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Abstract. Climate change raises important issues concern-
ing hydrological engineering. The impact of climate change
on important river basins should be investigated rigorously.
Extreme temperature variability has a direct impact on the
hydrological cycle, especially the evaporation component. In
this paper, spatial and temporal patterns of changes in ex-
treme temperatures were investigated using 10 meteorologi-
cal stations’ data for the period 1950–2018 in the Blue Nile
Basin. Long-term trends in the Blue Nile Basin annual and
monthly temperatures were investigated. The statistical sig-
nificance of the trend was calculated by applying the Mann–
Kendall (MK) test. The analysis of data was performed us-
ing the coefficient of variance and anomaly index. The re-
sults showed that the annual maximum and minimum tem-
peratures were increasing significantly with a magnitude of
0.037 and 0.025 ◦C per decade respectively in the period
from 1950 to 2018. The result of the Mann–Kendall analysis
test revealed a marked increase in the mean maximum and
minimum temperature trends over time during the study pe-
riod (the minimum temperature rate is more evident than the
maximum). The long-term anomalies of mean annual mini-
mum temperature revealed the interannual variability while
the trend after 1977 was higher than the long-term average,
which is proof of the warming trend’s existence during the
last two decades of the 20th century.

1 Introduction

Climate change is perceived to affect the whole world and
there has been, and still is, a growing concern about its trend
and consequences. The Blue Nile River Basin (BNRB) is af-
fected by climate change in temperature increases and rain-

fall decreases. The BNRB is the most important river basin
in the Nile Basin and has a great development potential.
Many development projects are under construction currently
in the BNRB without thorough, detailed climate change anal-
ysis. These projects are essential for irrigation schemes, hy-
dropower generation, and national economic growth. As a
trans-boundary river basin, it attracts the attention of some
neighboring countries. For sound management and planning
of water resources, it is important to predict the climate
change and variability of crucial metrological factors such as
temperature and precipitation (Tamiru, 2011). Temperature
and precipitation directly affect the hydrology of the basin
(Sobhy et al., 2019). Since temperature affects both evapora-
tion and evapotranspiration, and precipitation is the source of
runoff, so the study of these factors is very important in water
resources management. Here it is decided to explore the im-
pact of climate change on temperature, and in a forthcoming
paper the impact on rainfall will be studied.

The assessment of extreme temperature variability due to
climate change will help to better manage the development
projects in the BNRB. Global and regional rises in air tem-
perature, together with their collateral rises in water tempera-
ture, result in negative alterations in water quality, even with
the same precipitation (Collins et al., 2019). Lake Tana, lo-
cated upstream of the BNRB, is one of the greatest natural
lakes of Africa (El-Mahdy, 2014). Generally, the lakes are
sensitive to a wide range of climate change consequences.
Even a slight change in climate can result in huge changes in
lake salinity and levels (El-Mahdy et al., 2018; Mengistu et
al., 2014; Tamiru, 2011).

The symptoms of global warming can be noticed almost
everywhere around the world. Heat waves and droughts are
striking a lot of places, so that precipitation, humidity, and
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temperatures are rarely normal. These phenomena among
others are considered as evidence of the presence of climate
variability (Sohoulande Djebou and Singh, 2016). The anal-
ysis of data from ground stations and satellites showed that
the mean surface temperature of the world has increased by
about 0.6 ◦C over the 20th century (Lindzen and Giannitsis,
2002; Tapley et al., 2019). The warmest years in this cen-
tury have all occurred since 1980 (Janssens et al., 2020). The
warmest recorded year was 1998 (Mann et al., 1999). These
alterations appear to be out of the natural variability range
(Houghton, 1996; Mann et al., 1999; Sippel et al., 2020; Wat-
son et al., 1996). A lot of research studied the impact of tem-
perature rise on runoff and it was found, with high confi-
dence, that the runoff increased in winter and decreased in
summer and spring. In addition higher peak flows have oc-
curred in these basins (Anache et al., 2018; Bergström et al.,
2001; Chen et al., 2012; Yan et al., 2020).

