training period,
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and the constraints defined in Sect. 2.1.1 have to be fulfilled.
As a simple bias correction measure, the data from the BCS
are multiplied with the ratio of the mean at the target site to
the mean at the BCS calculated in the training period.

2.1.3 Inverse distance weighting (IDW)

The inverse distance weighting (IDW) method uses a
weighted spatial average of neighboring stations to impute
missing values at the target station, neglecting any elevation
gradients. Weights are the inverse squared distance of the re-
spective neighboring station to the target station such that

ŷ =

∑n
i=1

yi

d2
i∑n

i=1
1
d2
i

, (1)

where ŷ is the estimated snow depth at the target station, n is
the number of neighboring reference stations, yi is the snow
depth at neighboring station i and di is the distance of the
neighboring station i to the target station. Imputed values are
rounded to the nearest centimeter integer. Besides nearest-
neighbor and non-weighted local averages, IDW is one of
the most often-used methods for reconstructing climatologi-
cal data (Beguería et al., 2019; Kanda et al., 2018).

2.1.4 Weighted normal ratio (WNR)

Matiu et al. (2021) use a variation of the weighted normal ra-
tio (WNR) method for filling short and longer gaps (up to a
few years) in daily snow depth time series. The normal ratio
method was first introduced by Paulhus and Kohler (1952)
and assumes a constant ratio of the average state of two
neighboring stations (Young, 1992; Yozgatligil et al., 2013).
Missing values are filled by

ŷ =

∑n
i=1wiyi

ȳ
ȳi∑n

i=1wi
, (2)

where n is the number of neighboring reference stations, yi
is the snow depth at neighboring station i, ȳ and ȳi are the
mean snow depth at the target station and reference station i
in the training period, respectively, and wi is the weight of
station i based on the vertical distance Z−Zi calculated as
wi = e

− ln2(Z−Zi )2/2502
, which is a Gaussian weight function

with a full width at half maximum of 500 m. Reconstructed
values are rounded to the nearest centimeter integer. In order
to have equal conditions within our method comparison, the
selected neighboring stations do not need to have a correla-
tion coefficient larger than 0.7 with the target, contrary to the
WNR method used in Matiu et al. (2021).

2.1.5 Elastic net (ENET) regression

As a fourth method for reconstructing missing HS data at
a target station, we use a multiple linear regression of the

HS data from the best-correlated neighboring stations. As the
neighboring stations often are correlated with each other as
well, we use elastic net (ENET) regularization to reduce the
variance of the model (Zou and Hastie, 2005; Friedman et al.,
2010). Elastic net combines the l1 regularization term em-
ployed in LASSO (Tibshirani, 1996) and the l2 regulariza-
tion term used in ridge regression (Hoerl and Kennard, 1970)
and is thus able to deal with multicollinearity in the predic-
tors. The ratios between l1 and l2 regularization and the hy-
perparameter α are optimized in a 5-fold cross-validation on
the data in the training period. Before fitting and predicting
with the model, predictors and the target are standard-scaled
to have a mean of 0 and standard deviation of 1 based on the
data in the training period. Reconstructed values are rounded
to the nearest centimeter integer, and negative predicted val-
ues are clipped to zero.

2.1.6 Random forest (RF) regression

As a fifth method we employ random forest (RF) regression
as a nonlinear combination of neighboring stations. A ran-
dom forest is an ensemble of decision trees that are drawn
from random subsets of the training data (Breiman, 2001).
The prediction of the ensemble is the average of the in-
dividual trees. We use the best-correlated neighboring sta-
tions as predictors that satisfy the requirements defined in
Sect. 2.1.1. In order to capture potential different relation-
ships between stations in the course of a snow season, we
additionally pass the three seasons early winter (Novem-
ber, December), midwinter (January, February) and late win-
ter (March, April) as a categorical predictor to the model.
Prior to fitting the model, this “seasons” predictor is one-hot-
encoded, whereas the other predictors of neighboring station
HS data are standard-scaled as for the elastic net regression
(Sect. 2.1.5). The random forest model has a tree number of
200 and a maximum depth of 70.

2.1.7 Snow model (SM)

As a last method we make use of a simple snow model (SM).
The snow model consists of a temperature index model,
which is then coupled to a density model to estimate the snow
depth. For estimating snow water equivalent (SWE) in the
snowpack, we use the Snow-17 model, which uses a temper-
ature index approach with a seasonally varying melt factor
(Anderson, 1973). However, we do not use the density pa-
rameterization described in the former reference. Instead, we
post-process the SWE time series of the temperature index
model with a very simple density model. The density model
uses an approach based on Martinec and Rango (1991) in
which a time-dependent density for the different layers in the
snowpack is assumed.

ρ(t)= ρmax+ (ρ0− ρmax)e
−t/τ (3)
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Each layer that is identified by an increase in SWE has an ini-
tial new snow density ρ0, which temporally increases accord-
ing to Eq. (3) at each time step t until it reaches a maximum
density ρmax. When SWE decreases during a day, the density
model removes layers from top of the snowpack to compen-
sate for the loss in SWE. During the cross-validation, only
the parameters of the density model ρ0, ρmax and τ are op-
timized by grid searching a predefined reasonable parameter
space during the training period for each station and a syn-
thetic gap individually to minimize the root mean squared
error (RMSE) in the training period. No parameter optimiza-
tions are done for the melt and accumulation model, and the
parameters defined in Anderson (1973) are used. We consid-
ered using a combined temperature of 2 d to correspond with
the interval of precipitation and HS data (see Sect. 2). How-
ever, we found negligible differences in model performance
and decided to leave the input data as they are to avoid poten-
tial smoothing of temperature signals. In contrast to the inter-
station methods described above, we apply the snow model
over the full hydrological year in order to account for snow
which has already built up by November. However, scoring
is only done in the winter months November–April.

