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Abstract. Researchers have explored the benefits and appli-
cations of modern artificial intelligence (AI) algorithms in
different scenarios. For the processing of geomatics data,
AI offers overwhelming opportunities. Fundamental ques-
tions include how AI can be specifically applied to or must
be specifically created for geomatics data. This change is
also having a significant impact on geospatial data. The
integration of AI approaches in geomatics has developed
into the concept of geospatial artificial intelligence (GeoAI),
which is a new paradigm for geographic knowledge discov-
ery and beyond. However, little systematic work currently
exists on how researchers have applied AI for geospatial
domains. Hence, this contribution outlines AI-based tech-
niques for analysing and interpreting complex geomatics
data. Our analysis has covered several gaps, for instance
defining relationships between AI-based approaches and ge-
omatics data. First, technologies and tools used for data ac-
quisition are outlined, with a particular focus on red–green–
blue (RGB) images, thermal images, 3D point clouds, trajec-
tories, and hyperspectral–multispectral images. Then, how
AI approaches have been exploited for the interpretation of
geomatic data is explained. Finally, a broad set of examples
of applications is given, together with the specific method
applied. Limitations point towards unexplored areas for fu-
ture investigations, serving as useful guidelines for future re-
search directions.

1 Introduction

Geomatics is a discipline that deals with the automated pro-
cessing and management of complex 2D or 3D information.
It is defined as a multidisciplinary, systemic, and integrated
approach that allows collecting, storing, integrating, mod-
elling, and analysing spatially georeferenced data from sev-
eral sources, with well-defined accuracy characteristics and
continuity, in a digital format (Gomarasca, 2010).

Nowadays, the processing of large amounts of data and in-
formation in an interdisciplinary and interoperable way relies
on a growing variety of tools and data collection methods.
The binomial science and technology directly connected to
the geomatics disciplines allow the continuous development
of techniques for acquiring and representing data. Surveying
and representation are closely linked to each other, as shown
by the close connection between the disciplines traditionally
associated with surveying, such as geodesy, topography, pho-
togrammetry, and remote sensing, and those related to repre-
sentation, such as cartography (Konecny, 2002).

Geomatics data are acquired by various systems and plat-
forms, generating geospatial and spatiotemporal heteroge-
neous information; indeed, the acquisition techniques pro-
vide different geomatics data, which can be images (RGB,
multispectral and hyperspectral as well as thermal), trajecto-
ries, and point clouds. To date, existing algorithms for data
processing mainly work with manual or semiautomatic ap-
proaches, since full automation has not yet achieved greater
reliability and accuracy. The resulting metric and georefer-
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enced information are then used, catalogued, administered,
displayed, and stored in a geographic information system
(GIS) or generic databases. However, after moving into the
era of big data, the analysis and practical use of the infor-
mation contained within this huge amount of data require
tailored computational approaches such as machine learning
(ML) and deep learning (DL) (LeCun et al., 2015). The at-
tractive feature of AI is its ability to identify relevant patterns
within complex, nonlinear data without the need for any a
priori mechanistic understanding of the geomatics processes.
Today, DL and AI algorithms have been successfully devel-
oped and applied in many geomatics applications (Martín-
Jiménez et al., 2018; Zhang et al., 2020). According to the
type of data collected, different AI methods are proposed
for classification, semantic segmentation, or object detec-
tion (Hong et al., 2020b).