The results of the simulation studies conducted by Gle-
ick (2000) in the USA showed that small alterations in rain-
fall and temperature may lead to huge impacts on runoff. It
was found that if temperature increases without a change in
rainfall, the runoff will decrease. A 10 % decrease in rain-
fall together with a temperature rise of 2 ◦C will reduce the
runoff by 13 %–40 %. On the other hand, if rainfall increases
by 10 % and the temperature rises by 4 ◦C, the rainfall in-
crease will balance evaporation losses and no alteration on
runoff is predicted. Although these findings are not compre-
hensive, they reveal the possible size and uncertainty encir-
cling the hydrologic and climatic implications of greenhouse
warming (El-Mahdy, 2011).

The temperature is a continuous variable in both space and
time. The monthly mean temperature (MMT) and the max-
imum and minimum monthly temperature (MT) always fol-
low a normal distribution (Jones and Hulme, 1996).

The predicted climate change may affect most of the
Ethiopian districts. Drought remains Ethiopia’s major haz-
ard, with floods following in another place (Conway and
Schipper, 2011). Recently, it is clear that both drought and
flood have increased in both frequency and size (Margaret,
2003).

A recent study by Gebrehiwot and van der Veen (2013) in-
dicated that climate change in Ethiopia could lead to extreme
temperatures and rainfall events, leading to more heavy and
extended droughts and floods. Changes in sea surface tem-
perature and El Niño–Southern Oscillation (ENSO) periods
in the Indian and Atlantic oceans have effects on the timing
and amount of rainfall in Ethiopia (Fekadu, 2015; Shanko
and Camberlin, 1998). Asfaw et al. (2018) found that the
drought events of Ethiopia are the result of both ENSO, sea
surface temperature (SST) variations in the Indian and At-
lantic, and anthropogenic activities. Kiros et al. (2016) found
that the result of different studies of temperature trend analy-
ses in northern Ethiopia is a mixture of nonsignificant nega-
tive and positive trends. Mengistu et al. (2014) noted that the
trend of temperature was significantly increasing in Ethiopia.

Although the concept of global warming and its impact on
the BNRB has been studied before, the analysis of long
enough time series over multiple weather stations with the
appropriate statistical tools was not found. Investigation of
extreme temperature variability in the BNRB is not well pre-
sented in the literature. Making use of the statistical tools to
explore climate change impacts on Ethiopia is not performed
in thorough studies. The availability of the long time series
data (1950–2018) invokes the research on the climate change
impact on the basin. The main objective of this research is to
detect any climate change through the evaluation of extreme
temperature variability using trend analysis of long tempera-
ture time series in the BNRB, Ethiopia.

2 Data and methodology

2.1 Description of the study area

The BNRB starts at the outlet of Lake Tana in Ethiopia and
flows downstream to Khartoum in Sudan where it meets the
White Nile. The basin surface area is 324 530 km2. The ter-
rain of the BNRB is generally hilly and contains valleys,
highlands, and a lot of rock peaks. The Lake Tana Basin is
located in northwestern Ethiopia at latitude 10.95 to 12.7◦ N,
and longitude 36.89 to 38.2◦ E with a drainage area of about
15 000 km2 (Sintayehu, 2015). Lake Tana, upstream of the
BNRB, is the greatest natural lake in Ethiopia and the third
greatest natural lake in the Nile Basin, which is located in this
basin. The main rivers that feed Lake Tana are Gilgil Abai,
Gomera, Rip, and Magek (El-Mahdy, 2017). These short-
length rivers constitute about 93 % of the outflow of the lake
(Kebede et al., 2006). The climate of Ethiopia is composed of
three distinct seasons named Belg, Kiremt, and Bega (Haile,
2005). Belg is a short rain season which covers the period
from February to May. The rainfall in the Belg season re-
sults from the humid southeastern and eastern winds that
originate from the Indian Ocean. Kiremt is a long rainy sea-
son that starts in June and normally ends in September. The
Kiremt season’s rainfall results substantially from the con-
vergence of low-pressure winds and the Intertropical Conver-
gence Zone (ITCZ). Finally, the dry season, called the Bega,
extends from October to January (Tabari et al., 2015). The
highest temperature recorded in the BNRB is located in the
northwestern part at Dangla station. In some parts of Dabus,
Dinder, Rihad, and Beles, the maximum recorded tempera-
ture reaches 38 ◦C and the minimum approaches 15 ◦C. On
the other hand, the lower temperature is recorded in the east-
ern and central parts of the basin in the Ethiopian highlands.
In these areas, the maximum temperature is 20 ◦C and the
minimum is −1 ◦C (Tamiru, 2011).