2.2 Evaluation metrics

As score metrics of the reproduced daily HS values we use
the RMSE, the coefficient of determination (r2) and the bias.
The bias is calculated as the average error. RMSE and bias
can be interpreted in the same unit as the HS measure-
ments [cm]. As a fourth metric, we use the mean arctangent
absolute percentage error (MAAPE), which was introduced
by Kim and Kim (2016) as a relative error term (limited to a
maximum of 1.6) because of frequent close-to-zero HS val-
ues for stations at low elevation that blow up traditional rel-
ative error terms such as the mean absolute percentage error.
Since we are interested in gap filling for climatological anal-
yses, we additionally test how well the different methods are
able to reproduce three snow climate indicators which are
frequently used by practitioners. These snow climate indi-
cators are (i) the average snow depth in a winter (HSavg),
which is widely used to test for trends in snow climatology,
(ii) the maximum snow depth in a winter (HSmax), which is
an important indicator for, e.g., prevention measures in en-
gineering, and (iii) the number of snow days with HS>1 cm
(dHS1), which has vital importance for ecology and the win-
ter tourism industry.

3 Results and discussion

3.1 Number of potential predictor stations

The influence of the maximum number of neighboring sta-
tions is displayed in Fig. 2. Box plots of RMSE and MAAPE
scores calculated in the reconstructed winters are shown for
varying numbers of neighboring stations for the different

Figure 2. Box plots of RMSE and MAAPE calculated in the in-
dividual reconstructed winters with a varied maximum number of
predictor stations for the spatial interpolation methods. The meth-
ods have been applied to the complete station network. For better
comparison, outliers are not shown in the box plots. Note that WNR
with one predictor station is equivalent to the BCS method.

spatial interpolation methods. The methods have been eval-
uated in the dense station network. IDW shows decreasing
performance for both RMSE and MAAPE with an increas-
ing number of predictors. The median RMSE increases from
3.9 for one predictor station to 5.6 for 25 predictor stations.
For WNR, the median MAAPE increases with an increas-
ing number of neighboring stations from 0.21 for one neigh-
boring station to 0.37 for a maximum number of 25 neigh-
boring stations. However, WNR performs best in terms of
RMSE for a maximum number of five neighboring stations
with a median RMSE of 3.1. RF and ENET generally show
increasing performance with an increasing number of predic-
tor stations. For ENET, median RMSE decreases from 3.3
for one predictor station to 2.7 for a maximum number of
15 predictor stations. Above 15 predictor stations, a mini-
mal increase in median RMSE to 2.8 is observable. MAAPE
scores decrease and show a lower spread for an increasing
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Table 1. Selected number of neighboring stations for each method.

Method Max. no. neighboring stations

BCS 1
IDW 3
WNR 3
ENET 15
RF 10
SM∗ 0

∗ Only temperature and precipitation data from the target
station are used.

maximum number of predictor stations. However, a further
increase from 15 stations does not yield remarkable differ-
ences in median MAAPE and its variance. For RF, RMSE
constantly decreases with an increasing maximum number of
predictor stations from 3.5 for one predictor station to 2.9 for
a maximum number of 25 predictor stations. MAAPE scores
for RF are insignificantly better for maximum station num-
bers of 3, 5 and 10 than for higher maximum station numbers.

Some of the methods are more sensitive to the maximum
number of neighboring stations used than others. The deter-
ministic approaches (IDW, WNR) regress in skill for more
stations because more stations introduce unnecessary noise.
This is the reason why other studies that use regional aver-
ages or simple linear regressions also use only few neigh-
boring stations for reconstructing missing data (e.g., Matiu
et al., 2021; Tardivo and Berti, 2014). Regularization mea-
sures, which are both included in the ENET and RF regres-
sion, allow choosing the best predictors from a given set of
predictor stations. Therefore, overfitting is prevented even for
a larger number of predictors with these two methods. Tests
on how many predictor stations are influential for the random
forests showed that only few stations (less than ∼ 5) share
the majority of feature importance. The selected number of
maximum neighboring stations for the method comparison in
Sect. 3.2.1 and 3.2.2 is mainly based on the median RMSE
and MAAPE scores presented earlier. If scores from two dif-
ferent maximum numbers of predictor stations are approxi-
mately equal for one method, we decided to use the lower
number of stations to keep the method as simple as possible.
Accordingly, we use the maximum numbers of predictor sta-
tions listed in Table 1 for the comparison of different methods
in the following sections.

3.2 Method performance

3.2.1 Daily values

Predicted daily values are plotted against measured daily val-
ues for the different methods and station densities in Fig. 3.
Values are aggregated over every filled gap in the cross-
validation. The three score metrics r2, RMSE and bias are
indicated in each panel. For both the sparse and dense station

network, ENET regression almost always yields the best re-
sults for all score metrics, closely followed by RF regression
and the WNR method. In the dense station network, WNR,
ENET and RF have similar score values, with RMSE ranging
between 6.5 and 7.0, similar r2 of 0.94, and an equally small
bias of 0.06 for ENET and RF as well as a bias of −0.07
for WNR. BCS closely follows WNR, ENET and RF in the
dense station network with r2 of 0.92, RMSE of 7.6 and a
bias of−0.1. IDW performs more poorly than the four afore-
mentioned methods with r2 of 0.85, RMSE of 10.6 and a pos-
itive bias of 1.78. The snow model performs equal to IDW in
the dense station network in terms of RMSE and r2, with
RMSE of 10.2 and r2 of 0.86. SM predictions are negatively
biased with a bias of −0.74. The SM thus cannot compete
with the WNR, BCS, ENET and RF methods in the dense
station network. However, the SM (in contrast to IDW) can
compete with the WNR and BCS methods in the sparse sta-
tion network for which the RMSE increases by ∼ 35 % and
∼ 40 % compared to the dense station network, respectively.
RF and ENET are less sensitive against station network den-
sity than the WNR and BCS methods, but performance still
decreases for a decreasing station network density. RMSE in
the sparser station network decreases by∼ 30 % compared to
the dense station network for RF and ENET. IDW is the most
sensitive to station network density. RMSE in the sparse sta-
tion network increases by ∼ 75 %, and explained variance is
significantly lower with r2 of 0.55 in the sparse station net-
work.

The RMSE scores and bias of daily values aggregated over
all reconstructed gaps are about twice as high as the median
RMSE and bias obtained from each gap individually (Fig. A2
in the Appendix).

3.2.2 Annual snow climate indicators

HSavg, HSmax and dHS1 derived from the reconstructed
daily data (Sect. 3.2.1) are plotted against the same snow cli-
mate indicators derived from the measured data in Fig. 4. The
score values bias, RMSE and the coefficient of determination
(r2) accompanying the data shown in Fig. 4 are listed in Ta-
ble 2. Absolute errors of the same snow climate indicators
derived from reconstructed data versus those that are HSavg-
derived from the measured data in the reconstructed winters
are shown in Fig. 5.