1.1 Theoretical background, motivation, and research
questions

Existing reviews explore particular geomatics data ap-
proaches, generally based on ML and DL, to solve a specific
issue. Examples of well-structured systematic reviews fo-
cused on RGB-D images (Guo et al., 2016; Y. Li et al., 2018;
Zhao et al., 2019; Zhu et al., 2017), thermal images (Ali
et al., 2020; Dunderdale et al., 2020; Kirimtat and Krej-
car, 2018; Vicnesh et al., 2020), point clouds (Guo et al.,
2020; Y. Li et al., 2020; Xie et al., 2020; J. Zhang et al.,
2019), trajectories (Bian et al., 2018; Yang et al., 2018a;
Bian et al., 2019), and hyperspectral and multispectral im-
ages (Audebert et al., 2019; Ghamisi et al., 2017; S. Li et al.,
2019; Signoroni et al., 2019; Yuan et al., 2021; Zang et al.,
2021; Kattenborn et al., 2021) as well as their applications
are available in the scientific literature. However, while the
scientific literature recognises the importance of geomatics
data processing since it covers many fields of application,
there is a lack of systematic investigation dealing with AI-
based data processing techniques. For geospatial domains,
fundamental questions include how AI can be specifically
applied to or must be specifically created for geospatial data.
(Janowicz et al., 2020) proposed an overview of spatially ex-
plicit AI. ML has been a core component of spatial analysis
in geomatics for classification, clustering, and prediction. In
addition, DL is being integrated with geospatial data to au-
tomatically extract useful information from satellite, aerial,
or drone imagery (just to mention some) by means of image
classification, object detection, semantic, and instance seg-
mentation. The integration of AI, ML, and DL with geomat-
ics is broadly recognised and defined as “geomatics artificial
intelligence” (GeoAI).

Considering the latest achievements in data collection and
processing (Grilli et al., 2017), geomatics is facing the world-
wide challenge of, on one hand, reducing the need for man-
ual intervention for huge datasets and, on the other, improv-
ing methods for facilitating their interpretation. GeoAI could

represent the turning point for the entire research community,
but, to the best of our knowledge, there is currently no survey
on this emerging topic.

To close this gap, this review aims to provide a technical
overview of the advances and opportunities offered by AI for
automatically processing and analysing geomatics data. This
work emphasises that, despite their specific technical require-
ments, the computational methods used for these tasks can be
integrated within a single workflow to optimise several steps
of interpreting complex geomatics data, regardless of the ap-
plication. Considering the multidisciplinary nature of geo-
matics data, major efforts have been undertaken in regard to
RGB-D images, infrared thermographic (IRT) images, point
clouds, trajectory data (TRAJ), and multispectral imaging
(MSI) and hyperspectral imaging (HSI). Initially, a literature
review was conducted to understand the main data acquisi-
tion technologies and if and how AI methods and techniques
could help in this field. In the following account, specific at-
tention is given to the state of the art in AI with the selected
data type mentioned above. In particular, the techniques and
methods for each type of research are analysed, the main
paths that most approaches follow are also summarised, and
their contributions are indicated. Thereafter, the reviewed ap-
proaches are categorised and compared from multiple per-
spectives, including methodologies, functions, and an analy-
sis of the pros and cons of each category. Each technology
and method reported in Fig. 1 will be analysed.

In particular, the purposes, issues, and motivations of this
study were investigated to set the following research ques-
tions (RQs).

RQ1 To explore the most commonly used methodologies in
recent years for dealing with geomatics data, the follow-
ing question has been set: among the well-established AI
methods, which is the most commonly used in geomat-
ics?

RQ2 To understand if the methodologies used depend on the
processed data, the following question arises: do geo-
matics data influence the choice of using one methodol-
ogy rather than another?

RQ3 To provide an overview of the main tasks performed us-
ing geomatics data, the following question must be an-
swered: for which tasks are geomatics data used?

RQ4 To better understand which type of geomatic data is
used in different application domains, the following
question arises: are there relationships between appli-
cation domains and geomatics data?

1.2 Paper organisation

To enhance its readability and facilitate reader comprehen-
sion, the paper has been structured as follows. Section 1.3
describes the methodology adopted in the choice of the ar-
ticles identified and selected for the review work. Section 2
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Figure 1. Artificial intelligence approaches for the interpretation of complex geomatics data. Conceptualisation of the review process.

presents the related work on the application of AI methods
to the geomatics data in the test. Section 3 summarises the
concepts, existing techniques, and important applications of
GeoAI. Section 4 describes the limitations and implications
of this research, highlighting some emerging applications of
AI for geomatics data analysis. Finally, Sect. 5 presents the
implications of the research and concluding remarks.