2.2 Types of data

Temperature data, which are used in the variability and time
series trend analysis, have been obtained from the Ethiopia

Geosci. Instrum. Method. Data Syst., 10, 45–54, 2021 https://doi.org/10.5194/gi-10-45-2021



M. A.-H. Mohamed and M. E.-S. El-Mahdy: Climate change impact on extreme temperature variability 47

Figure 1. Location map of the Blue Nile Basin and the selected
meteorology.

Meteorological Authority. A total of 10 stations covering dif-
ferent parts of the BNRB have been chosen to study the vari-
ability of their data sets (see Table 1 and Fig. 1). The climate
data consist of maximum and minimum MT data with many
years of records for 10 stations that have been collected in
the BNRB. The length of the record of the data made avail-
able for this analysis varies from 62 to 68 years of MMT,
maximum, and minimum MT. Most analyses have focused
on changes in mean values due to the lack of the availability
of high-quality daily data required for monitoring, detecting,
and attributing climate extremes changes (Jones, 1999). The
study period (1950–2018) was chosen according to the avail-
ability of the recorded data for all stations. Although there
are almost no missing data for the studied period, the missing
data of a specific month were calculated using the average of
the previous year’s data of the same month and subsequent
years’ monthly data (for missed monthly data), but the anal-
ysis excluded annual missing data.

2.3 Methods

The analysis of temperature was performed using many tech-
niques. These techniques are generally categorized as vari-
ability and trend analysis. The variability analysis encom-
passes the coefficient of variation (CV), moving average, and
percentage departure from the mean (Gebrechorkos et al.,
2020). On the other hand, trend analysis is applied to con-
sistent data only utilizing parametric and nonparametric tests
(Onyutha, 2017; Partal and Kahya, 2006). The homogeneity

and normality of the variance over the data series are usu-
ally affected by missing data and outliers in parametric tests.
The nonparametric test is used to overcome the problem of
non-normally distributed, missing data, and outliers. This
problem is repeatedly found in the hydrological and meteo-
rological time series. For these reasons, the Mann–Kendall
(MK) test is commonly utilized to discover the trends of
meteorological and hydrological variables (Degefu and Be-
wket, 2014; Kiros et al., 2016; Seleshi and Camberlin, 2006;
Tabari and Tavakoli, 2016). MK is a nonparametric test that
assesses the trend of any time series without assuming that
the trend is nonlinear or linear. MK test is commonly used
to discover the monotonic (increasing or decreasing) trends
in the time series of hydrological, meteorological, and envi-
ronmental data (Yue et al., 2002). Totaro et al. (2020) con-
ducted trend detection using a numerical investigation. The
study focused on exploring the power of nonparametric and
parametric tests in annual maximum time series data. The re-
sults showed paramount practical implications. It was proved
that the dependence of test power on the parameters of par-
ent distribution might significantly affect the results of both
nonparametric and parametric tests. This result is comprising
the widely applied MK test. The results of Monte Carlo sim-
ulations showed that the power of the MK test has a direct
relationship with the data variance in addition to the trend
magnitude (Wang et al., 2020). Németh et al. (2020) ana-
lyzed the characteristics of the test of the likelihood ratio for
extremes by simulations and introduced a simulation-based
method to overcome the issue of scarce data. A novel re-
turn level calculation procedure is proposed. The probability
or power of discovering trends relies on the development of
efficient multivariate statistical and deterministic procedures
for forecasting future trends in processes of the earth system
(Vogel et al., 2013). In the current paper, the variability of
temperature was calculated employing the SD and CV tests.
Moreover, MK and Sen’s slope estimator test were employed
to reveal the temperature trend. SPSS v22 software was used
to perform the data analysis. CV is computed to evaluate the
rainfall variability. The higher the CV value, the larger the
variability of rainfall. CV is calculated using the following
equation:

CV=
σ

µ
× 100, (1)

where CV is the coefficient of variation, σ is the standard de-
viation, and µ is the mean (Isioma et al., 2018). The test of
homogeneity was conducted employing Pettitt’s test (Pettitt,
1979) to ensure that the data are homogenous and no mis-
leading data are present. In this test, every value in the time
series is compared with all posterior values in the data series.
If the value of the subsequent period is greater than the value
of the preceding period, the statistic (S) is raised by one and
vice versa. The summation of all increments and decrements
reveals the total value of the statistic (S). MK test was em-
ployed to explore the presence of monotonic trends in the
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Table 1. Selected weather stations of the Blue Nile Basin and their general information. Source: Ethiopia Meteorological Authority.

No. Station name Longitude Latitude Altitude Area (%) Mean annual
(E) (N) (m) rainfall (mm)

1 Addis Ababa 38.7 9.03 2408 16.45 1165
2 Assosa 34.52 10.07 1560 7.89 1126
3 Bahir Dar 37.42 11.06 1770 – –
4 Debre Markos 37.67 10.33 2515 11.84 1303
5 Gondar 37.04 12.05 2000 13.82 1102
6 Gore 35.53 8.15 2002 8.55 2181
7 Dangla 36.8 11.3 2030 4.61 1491
8 Jimma 36.83 7.67 1676 12.5 1480
9 Sibu Sere 36.9 9.00 1750 8.55 1420
10 Dessie 39.67 11.08 2460 15.79 1045

time series, and the statistical significance of the trend. Since
outliers cannot be averted in any time series, the MK test is
advantageous because it is based on the (+ or −) signs in-
stead of the random variable values. Therefore, the MK test
is less influenced by the outliers (Asfaw et al., 2018). The
MK test statistic “S” is calculated based on Mann (1945),
McLeod (2005), and Yue et al. (2002), using the following
formula:

S =

n=1∑
i=1

n∑
j=i+1

sgn(xj − xi). (2)

The trend test is applied on a time series xi which is ranked
as i = 1, 2. . .n−1 and xj , which is ranked as j = i,1,2. . .n.
Each of the data points xi is taken as a reference point to be
compared with the other data points xj so that

sgn
(
xj − xi

)
=


+1 if (xj − xi) > 0

0 if
(
xj − xi

)
= 0

−1 if (xj − xi) < 0
, (3)

where xi and xj are the data values in the years i and j re-
spectively (j > i).

It was reported that, if the number of observations is
greater than 10 (n≥ 10), the statistic (S) is usually normally
distributed around the mean (McLeod, 2005). So, the vari-
ance could be formulated as follows:

Var(S) =
n(n− 1)(2n+ 5)−

m∑
i=1
t1(t1− 1)(2t1+ 5)

18
, (4)

where n is the number of observation and ti are the ties of the
sample time series. The test statistic Zc is as follows:

Zc =


S−1
σ

if S > 0
0 if S = 0
S+1
σ

if S < 0
. (5)

If Zc follows a normal distribution, its positive or negative
value refers to an upward or downward trend for the stud-
ied period respectively. The trend magnitude could be calcu-
lated by slope estimator methods (Sen, 1968). Here, the slope

(Ti) of all data pairs is calculated according to Sen (1968). In
general, Ti for any time series x could be predicted from the
following:

Ti =
xj − xk

j − k
, (6)

where xj and xk are considered as data values at time j and
k (j > i) correspondingly. The median of these N values of
Ti is represented as Sen’s estimator of the slope which is cal-
culated as Qmed = T(N+1)/2 if N is an odd number, and it is
computed as Qmed =

[
TN/2+ T((N+2)/2)/2

]
if N is an even

number. A positive value of Ti indicates an upward or in-
creasing trend and a negative value of Ti gives a downward
or decreasing trend in the time series.