BCS, WNR, ENET, RF and SM yield unbiased recon-
structions of HSavg for both the dense and the sparser sta-
tion network with a bias smaller than 0.15 cm. For all meth-
ods, RMSE for HSavg is about 30 % to 40 % smaller than
the RMSE derived from the aggregated daily values (see
Sect. 3.2.1) for the reconstructions from both the dense and
sparser station network. The absolute error of HSavg and
HSmax increases with an increasing HSavg for all methods
(Fig. 5). However, the increase is much larger for BCS and
IDW in the case of the sparser station network.
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Figure 3. Reconstructed daily snow depth values plotted against the measured values for the methods used (columns). Data in the top row
are calculated in the full station network, and data in the bottom row are calculated using the evaluation stations only. The solid black line
represents perfect predictions, and the dashed line is a linear fit of predicted versus measured values. The three score metrics coefficient of
determination (r2), root mean squared error (RMSE) and bias are indicated in each panel.

Figure 4. Modeled average snow depth in a winter (HSavg, top row), maximum snow depth in a winter (HSmax, middle row) and number
of snow days with HS ≥ 1 cm (dHS1, bottom row) of the reconstructed winters from the cross-validation trials versus the respective snow
climate indicator value derived from measurements. The columns refer to the different interpolation methods. Orange squares are gaps
reconstructed with the complete station network, and blue triangles are gaps that have been reconstructed solely using the evaluation stations
as depicted in Fig. 1. The black line represents perfect predictions. The dashed and dotted lines are linear fits to the data points of the dense
and sparse station networks, respectively.

HSmax derived form the filled gaps shows a ∼5 %–10 %
lower explained variance than HSavg. RMSE values for HS-
max are larger than for HSavg but should be compared cau-
tiously because of the different scales of the two snow cli-
mate indicators. BCS, WNR, ENET, RF and the SM yield

negatively biased HSmax with biases ranging from −2.3 to
−7.4 cm in the dense and −1.6 to −7.4 cm in the sparse sta-
tion networks, respectively. IDW shows a slightly positive
bias of 2.8 and 2.9 for the dense and sparse station networks,
respectively. Median absolute errors of HSmax increase with
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Table 2. Bias, RMSE and coefficient of determination (r2) for the three climate metrics HSavg, HSmax and dHS1 reconstructed with the
different methods in the dense and sparse station networks as shown in Fig. 4.

Dense station network Evaluation stations only

BCS IDW WNR ENET RF SM BCS IDW WNR ENET RF SM

HSavg
r2 0.96 0.87 0.96 0.97 0.97 0.93 0.90 0.53 0.93 0.94 0.94 0.93
RMSE 4.45 7.92 4.15 4.04 3.91 5.98 6.80 14.87 5.81 5.37 5.32 5.98
Bias −0.11 1.84 −0.07 0.06 0.06 −0.77 0.12 1.77 0.02 0.05 0.05 −0.77

HSmax
r2 0.88 0.84 0.90 0.91 0.91 0.85 0.79 0.46 0.86 0.88 0.89 0.85
RMSE 15.77 18.01 14.50 13.08 13.54 17.50 20.63 33.06 16.63 15.43 15.04 17.50
Bias −2.27 2.79 −4.72 −5.21 −4.50 −7.49 −1.64 2.92 −4.22 −5.55 −3.85 −7.49

dHS1
r2 0.89 0.73 0.81 0.79 0.85 0.93 0.78 0.66 0.78 0.63 0.83 0.93
RMSE 18.64 28.64 24.04 25.56 21.49 14.84 25.71 32.12 26.17 33.66 22.96 14.84
Bias 3.68 17.47 14.74 18.44 14.60 5.24 6.63 19.53 16.69 23.27 15.96 5.24

an increasing HSavg for all methods. For BCS and IDW,
absolute errors for HSmax are increasingly sensitive to sta-
tion network density for increasing HSavg. The temporal oc-
currence of HSmax is consistently well reproduced for all
methods in the dense and sparser station network with me-
dian deviations of 0 d, mean deviations ranging from−2.8 to
+2.4 d, and standard deviations ranging from 31.3 to 37.1 d
(see Fig. A3 in the Appendix).

The dHS1 is reproduced less precisely than HSavg with
∼10 %–20 % lower explained variance r2. All methods apart
from BCS and SM strongly overestimate the number of snow
days with HS≥1 cm of the reconstructed winters with a bias
from 14.6 to 18.4 d overestimation for the full station net-
work and 16.0 to 23.3 d overestimation for the sparse sta-
tion network. However, the BCS also slightly overestimates
dHS1 with a bias of 3.7 and 6.6 d in the dense and sparse sta-
tion networks, respectively. All methods (except SM by the
method definition) experience an increase in bias of dHS1 in
the sparse station network compared to the dense station net-
work. For all methods, the absolute error of dHS1 is largest
in winters with HSavg below 40 cm.

3.3 Applicability and limitations

Snow depth appears to be a good-natured parameter with
respect to reconstructing missing data. All methods except
IDW are able to reconstruct HS with a coefficient of determi-
nation above 0.8 regardless of the two station networks used.
When deciding what method to choose, it depends on the use
case (daily values or derived annual climate indicators) and
the setting (station network, surrounding topography, gaps in
neighboring stations) in which one wants to reconstruct the
data. A qualitative assessment for the suitability of the differ-
ent methods in different situations and for different applica-
tions is given in Table 3.

In a very dense station network such as the one in Switzer-
land, BCS is able to reproduce annual snow climate indica-

tors HSavg, HSmax and dHS1 with r2 above 0.8 and RMSE
below 10 cm for the reconstructed daily HS values. This per-
formance could probably be improved with more advanced
bias correction of the neighboring station such as quantile
mapping (Gudmundsson et al., 2012). However, simple ap-
proaches such as BCS, IDW and to a smaller extent WNR
are sensitive to the density and representativity of the station
network. While this is true for every method that uses neigh-
boring stations, more sophisticated methods such as ENET
and the nonlinear RF regression are also almost able to re-
tain skill for sparser station networks. Consequently, ENET
and RF are, besides the SM, the most promising candidates
in regions with a sparser station network.