1.3 Research strategy definition

A systematic review of the literature was conducted using
PRISMA guidelines and electronic databases: ieeeXplore1,
Scopus2, Sciencedirect3, citepseerx4, and SpringerLink5. A
set of keywords was chosen in relation to the remote sensing
domain and based on preliminary screening of the research
field. The keywords considered in the research initially were
as follows: geomatics data, pattern recognition, artificial in-
telligence, machine learning, neural networks, supervised
learning, unsupervised learning, statistical methods, active
learning, imbalanced class learning, deep learning, convo-
lutional neural networks, classification, segmentation, detec-
tion, pattern recognition, applications, remote sensing data,
hyperspectral data, point clouds data, RGB-D data, thermal
data, and trajectory.

To obtain more accurate results, the keywords were ag-
gregated. In a set of queries, the keyword geomatics data
was combined with others related to the methodologies (ML,
DL, and more), and in other sets, remote sensing data were

1https://ieeexplore.ieee.org/Xplore/home.jsp (last access: 22
May 2022)

2https://www.scopus.com/ (last access: 22 May 2022)
3https://www.sciencedirect.com/ (last access: 22 May 2022)
4http://citeseerx.ist.psu.edu/index;jsessionid=

5AC85675CD57D62C040448AA01B687CB (last access: 22
May 2022)

5https://link.springer.com/ (last access: 22 May 2022)

Figure 2. Number of publications selected per year.

combined with the application (classification or detection).
Each query produced a large quantity of articles, which were
selected based on their pertinence and year of publication.
Articles considered inconsistent with the research topic and
published before the year 2016 were removed from the list.

The temporal distribution of works dealing with geomat-
ics data is shown in Figs. 2 and 3. The papers considered for
the review were published between the years 2016 and 2021.
Figure 2 shows the temporal distribution of works dealing
with AI for geomatics data. Figure 3 highlights the number
of papers taken into consideration divided by the year of pub-
lication and by the type of geomatics data.

2 From traditional machine learning methods to deep
learning models: analysis of geomatics data

This section provides more detail on the articles in which AI
algorithms are applied for the management, processing, and
interpretation of geomatics data. A set of keywords was used
to perform the search phase on the channels listed in Sect. 1.3
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Figure 3. Number of selected papers for each kind of geomatic data
divided by year.

and according to the taxonomy designed in Fig. 1. Starting
from a brief description of AI algorithms and models, a list of
articles was collected respecting the stop criterion described
in the search strategy definition. The study aims to classify
research published in the field of ML and DL related to sev-
eral aspects in order to compare these methods and identify
their advantages and disadvantages in the application analy-
sis.

2.1 Algorithms and models for GeoAI

AI aims to model the functioning of the human brain and,
based on the knowledge acquired, create more advanced al-
gorithms. Data analysis has changed significantly with the
emergence of AI and its subsets ML and DL (Paolanti and
Frontoni, 2020). Over the past years, ML and feature-based
tools were developed with the aim of learning relevant ab-
stractions from data. Nonetheless, after moving into the era
of multimedia big data, ML approaches have matured into
DL approaches, which are more efficient and powerful to
deal with the huge amounts of data generated from mod-
ern approaches and cope with the complexities of analysing
and interpreting geomatics data. DL has taken key features
of the ML model and has even taken it one step further by
constantly teaching itself new abilities and adjusting exist-
ing ones (LeCun et al., 2015). The most cited definition of
ML is by Mitchell: “It is said that a program learns from
experience E with reference to certain classes of tasks T
and with performance measurement P, if its performance
in task T, as measured by P, they improve with experience
E” (Mitchell, 1997). In other words, an ML model constantly
learns through experience and the rules are not established
previously by the programmer, who defines only the fea-
tures of interest, and then the machine learns by analysing
the available data and achieves the results autonomously by
making generalisations, classifications, and reformulations.
Compared to a traditional approach that consists of identi-
fying a specific function according to which a specific in-
put will always produce a certain output, in the ML generic

mathematical and statistical algorithms are used, which, after
receiving a series of data through a training phase followed
by the evaluation of the results and the optimisation of the
parameters, determine the function independently.