3 Results and discussion

The MK test and Sen’s slope estimator were applied to
the time series 1950–2018 for the 10 meteorological sta-
tions in the BNRB. The annual and seasonal means of the
climatic parameters, particularly minimum and maximum
MMT, were analyzed. Table 2 shows the MK test statistics
and p values at 5 %, 1 %, and 0.1 % levels of significance.
In the MK test, parameters such as Kendall’s tau, S, and Z
statistics were computed to determine the positive or negative
trend of climate parameters in the long time series studied.

Tables 2 and 4 show the annual and monthly maximum and
minimum MT and MMT and their trend during the study pe-
riod. The mean minimum temperature in the BNRB area was
6.7 ◦C and the mean maximum was 25.5 ◦C, with a mean
annual temperature of 16.1 ◦C. The regression line slope is
about 0.036 and 0.024 ◦C per decade for minimum and max-
imum annual temperatures respectively for the studied pe-
riod of 1950–2018 as shown in Tables 3 and 5 in addition
to Figs. 2 and 3. These results are close to the previously
found global warming rate which is 0.06 ◦C per decade for
the last century (Pachauri and Meyer, 2014). Figures 4 and
5 showed the long-range anomalies of mean annual mini-
mum and maximum temperatures. It is clear that the trend
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Table 2. Basic statistics and MK trend analysis of minimum temperature in the Blue Nile Basin (1950–2018).

Month Min. Max. Mean SD CV Skewness/ MK Sen’s
(%) kurtosis test slope

January 6.7 11.8 10.0 1.2 11.8 −0.9/0.7 5.26∗∗∗ 0.031
February 8.6 13.5 11.3 1.1 10.0 −0.5/− 0.1 5.62∗∗∗ 0.035
March 10.0 14.6 12.8 1.1 8.8 −0.8/− 0.4 5.70∗∗∗ 0.037
April 11.2 15.5 13.6 1.0 7.4 −0.5/− 0.7 5.54∗∗∗ 0.036
May 11.6 15.4 13.8 1.0 7.2 −0.5/− 0.8 5.63∗∗∗ 0.035
June 10.7 15.0 13.6 1.1 7.8 −0.9/− 0.3 5.75∗∗∗ 0.038
July 10.7 14.9 13.5 0.9 6.9 −0.8/− 0.1 6.76∗∗∗ 0.037
August 10.5 14.7 13.3 0.9 6.8 −0.8/0.0 7.45∗∗∗ 0.039
September 10.0 14.3 12.9 0.9 7.0 −0.8/0.1 6.83∗∗∗ 0.035
October 8.8 13.1 11.5 1.0 9.1 −0.7/− 0.5 6.73∗∗∗ 0.040
November 8.0 12.3 10.2 1.0 9.5 −0.5/− 0.5 5.24∗∗∗ 0.031
December 7.1 11.9 9.5 1.1 11.7 −0.1/− 0.8 5.47∗∗∗ 0.036
Annual 10.3 13.4 12.2 0.9 7.5 −0.7/− 0.9 6.53∗∗∗ 0.036
Bega (ONDJ) 8.2 11.8 10.3 0.9 8.9 −0.6/− 0.8 6.85∗∗∗ 0.035
Belg (FMAM) 10.6 14.5 12.9 1.0 7.9 −0.6/− 0.7 5.70∗∗∗ 0.036
Kiremt (JJAS) 10.4 14.6 13.3 0.9 7.0 −0.9/0.0 6.96∗∗∗ 0.037

∗ Significant at 5 % significance level. ∗∗ Significant at 1 % significance level. ∗∗∗ Significant at 0.1 % significance level.

Figure 2. Linear regression result of annual minimum temperature
(1950–2018).

Figure 3. Linear regression result of annual maximum temperature
(1950–2018).

after 1985 was greater than the long-term average. This is
considered as strong evidence for the global warming trend
during the last two decades of the 20th century. This result
enhances the previously found results that the climate be-

Table 3. Linear regression result (annual minimum temperature and
Bega, Belg, and Kiremt seasons) (1950–2018).