Simple spatial averaging with IDW is not able to resem-
ble strong gradients that are present in an alpine topography.
We therefore also tested the gradient-plus-inverse-distance-
squared (GIDS) method (not shown in results) introduced
by Nalder and Wein (1998), which was used in a project of
the Austrian meteorological service for imputing gaps in HS
time series (Schöner and Koch, 2016). In the sparse network
GIDS performed even weaker than IDW, which is in accor-
dance with Price et al. (2000), who observed poor results
with GIDS for temperature and precipitation reconstruction
in areas with strong topography. Nalder and Wein (1998)
compare GIDS to kriging-based methods. We also expect a
strong dependence on station network density for kriging and
therefore refrained from including these kinds of methods
in our method comparison. However, in dense station net-
works, kriging can be an alternative approach to our proposed
methods for interpolating snow depth data, especially when
it comes to spatially continuous reconstructions and not only
estimations on a single point.

Buchmann et al. (2021) evaluated the natural variability
of annual snow climate indicators by comparing data from
parallel station pairs (< 3 km distance and < 100 m eleva-
tion difference). They find RMSE for HSavg within a station
pair to be in the same range as RMSE for reproduced HSavg
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Figure 5. Box plots of absolute errors in average snow depth in a winter (HSavg, top row), maximum snow depth in a winter (HSmax, middle
row) and number of snow days with HS≥1 cm (dHS1, bottom row) calculated for 20 cm HSavg bins of the respective gap winter and the
different methods (columns). Colors of the box plots denote the different station networks that have been used for reconstruction. Outliers in
the box plots are not shown for better comparison.

Table 3. Suitability of different methods in different situations (dense and sparse station networks, gaps in neighboring stations) and for
different applications. Suitability ranges from not recommended or not possible (−−) to very good (++).

BCS IDW WNR ENET RF SM

Gaps in neighboring station(s) −− + + −− +− ++

Sparse station network −− −− −− + + ++

Dense station network + − + + ++ −

Daily data +− − + + ++ +−

HSavg ++ − + ++ ++ +

HSmax − −− + ++ ++ −

dHS1 + −− − − − ++

with the ENET, RF, WNR and SM methods. This proves that
HSavg can be reproduced reasonably well with these four
methods. Even the best-performing method in our compari-
son study cannot reach the quality of a parallel station pair
for HSmax and dHS1. RMSE of the RF method is 2 and 4
times larger than the median RMSE within a parallel station
pair for these two snow climate indicators (Buchmann et al.,
2021).

For all methods, the highest median absolute errors and
bias for dHS1 can be observed in winters with low HSavg.
These winters are often characterized by an ephemeral snow
cover which builds up and vanishes again in the course of the
winter. Temperature index models are prone to problems with
this kind of snow cover, which could explain the weaker per-
formance of the SM method in these conditions (Hughes and

Robinson, 1993; Gray and Landine, 1988). The positive bias
of dHS1 for the methods that use several neighboring stations
may be explained as follows. The probability that at least
one of the neighboring stations has snow on a certain day is
higher than the probability of snow at the target station. Since
most of the methods combine data from the neighboring sta-
tions, this will statistically result in more days with snow.
When trying to minimize bias in dHS1, it is therefore best
to rely on only few neighboring stations. Accordingly, BCS
yields predictions for dHS1 that have a lower positive bias.
One possible approach to reproduce dHS1 more accurately
than deriving it from reconstructed daily values could be to
model dHS1 directly. This could be realized by fitting a non-
linear statistical model such as random forest to the dHS1 se-
ries of the target station with dHS1 series derived from neigh-
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boring stations as predictors. However, the reduced number
of data points would ideally require a longer training period
of simultaneous measurements at target and neighboring sta-
tions, respectively. The number of snow-covered days can
be defined with different thresholds. While a large positive
bias for the 1 cm threshold (dHS1) can be observed for all
methods, this bias decreases with increasing thresholds for
the snow-covered days (see Table A1 in the Appendix). For
the number of snow days with HS≥10 cm (dHS10) the bias
is less than 2 d for all methods and decreases further for the
number of snow days with HS≥30 cm (dHS30). The co-
efficient of determination also increases with an increasing
snow-day threshold.

An option to increase the skill of the deterministic meth-
ods BCS, IDW and WNR is to apply stricter constraints to
the neighboring stations as done in Matiu et al. (2021) by in-
troducing a correlation constraint to the neighboring stations
(see Sect. 2.1.4). In the station networks applied in this study,
this would lead to a failure in filling data in 15 % and 20 %
of the filled gaps (station years) for the dense and sparse sta-
tion network, respectively. These cases occurred mostly for
stations at low elevations (AIG, ALT, GVE, SIO, VIS; see
Fig. 1) with an ephemeral snow cover.

Due to semiautomatic quality control procedures and care-
ful station preselection, our test dataset only contained very
few missing HS values for the reference stations. However,
this is rather unlikely to be encountered in a real application.
Missing values in neighboring stations can be handled dif-
ferently by different methods. ENET does not allow a single
missing value in one of the neighboring stations in the train-
ing and gap period. On the other hand, RF and the WNR
method are able to deal with missing values in the predictor
stations, which is a huge asset when it comes to applicabil-
ity. The effect of missing values in neighboring stations on
performance has not been tested in this study. However, this
is an important point to keep in mind when trying to apply
any of the evaluated methods. For RF, it is also possible to
add other non-snow-depth categorical or continuous predic-
tors such as the mean HSavg anomaly of the predictor sta-
tions or prevailing large-scale atmospheric conditions in the
winter of interest. We tested an RF version with an additional
categorical predictor calculated from binned quantiles of the
mean of all predictor stations used but did not see any im-
provement over the simpler version using only the season as
a categorical predictor.