DL (Yan et al., 2015; Goodfellow et al., 2016) is a subset
of ML that is able to provide high-level abstraction models
for a wide range of nonlinear phenomena. The purpose of
DL algorithms is to replicate the functioning of the human
brain by understanding the path that information takes inside
and the way it interprets images and natural language. There-
fore, DL architectures have found great application in im-
age classification. In this application we can see the biggest
differences between ML and DL. In fact, an ML workflow
is started with the manual extraction of significant features
from images, so the extracted features allow the creation of
a model to categorise objects in the image. Unlike in DL,
the feature extraction from images is automatically done and
an end-to-end learning is performed in which a network inde-
pendently learns how to process data and perform an activity.
These techniques have resulted in important advances in var-
ious disciplines, such as computer vision, natural language
processing, facial and speech recognition, and signal analysis
in general. DL relies on different models to represent objects.
An image, for example, can be processed as a simple vector
of numerical samples or with other types of representations.
Numerous DL techniques are influenced by neuroscience and
are inspired by information processing and communication
models of the nervous system, considering the way in which
connections are established between neurons based on re-
ceived messages, neuronal responses, and the characteristics
of the connections themselves. DL methods are also able to
replace some particularly complex artefacts with algorithmic
models of supervised or unsupervised learning through hi-
erarchical characteristic extraction techniques. In fact, they
use multiple layers to extract and transform features. Each
layer receives the weighted output of a neuron of the previ-
ous level. It is therefore possible to switch from the use of
low-level parameters to high-level parameters, with the dif-
ferent levels corresponding to different levels of data abstrac-
tion. In this way, it is possible to get closer to the semantic
meaning of the data and to give them the form of images,
sounds, or texts. Several DL architectures, such as deep neu-
ral networks, convolutional neural networks, and recurrent
neural networks, have been applied to the computer vision,
automatic speech recognition, natural language processing,
audio recognition, and bioinformatics fields, yielding better
performance than ML algorithms in many computer vision
tasks (Ongsulee, 2017).

In general, AI-based algorithms, especially deep neural
networks (DNNs), are transforming the way of approach-
ing real-world tasks done by humans. Despite applications
to problems in geosciences being in their infancy, across the
key problems (classification, anomaly detection, regression,
space- or time-dependent state prediction) there are promis-
ing examples (Zhang et al., 2016; Ball et al., 2017). DNN ar-
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chitectures are increasingly being adopted in geomatics due
to their competence to learn relevant abstractions from data.
At first, these models were considered “black box” operators,
but as their popularity has grown they need to be interpretable
and explainable (Xiao et al., 2018; Elhamdadi et al., 2021;
Fuhrman et al., 2021). Moreover, deep learning methods are
needed to cope with complex statistics, multiple outputs, dif-
ferent noise sources, and high-dimensional spaces. New net-
work topologies that exploit not only local neighbourhood
but also long-range relationships are urgently needed, but
the exact cause-and-effect relations between variables are not
clear in advance and need to be discovered. And more, deep
learning models can fit observations very well, but predic-
tions may be physically inconsistent or implausible owing to
extrapolation or observational biases. Integration of domain
knowledge and achievement of physical consistency by train-
ing models about the governing physical rules of geomatics
data can provide very strong theoretical constraints on top of
the observational ones (Greco et al., 2020).

The main geomatics tasks solved with ML and DL models
can be summarised as follows:

– clustering (Shi and Pun-Cheng, 2019);

– classification and prediction (Jiang, 2018);

– object detection (K. Li et al., 2020);

– segmentation (Minaee et al., 2021);

– part segmentation (Adegun et al., 2018);

– semantic segmentation (Yuan et al., 2021).