Season Change in P value R2 CV
minimum (%)

(◦C/yr)

Annual 0.037 0.001 0.65 7.5
Bega (ONDJ) 0.037 0.001 0.64 8.9
Belg (FMAM) 0.038 0.001 0.55 7.9
Kiremt (JJAS) 0.037 0.001 0.63 7.0

came warmer since the end of the last century (Bathiany et
al., 2018; Guo et al., 2020; Nijsse et al., 2019). Surface air
temperature rises globally, although global warming is uni-
form across the world, both temporally and spatially (Turner
et al., 2020). The surface temperature increase is the direct
demonstration of global climate change (Brunet et al., 2007).
However, other researchers proved that the last four decades
of the 20th century showed a significantly increasing trend
in global warming (Bhutiyani et al., 2008). Interannual vari-
ability of rainfall and temperature has intensified from the
late 1960s. Also, droughts occur more frequently and over
a greater spatial distribution. A stronger statistical relation
between climate change and the ENSO phenomenon is ob-
served (Fauchereau et al., 2003). As shown in Tables 2 and
4, the result of the MK test detected that the mean maxi-
mum and minimum temperatures increased significantly over
time at a 99 % confidence level. The trend for monthly mini-
mum and maximum temperature is increasing significantly
for all months. The gross increase in the observed annual
temperature is attributed to the increase in the minimum tem-
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Table 4. Basic statistics and MK trend analysis of maximum temperature in the Blue Nile Basin (1950–2018).

Month Min. Max. Mean SD CV Skewness/ MK Sen’s
(%) kurtosis test slope

January 24.5 27.9 26.5 0.8 2.9 −0.6/− 0.3 4.88∗∗∗ 0.023
February 24.2 30.0 27.6 1.1 3.8 −0.5/1.1 4.93∗∗∗ 0.027
March 25.5 30.9 28.4 1.0 3.6 −0.6/0.9 5.39∗∗∗ 0.027
April 25.5 30.3 28.0 1.1 4.0 −0.4/− 0.6 5.51∗∗∗ 0.036
May 25.2 29.0 27.1 0.9 3.2 −0.3/− 0.6 4.59∗∗∗ 0.024
June 23.3 26.6 25.1 0.7 2.9 −0.5/− 0.3 5.13∗∗∗ 0.022
July 20.8 25.0 23.2 0.8 3.5 −0.5/0.4 5.94∗∗∗ 0.024
August 21.3 24.2 23.1 0.7 3.0 −0.6/− 0.4 6.14∗∗∗ 0.024
September 22.6 25.4 24.2 0.6 2.5 −0.4/− 0.1 6.06∗∗∗ 0.019
October 23.3 26.2 25.1 0.6 2.6 −0.5/0.0 4.78∗∗∗ 0.018
November 23.5 26.8 25.6 0.8 3.1 −0.7/− 0.3 5.26∗∗∗ 0.022
December 23.2 26.9 25.9 0.8 3.1 −1.1/0.9 5.82∗∗∗ 0.025
Annual 24.5 26.8 25.8 0.6 2.5 −0.5/− 1.0 7.09∗∗∗ 0.024
Bega (ONDJ) 24.1 26.8 25.8 0.7 2.6 −0.7/− 0.5 6.05∗∗∗ 0.023
Belg (FMAM) 25.6 29.2 27.8 0.9 3.1 −0.5/− 0.2 6.16∗∗∗ 0.028
Kiremt (JJAS) 22.4 25.0 23.9 0.6 2.6 −0.8/− 0.1 6.59∗∗∗ 0.021

∗ Significant at 5 % significance level. ∗∗ Significant at 1 % significance level. ∗∗∗ Significant at 0.1 % significance
level.

Table 5. Linear regression result (annual maximum temperature and
Bega, Belg, and Kiremt seasons) (1950–2018).