One potential limitation of the SM approach is that if the
snow measurements are interrupted at a certain station, other
variables needed as input for the snow model could also po-
tentially be missing. However, this is a rather unlikely case
to encounter, at least in the dataset for Switzerland. Tem-
perature and precipitation traditionally have a higher priority
for weather services than the variables associated with snow;
therefore, in the case that an issue occurred at a station, the
probability of continuation of these two classic meteorologic
variables is higher than for any snow variable. After the au-

tomation of many weather stations (not for snow) in Switzer-
land in the 1980s, long gaps in the temperature and precipi-
tation record are even less likely to be encountered. If other
variables such as wind and incoming shortwave and long-
wave radiation are also available at high temporal resolution
for a station, a more sophisticated snow model such SNOW-
PACK (Bartelt and Lehning, 2002; Lehning et al., 2002) or
CROCUS (Brun et al., 1989, 1992) would probably improve
the performance of the gap reconstruction. These physics-
based models cover processes such as erosion by wind and
are thought to better represent settling and melting than the
very simple approach used in our study. However, the re-
quired input data are, if at all, only available for the most
recent decades.

A general limitation of our analysis may be the fact that the
sparse station network is still dense when compared to sta-
tion networks present in other regions of the world (Gubler
et al., 2017). If the station network is sparser than in our ex-
ample, the snow model and RF should be favored over the
other approaches as both these methods show the least sen-
sitivity to station network density in our analysis. Especially
in data-sparse regions, the probability of having temperature
and precipitation data available is much higher than for snow
depth observations, which points towards the use of a snow
model for data reconstruction. Alternatively, one could make
use of output from reanalysis products such as ERA5-land
(Muñoz Sabater et al., 2021). If available, snow depth can
be used directly from the reanalysis product or other mete-
orologic variables from the reanalysis product can be used
to model snow depth with a snow model. Either way, some
sort of downscaling is necessary since reanalysis products are
available in a spatial resolution of about 10 km or more. This
can, for example, be done statistically by using, e.g., the ran-
dom forest model described in Sect. 2.1.6 with data from the
nine surrounding grid cells of the target station as predictor
variables. This method would be independent of neighbor-
ing stations and can be applied worldwide if a global reanal-
ysis product is employed. However, the low spatial resolu-
tion of reanalysis products will always limit application in
complex mountainous terrain. Moreover, reanalysis products
often suffer from a temperature bias (e.g., Scherrer, 2020),
which is crucial with respect to a variable like the highly
temperature-sensitive snow cover.

Ultimately, gap filling is often a preceding step when it
comes to data homogenization in order to correct time se-
ries that show breaks due to station relocations or changes in
measurement techniques or instrumentation (Marcolini et al.,
2019). These breaks can be accompanied by a period of miss-
ing data. Reconstruction methods that employ training meth-
ods before and after a data gap could level out breaks and
potentially complicate their detection and correction. There-
fore, it might be advisable to only use a training period from
either before or after the data gap. Caution is also necessary
when trying to, e.g., do break detection on reconstructed an-
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nual dHS1 series due to the positive biases introduced by
most of the methods.

4 Conclusions

We compared different methods for reconstructing long gaps
in daily manual HS data records as well as their ability to re-
construct the annual snow climate indicators HSavg, HSmax
and dHS1. The ENET, RF, WNR and BCS method are able to
reproduce daily HS values with a coefficient of determination
above 0.9 in the dense and above 0.8 in the sparse station net-
work, respectively. Median RMSEs of the filled gaps are be-
low 4 cm for all methods. The SM, which does not need data
from neighboring stations, reveals only a slightly lower coef-
ficient of determination (0.86) for daily HS values. The two
annual climate indicators HSavg and HSmax, in contrast to
dHS1, can be reproduced by BCS, ENET, RF, SM and WNR
well. All methods except for SM and BCS overestimate the
dHS1 with a bias of 15 to 23 d. In a sparse station network a
simple snow model is best suited to resemble dHS1 most ac-
curately with r2 of 0.93. The reconstruction errors of HSavg
are within the natural variability of a parallel station pair.
Snow depth seems to be a relatively good-natured param-
eter when it comes to gap filling of data with neighboring
stations. However, when station networks get sparse, tem-
perature index snow models serve as a suitable alternative to
classic inter-station gap filling approaches.

Since most of the methods perform reasonably well, the
choice of which method to use depends on the specific use
case and setting. If a serially complete, highly correlated sta-
tion is available, bias-corrected data from this station are easy
to calculate and, in many instances, sufficient enough to be
used in a climatological use case. If no meteorological data
are available at the target station and if neighboring stations
regularly contain missing data as well, WNR is a suitable
deterministic approach to reconstruct data from neighbor-
ing stations. Missing data in neighboring stations can also
be handled by RF. If the station network is sparser than in
our study and if neighboring stations are further away and
weakly correlated, the snow model, ENET and RF should
be favored over the other approaches as these three methods
show the least sensitivity to station network density in our
analysis. If the focus of the analysis is set on dHS1, a simple
snow model is best suited to reconstruct a complete missing
winter. If no meteorological data are available, BCS should
be the fallback solution for dHS1 in the case that a suitable
reference station is available.
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Appendix A: Additional figures and tables

Figure A1. Box plots of RMSE (top row) and bias (bottom row) calculated for 20 cm HSavg bins of the respective gap winter and the different
methods (columns), respectively. Colors of the box plots denote the different station networks that have been used for reconstruction. Outliers
in the box plots are not shown for better comparison. The maximum number of predictors for the different methods is set as defined in Table 1.

Figure A2. Box plots for root mean squared error (RMSE) and bias of the daily values for the different methods and station densities. The
maximum number of predictors for the different methods is set as defined in Table 1. The station network density is irrelevant for the snow
model as no data from neighboring stations are used. For better comparison, outliers are not shown in the box plots.
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Figure A3. Histograms showing the difference in days between the measured date of HSmax and the date of HSmax in the reconstructed
winters in the dense and sparse station networks. In the case that the same HSmax is recorded on more than one day, the date of the first
occurrence is taken.

Table A1. Bias, RMSE and coefficient of determination (r2) for the 1 cm (dHS1), 2 cm (dHS2), 5 cm (dHS5), 10 cm (dHS10) and 30 cm
(dHS30) thresholds for the number of snow days reconstructed with the different methods in the dense and sparse station networks.

Dense station network Evaluation stations only

BCS IDW WNR ENET RF SM BCS IDW WNR ENET RF SM

dHS1
r2 0.89 0.73 0.81 0.79 0.85 0.93 0.78 0.66 0.78 0.63 0.83 0.93
RMSE 18.64 28.64 24.04 25.56 21.49 14.84 25.71 32.12 26.17 33.66 22.96 14.84
Bias 3.68 17.47 14.74 18.44 14.60 5.24 6.63 19.53 16.69 23.27 15.96 5.24

dHS2
r2 0.90 0.78 0.88 0.89 0.92 0.93 0.83 0.70 0.88 0.78 0.90 0.93
RMSE 17.30 26.16 19.22 18.86 15.60 14.94 23.43 30.62 19.76 26.12 17.44 14.94
Bias 3.19 14.12 9.03 10.57 8.16 3.17 5.21 16.31 9.55 14.65 9.22 3.17

dHS5
r2 0.94 0.83 0.93 0.93 0.95 0.94 0.88 0.73 0.92 0.88 0.93 0.94
RMSE 14.31 23.33 14.96 14.58 12.06 14.14 19.37 29.25 16.22 19.90 14.74 14.14
Bias 2.05 10.67 3.77 4.50 3.25 0.84 3.23 12.80 3.84 7.53 4.09 0.84

dHS10
r2 0.95 0.86 0.95 0.96 0.96 0.94 0.92 0.73 0.93 0.94 0.95 0.94
RMSE 11.99 21.27 12.64 11.26 10.57 14.24 16.20 28.92 14.83 13.61 12.28 14.24
Bias 0.72 8.21 0.81 1.48 1.07 −0.01 0.46 9.88 1.51 2.19 1.68 −0.01

dHS30
r2 0.93 0.85 0.95 0.95 0.95 0.88 0.91 0.65 0.92 0.93 0.94 0.88
RMSE 12.90 18.79 11.29 10.51 11.01 16.55 14.69 28.55 13.62 12.53 12.14 16.55
Bias −0.74 4.61 −1.34 −0.54 −0.37 −2.41 −0.99 5.00 −1.24 −0.96 −0.57 −2.41
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Code and data availability. Python code to perform the analy-
sis and to use the methods on other data is available at
https://doi.org/10.5281/zenodo.5547996 (Aschauer, 2021). Input
data to reproduce the analyses are available upon request from the
authors.

Author contributions. JA and CM designed the study. JA performed
the analysis and drafted the paper. Both authors discussed the results
and commented on the paper.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We want to thank MeteoSwiss for providing
data from their meteorological stations. Thank you to Tobias Jonas
for input on the density model and to Moritz Buchmann for valuable
discussions and comments on the paper. We want to thank J. Igna-
cio López-Moreno, Michael Matiu and two anonymous referees,
whose valuable comments helped to improve the paper.

Review statement. This paper was edited by Alessandro Fedeli and
reviewed by J. Ignacio López-Moreno and two anonymous referees.

References

Anderson, E. A.: National Weather Service River Rorecast Rystem
– Snow Accumulation and Ablation Model, NOAA Technical
Memorandum NWS-HYDRO-17, US Depart. of Commerce, Sil-
ver Spring, MD, 1973.

Aschauer, J.: source code: Evaluating methods for reconstructing
large gaps in historic snow depth time series, Zenodo [code],
https://doi.org/10.5281/zenodo.5547996, 2021.

Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann,
R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones,
P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mer-
calli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-
Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin,
M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-
Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.:
HISTALP—historical instrumental climatological surface time
series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46,
https://doi.org/10.1002/joc.1377, 2007.

Avanzi, F., Zheng, Z., Coogan, A., Rice, R., Akella, R.,
and Conklin, M. H.: Gap-filling snow-depth time-series
with Kalman filtering-smoothing and expectation maximiza-
tion: Proof of concept using spatially dense wireless-sensor-
network data, Cold Reg. Sci. Technol., 175, 103 066,
https://doi.org/10.1016/j.coldregions.2020.103066, 2020.

Bales, R., Stacy, E., Safeeq, M., Meng, X., Meadows, M., Oroza,
C., Conklin, M., Glaser, S., and Wagenbrenner, J.: Spatially dis-
tributed water-balance and meteorological data from the rain-
snow transition, southern Sierra Nevada, California, Earth Syst.
Sci. Data, 10, 1795–1805, https://doi.org/10.5194/essd-10-1795-
2018, 2018.

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for
the Swiss avalanche warning: Part I: numerical model, Cold
Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-
232X(02)00074-5, 2002.

Beguería, S., Tomas-Burguera, M., Serrano-Notivoli, R., Peña-
Angulo, D., Vicente-Serrano, S. M., and González-Hidalgo,
J.-C.: Gap filling of monthly temperature data and its effect
on climatic variability and trends, J. Climate, 32, 7797–7821,
https://doi.org/10.1175/JCLI-D-19-0244.1, 2019.

Beniston, M.: Is snow in the Alps receding or disappearing?, Wires.
Clim. Change, 3, 349–358, https://doi.org/10.1002/wcc.179,
2012.

Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Brown, R. D.: Evaluation of methods for climatological reconstruc-
tion of snow depth and snow cover duration at Canadian mete-
orological stations, in: Proc. Eastern Snow Conf., 53d Annual
Meeting, pp. 55–65, 1996.

Brown, R. D., Hughes, M. G., and Robinson, D. A.: Charac-
terizing the long-term variability of snow-cover extent over
the interior of North America, Ann. Glaciol., 21, 45–50,
https://doi.org/10.3189/S0260305500015585, 1995.

Brown, R. D., Brasnett, B., and Robinson, D.: Gridded
North American monthly snow depth and snow water
equivalent for GCM evaluation, Atmos. Ocean, 41, 1–14,
https://doi.org/10.3137/ao.410101, 2003.

Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.:
An Energy and Mass Model of Snow Cover Suitable for
Operational Avalanche Forecasting, J. Glaciol., 35, 333–342,
https://doi.org/10.3189/S0022143000009254, 1989.

Brun, E., David, P., Sudul, M., and Brunot, G.: A numer-
ical model to simulate snow-cover stratigraphy for op-
erational avalanche forecasting, J. Glaciol., 38, 13–22,
https://doi.org/10.3189/S0022143000009552, 1992.

Buchmann, M., Begert, M., Brönnimann, S., and Marty, C.: Evalu-
ating the robustness of snow climate indicators using a unique
set of parallel snow measurement series, Int. J. Climatol., 41,
E2553–E2563, https://doi.org/10.1002/joc.6863, 2021.