Season Change in P value R2 CV
maximum (%)

(◦C/yr)

Annual 0.025 0.001 0.644 2.5
Bega (ONDJ) 0.023 0.001 0.493 2.6
Belg (FMAM) 0.030 0.001 0.482 3.1
Kiremt (JJAS) 0.023 0.001 0.534 2.6

perature. Many researchers have reported that the minimum
temperature rises more than the maximum (Bayramzadeh et
al., 2018; Crimp et al., 2018; Gross et al., 2018; Scott et
al., 2017) The minimum temperature incremental increase is
more evident than that of the maximum. The results are in
good agreement with the results by Asfaw et al. (2018). The
results of the MK analysis revealed a significant increase in
both mean and minimum temperatures throughout the stud-
ied period. On the other hand, the maximum temperature has
a nonsignificant increasing trend. The studies that agree with
these results such as Mengistu et al. (2014) and Roy and
Das (2013) found that the increasing trends in the maximum
temperature series were less than the minimum temperature
series. That the minimum temperature increases more than
the maximum may be explained by the sensitivity of min-
imum temperature to the greenhouse being higher than the
maximum (Salawitch, 1998). In this regard, the maximum
temperature over India was higher than the mean for the pe-
riod (1901–2007) with a low trend. However, the minimum
temperature displayed an upward trend (Kothawale et al.,

Figure 4. Minimum temperature anomaly index (RAI) of Blue Nile
Basin (1950–2018).

2010). This result supported the findings of the current pa-
per over the BNRB. Table 6 showed that the minimum tem-
perature has an increasing trend in Bega, Belg, and Kiremt
seasons in the stations of Bahir Dar, Debre Markos, Gondar,
Gore, and Jimma with a level of significance 5 %, 1 %, and
0.1 %. Also, the maximum temperature in the three seasons
has a significant increasing trend in Addis Ababa, Bahir Dar,
Gondar, and Gore stations, and the trend is statistically sig-
nificant at 0.1 %, 1 %, and 5 % level of significance as shown
in Table 7.

4 Conclusion

Temporal and spatial patterns of changes in extreme tem-
peratures were investigated in the Blue Nile River basin.
The study used data from 10 meteorological stations in the
basin for the period 1950–2018. The statistical data analysis
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Table 6. Mann–Kendall minimum temperature trend analysis (based on gauge stations).

Season Addis Assosa Bahir Debre Gondar Gore Dangla Jimma Sibu Dessie
Ababa Dar Markos Sere

M
in

im
um

te
m

pe
ra

tu
re

(◦
C

)

Annual Mean 9.5 15.1 11.9 9.6 13.0 13.5 18.3 11.6 11.0 11.9
SD 0.9 0.7 1.4 0.9 0.7 0.5 0.8 1.0 0.5 1.3
CV 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.1
MK 1.22 0.3 5.1∗∗∗ 7.0∗∗∗ 4.5∗∗∗ 4.4∗∗∗ −2.6∗ 4.5∗∗∗ 2.7∗∗ 1.2
Sen’s slope 0.005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Bega Mean 7.6 14.2 9.8 8.2 11.6 13.5 15.5 8.3 8.4 9.4
SD 1.2 0.9 1.6 1.0 0.9 0.5 1.3 1.6 1.0 1.1
CV 0.2 0.1 0.2 0.1 0.1 0.0 0.1 0.2 0.1 0.1
MK 0.33 −0.3 4.9∗∗∗ 6.7∗∗∗ 4.8∗∗∗ 4.1∗∗∗ −1.8 4.6∗∗∗ 0.9 1.0
Sen’s slope 0.002 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Belg Mean 10.5 16.1 12.4 10.5 14.3 14.2 18.8 11.7 11.5 12.5
SD 0.9 1.2 1.7 1.1 0.9 0.7 1.0 1.5 0.8 1.5
CV 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1
MK 0.99 0.6 5.0∗∗∗ 5.9∗∗∗ 3.7∗∗∗ 2.7∗∗ −2.7∗∗ 3.2∗∗ 3.1∗∗ 1.2
Sen’s slope 0.006 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kiremt Mean 10.6 15.1 13.7 10.0 13.2 12.8 20.5 14.6 13.1 13.9
SD 0.7 0.8 1.2 0.9 0.7 0.4 0.6 1.2 0.4 1.8
CV 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.1
MK 2.17∗ 1.4 4.7∗∗∗ 6.9∗∗∗ 3.4∗∗∗ 5.6∗∗∗ −2.0∗ 2.7∗∗ 2.2∗ 1.5
Sen’s slope 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ Significant at 5 % significance level. ∗∗ Significant at 1 % significance level. ∗∗∗ Significant at 0.1 % significance level.