Falarz, M.: Long-term variability in reconstructed and observed
snow cover over the last 100 winter seasons in Cracow
and Zakopane (southern Poland), Clim. Res., 19, 247–256,
https://doi.org/10.3354/cr019247, 2002.

Friedman, J., Hastie, T., and Tibshirani, R.: Regularization paths for
generalized linear models via coordinate descent, J. Stat. Softw.,
33, 1–22, https://doi.org/10.18637/jss.v033.i01, 2010.

Gray, D. M. and Landine, P. G.: An energy-budget snowmelt model
for the Canadian Prairies, Can. J. Earth Sci., 25, 1292–1303,
https://doi.org/10.1139/e88-124, 1988.

Gubler, S., Hunziker, S., Begert, M., Croci-Maspoli, M., Konzel-
mann, T., Brönnimann, S., Schwierz, C., Oria, C., and Rosas, G.:
The influence of station density on climate data homogenization,
Int. J. Clim., 37, 4670–4683, https://doi.org/10.1002/joc.5114,
2017.

Geosci. Instrum. Method. Data Syst., 10, 297–312, 2021 https://doi.org/10.5194/gi-10-297-2021

https://doi.org/10.5281/zenodo.5547996
https://doi.org/10.5281/zenodo.5547996
https://doi.org/10.1002/joc.1377
https://doi.org/10.1016/j.coldregions.2020.103066
https://doi.org/10.5194/essd-10-1795-2018
https://doi.org/10.5194/essd-10-1795-2018
https://doi.org/10.1016/S0165-232X(02)00074-5
https://doi.org/10.1016/S0165-232X(02)00074-5
https://doi.org/10.1175/JCLI-D-19-0244.1
https://doi.org/10.1002/wcc.179
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3189/S0260305500015585
https://doi.org/10.3137/ao.410101
https://doi.org/10.3189/S0022143000009254
https://doi.org/10.3189/S0022143000009552
https://doi.org/10.1002/joc.6863
https://doi.org/10.3354/cr019247
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1139/e88-124
https://doi.org/10.1002/joc.5114


M. Aschauer and C. Marty: Reconstructing large gaps in snow depth time series 311

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-
Skaugen, T.: Technical Note: Downscaling RCM precipitation
to the station scale using statistical transformations – a com-
parison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390,
https://doi.org/10.5194/hess-16-3383-2012, 2012.

Hoerl, A. E. and Kennard, R. W.: Ridge regression: Biased esti-
mation for nonorthogonal problems, Technometrics, 12, 55–67,
https://doi.org/10.1080/00401706.2000.10485983, 1970.

Hughes, M. G. and Robinson, D. A.: Creating temporally com-
plete snow cover records using a new method for modelling snow
depth changes, World Data Center A, Glaciology (Snow & Ice),
pp. 150–163, 1993.

Kanda, N., Negi, H. S., Rishi, M. S., and Shekhar, M. S.:
Performance of various techniques in estimating missing
climatological data over snowbound mountainous areas
of Karakoram Himalaya, Meteorol. Appl., 25, 337–349,
https://doi.org/10.1002/met.1699, 2018.

Kashani, M. H. and Dinpashoh, Y.: Evaluation of efficiency of dif-
ferent estimation methods for missing climatological data, Stoch.
Env. Res. Risk A., 26, 59–71, https://doi.org/10.1007/s00477-
011-0536-y, 2012.

Kemp, W. P., Burnell, D. G., Everson, D. O., and
Thomson, A. J.: Estimating Missing Daily Maxi-
mum and Minimum Temperatures, J. Appl. Meteo-
rol. Clim., 22, 1587–1593, https://doi.org/10.1175/1520-
0450(1983)022<1587:EMDMAM>2.0.CO;2, 1983.

Kim, S. and Kim, H.: A new metric of absolute percentage error for
intermittent demand forecasts, Int. J. Forecasting, 32, 669–679,
https://doi.org/10.1016/j.ijforecast.2015.12.003, 2016.

Kim, J.-W. and Pachepsky, Y. A.: Reconstructing missing daily pre-
cipitation data using regression trees and artificial neural net-
works for SWAT streamflow simulation, J. Hydrol., 394, 305–
314, https://doi.org/10.1016/j.jhydrol.2010.09.005, 2010.

Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A
physical SNOWPACK model for the Swiss avalanche warning:
Part II. Snow microstructure, Cold Reg. Sci. Technol., 35, 147–
167, https://doi.org/10.1016/S0165-232X(02)00073-3, 2002.

Marcolini, G., Koch, R., Chimani, B., Schöner, W., Bellin,
A., Disse, M., and Chiogna, G.: Evaluation of homog-
enization methods for seasonal snow depth data in the
Austrian Alps, 1930–2010, Int. J. Clim., 39, 4514–4530,
https://doi.org/10.1002/joc.6095, 2019.

Marke, T., Hanzer, F., Olefs, M., and Strasser, U.: Simulation of past
changes in the Austrian snow cover 1948–2009, J. Hydromete-
orol., 19, 1529–1545, https://doi.org/10.1175/jhm-d-17-0245.1,
2018.

Martinec, J. and Rango, A.: Indirect evaluation of snow reserves in
mountain basins, IAHS-AISH P., 205, 111–119, 1991.

Marty, C.: Regime shift of snow days in Switzerland, Geophys. Res.
Lett., 35, 12, https://doi.org/10.1029/2008gl033998, 2008.

Marty, C. and Blanchet, J.: Long-term changes in annual max-
imum snow depth and snowfall in Switzerland based on
extreme value statistics, Climatic Change, 111, 705–721,
https://doi.org/10.1007/s10584-011-0159-9, 2012.

Massetti, L.: Analysis and estimation of the effects of missing val-
ues on the calculation of monthly temperature indices, Theor.
Appl. Climatol., 117, 511–519, https://doi.org/10.1007/s00704-
013-1024-8, 2014.

Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C.,
Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Grego-
rio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt,
M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., No-
tarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler,
M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A.,
Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubey-
roux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.:
Observed snow depth trends in the European Alps: 1971 to 2019,
Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-
2021, 2021.

Muñoz Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harri-
gan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and
Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis
dataset for land applications, Earth Syst. Sci. Data, 13, 4349–
4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.

Nalder, I. A. and Wein, R. W.: Spatial interpolation of climatic Nor-
mals: test of a new method in the Canadian boreal forest, Agr.
Forest Meteorol., 92, 211–225, https://doi.org/10.1016/S0168-
1923(98)00102-6, 1998.

Notaro, M., Lorenz, D. J., Vimont, D., Vavrus, S., Kucharik,
C., and Franz, K.: 21st century Wisconsin snow projec-
tions based on an operational snow model driven by statisti-
cally downscaled climate data, Int. J. Clim., 31, 1615–1633,
https://doi.org/10.1002/joc.2179, 2011.

Olefs, M., Koch, R., Schöner, W., and Marke, T.: Changes
in Snow Depth, Snow Cover Duration, and Potential
Snowmaking Conditions in Austria, 1961–2020 – A
Model Based Approach, Atmosphere-Basel, 11, 1330,
https://doi.org/10.3390/atmos11121330, 2020.

Paulhus, J. L. and Kohler, M. A.: Interpolation of missing precipi-
tation records, Mon. Weather Rev., 80, 129–133, 1952.

Price, D. T., McKenney, D. W., Nalder, I. A., Hutchinson, M. F., and
Kesteven, J. L.: A comparison of two statistical methods for spa-
tial interpolation of Canadian monthly mean climate data, Agr.
Forest Meteorol., 101, 81–94, https://doi.org/10.1016/s0168-
1923(99)00169-0, 2000.

Scherrer, S. C.: Temperature monitoring in mountain regions us-
ing reanalyses: lessons from the Alps, Environ. Res. Lett., 15, 4,
https://doi.org/10.1088/1748-9326/ab702d, 2020.

Schöner, W. and Koch, R.: SNOWPAT – Schnee in Österreich,
Snow in Austria during the instrumental period – spatiotempo-
ral patterns and their causes – elevancefor future snow scenar-
ios, resreport, Zentralanstalt für Meteorologie und Geodynamik
ZAMG, report for Austrian Climate Research Program, 2016.

Tardivo, G. and Berti, A.: A dynamic method for gap filling in daily
temperature datasets, J. Appl. Meteorol. Clim., 51, 1079–1086,
https://doi.org/10.1175/jamc-d-11-0117.1, 2012.

Tardivo, G. and Berti, A.: The selection of predictors
in a regression-based method for gap filling in daily
temperature datasets, Int. J. Clim., 34, 1311–1317,
https://doi.org/10.1002/joc.3766, 2014.

Tibshirani, R.: Regression Shrinkage and Selection Via
the Lasso, J. Roy. Stat. Soc. B Met., 58, 267–288,
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x, 1996.

https://doi.org/10.5194/gi-10-297-2021 Geosci. Instrum. Method. Data Syst., 10, 297–312, 2021

https://doi.org/10.5194/hess-16-3383-2012
https://doi.org/10.1080/00401706.2000.10485983
https://doi.org/10.1002/met.1699
https://doi.org/10.1007/s00477-011-0536-y
https://doi.org/10.1007/s00477-011-0536-y
https://doi.org/10.1175/1520-0450(1983)022<1587:EMDMAM>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1587:EMDMAM>2.0.CO;2
https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/10.1016/j.jhydrol.2010.09.005
https://doi.org/10.1016/S0165-232X(02)00073-3
https://doi.org/10.1002/joc.6095
https://doi.org/10.1175/jhm-d-17-0245.1
https://doi.org/10.1029/2008gl033998
https://doi.org/10.1007/s10584-011-0159-9
https://doi.org/10.1007/s00704-013-1024-8
https://doi.org/10.1007/s00704-013-1024-8
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1016/S0168-1923(98)00102-6
https://doi.org/10.1016/S0168-1923(98)00102-6
https://doi.org/10.1002/joc.2179
https://doi.org/10.3390/atmos11121330
https://doi.org/10.1016/s0168-1923(99)00169-0
https://doi.org/10.1016/s0168-1923(99)00169-0
https://doi.org/10.1088/1748-9326/ab702d
https://doi.org/10.1175/jamc-d-11-0117.1
https://doi.org/10.1002/joc.3766
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x


312 M. Aschauer and C. Marty: Reconstructing large gaps in snow depth time series

Witmer, U.: Eine Methode zur flächendeckenden Kartierung von
Schneehöhen unter Berücksichtigung von reliefbedingten Ein-
flüssen, Phd thesis, Universität Bern, 1984.

Woldesenbet, T. A., Elagib, N. A., Ribbe, L., and Heinrich, J.: Gap
filling and homogenization of climatological datasets in the head-
water region of the Upper Blue Nile Basin, Ethiopia, Int. J. Clim.,
37, 2122–2140, https://doi.org/10.1002/joc.4839, 2017.

Young, K. C.: A three-way model for interpolat-
ing for monthly precipitation values, Mon. Weather
Rev., 120, 2561–2569, https://doi.org/10.1175/1520-
0493(1992)120<2561:ATWMFI>2.0.CO;2, 1992.

Yozgatligil, C., Aslan, S., Iyigun, C., and Batmaz, I.: Comparison
of missing value imputation methods in time series: the case of
Turkish meteorological data, Theor. Appl. Climatol., 112, 143–
167, https://doi.org/10.1007/s00704-012-0723-x, 2013.

Zou, H. and Hastie, T.: Regularization and variable selec-
tion via the elastic net, J. Roy. Stat. Soc. B, 67, 301–320,
https://doi.org/10.1111/j.1467-9868.2005.00503.x, 2005.

Geosci. Instrum. Method. Data Syst., 10, 297–312, 2021 https://doi.org/10.5194/gi-10-297-2021

https://doi.org/10.1002/joc.4839
https://doi.org/10.1175/1520-0493(1992)120<2561:ATWMFI>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<2561:ATWMFI>2.0.CO;2
https://doi.org/10.1007/s00704-012-0723-x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

	Abstract
	Introduction
	Data and methods
	Interpolation methods
	Selection of neighboring stations for spatial interpolation methods
	Best-correlated station (BCS)
	Inverse distance weighting (IDW)
	Weighted normal ratio (WNR)
	Elastic net (ENET) regression
	Random forest (RF) regression
	Snow model (SM)

	Evaluation metrics

	Results and discussion
	Number of potential predictor stations
	Method performance
	Daily values
	Annual snow climate indicators

	Applicability and limitations

	Conclusions
	Appendix A: Additional figures and tables
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