Table 7. Mann–Kendall maximum temperature trend analysis (based on gauge stations).

Season Addis Assosa Bahir Debre Gondar Gore Dangla Jimma Sibu Dessie
Ababa Dar Markos Sere

M
ax

im
um

te
m

pe
ra

tu
re

(◦
C

)

Annual Mean 22.8 28.2 26.8 22.4 26.6 23.5 29.8 27.3 26.9 26.2
SD 0.8 0.6 0.6 0.4 0.5 0.5 1.8 0.5 0.5 0.7
CV 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
MK 5.25∗∗∗ 1.6 4.3∗∗∗ 3.4∗∗∗ 4.0∗∗∗ 4.8∗∗∗ 1.5 1.5 −0.2 2.5∗

Sen’s slope 0.026 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Bega Mean 22.7 28.6 26.4 22.7 26.9 23.9 29.7 27.2 27.5 24.4
SD 1.0 0.7 0.7 0.7 0.6 0.6 1.8 0.4 0.6 0.8
CV 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
MK 5.08∗∗∗ 2.1∗ 4.4∗∗∗ 3.1∗∗ 3.5∗∗∗ 3.9∗∗∗ 1.1 −0.4 0.6 4.2∗∗∗

Sen’s slope 0.027 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Belg Mean 24.4 31.2 29.1 24.7 29.0 25.4 33.5 28.4 28.4 26.7
SD 1.2 0.8 0.9 0.7 0.9 0.7 2.1 0.8 0.7 1.0
CV 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
MK 3.44∗∗∗ 1.8 2.5∗ 2.3∗ 2.4∗ 2.7∗∗ 2.4∗ 1.5 −0.6 0.2
Sen’s slope 0.026 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kiremt Mean 21.3 25.0 24.9 19.7 23.9 21.3 26.2 26.5 24.8 27.6
SD 0.8 0.7 0.6 0.4 0.6 0.5 2.0 0.6 0.6 0.7
CV 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
MK 4.41∗∗∗ 0.2 3.9∗∗∗ 1.1 2.8∗∗ 4.5∗∗∗ 1.3 1.8 −0.6 1.8
Sen’s slope 0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ Significant at 5 % significance level. ∗∗ Significant at 1 % significance level. ∗∗∗ Significant at 0.1 % significance level.
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Figure 5. Maximum temperature anomaly index (RAI) of the Blue
Nile Basin (1950–2018).

used in this research work includes standard deviation, co-
efficient of variation, skewness/kurtosis, Mann–Kendall test,
and Sen’s slope. The results showed that there is an increase
in both maximum and minimum temperatures in the basin
over the study period of 68 years. The rate of temperature
increase was found to be 0.037 and 0.025 ◦C per decade
for minimum and maximum temperatures, respectively. The
trend of the mean minimum annual temperature for the last
quarter of the 20th century was greater than the long-term av-
erage. The trend analysis test showed a significant increase
in the mean minimum and maximum temperatures for all
months. The rate of increase for the minimum temperature
is more pronounced than the maximum. Consequently, this
indicates that minimum temperature is more sensitive to cli-
mate change. Some stations showed a decrease in the inter-
annual temperature range. rational climate change may ag-
gravate the situations of climate extremes. Therefore, appro-
priate adaptation and mitigation strategies should be planned
to lessen the impacts of such climatic risks in the Blue Nile
River Basin. The detailed analysis of the impact of these fac-
tors on basin hydrology will be addressed by forthcoming re-
search. A further enhancement of the current work could be
attained using a long record of daily data. A more thorough
investigation of the techniques used for trend analysis could
lead to more accurate trend values. A holistic climate change
assessment over the whole Nile River Basin should get more
attention and a thorough investigation. Research on climate
change detection should be done using various approaches in
collaboration with worldwide concerned bodies.
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