The motivations behind the growing interest by the geo-
scientific community are numerous. The combination of un-
precedented data sources, increased computational power,
and recent advances in statistical modelling and machine
learning offers exciting new opportunities for expanding our
knowledge (Mehonic and Kenyon, 2022; Reichstein et al.,
2019).

Clustering is a process of grouping homogeneous ele-
ments, based on some characteristics, in a dataset. This op-
eration in everyday life has an unlimited number of appli-
cations and is put into practice every time any grouping is
carried out (Boongoen and Iam-On, 2018).

The various clustering methods include the following.

– The first is a connection method, such as linkage, which
is a hierarchical method suitable for grouping both vari-
ables and observations (single linkage based on the min-
imum distance, complete linkage based on maximum
distance, and average linkage based on average dis-
tance).

– The second is a k-means method, which is a non-
hierarchical and vector quantisation method that parti-
tions n observations into k clusters, in which each ob-
servation belongs to the cluster with the nearest mean
(cluster centres), working as a prototype of the cluster.

– The last is a spectral cluster, which is an approach with
origins in graph theory wherein the method is used to
classify communities of nodes in a graph based on the
edges connecting them. The process is adaptable and
allows clustering non-graph data.

Classification is the process of learning a certain target
function f , which maps an input vector x to one of the pre-
defined labels y. The target function is also referred to as the
classification model (Tan et al., 2016).

A classification model generated through a learning algo-
rithm must be able to adapt correctly to the input data but
also, and more importantly, to correctly predict record class
labels that it has never seen before. That is, the key objec-
tive of the learning algorithm is to build models with good
generalisation skills.

Object detection is an important problem that consists of
identifying instances of objects within an image and classi-
fying them as belonging to a certain class (e.g. humans, an-
imals, or cars) (K. Li et al., 2020). The goal is to develop
computational techniques and models that provide one of
the basic elements necessary for computer vision applica-
tions, specifically knowing which objects are in an image.
Object detection is the basis of many applications for com-
puter vision, such as instance segmentation, image caption-
ing, and object tracking. From an application point of view,
it is possible to group object detection into two categories:
“general object detection” and “detection applications” (Liu
et al., 2020). For the first, the goal is to investigate meth-
ods for identifying different types of objects using a single
framework to simulate human vision and cognition. In the
second case, we refer to the recognition of objects of a certain
class under specific application scenarios: this is the case of
applications for pedestrian detection, face detection, or text
detection. Currently, the models for object detection can be
divided into two macro-categories: two-stage and one-stage
detectors. Two-stage models divide the task of identifying
objects into several phases, following a “coarse-to-fine” pol-
icy. One-stage models complete the recognition process in a
single step with the use of a single network.

The problem of image segmentation is a topical research
field due to its numerous applications in different fields, from
signal processing at the industrial level to the biomedical sec-
tor, where it can represent a valid technique for facilitating
the reading and quantitative evaluation of the outputs com-
ing from complex diagnostic tools (e.g. magnetic resonance
imaging) (Fu and Mui, 1981). Segmentation is the process
that divides an image into separate portions (segments) that
are groupings of neighbouring pixels that have similar char-
acteristics, such as brightness, colour, and texture. The pur-
pose of segmentation is to automatically extract all the ob-
jects of interest contained in an image; it is a complex prob-
lem due to the difficult management of the multitude of se-
mantic contents (Sultana et al., 2020).
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According to Naha et al. (2020), several recent papers have
demonstrated that the use of DL approaches yields very good
performance on object part segmentation considering both
rigid and non-rigid objects.

As mentioned earlier, an image segmentation model en-
ables partitioning an image into different regions represent-
ing the different objects. We talk about semantic segmenta-
tion when the model is also able to establish the class for
each of the identified regions. In other words, carrying out
a semantic segmentation means dividing an image into dif-
ferent sets of pixels that must be appropriately labelled and
classified in a specific class of belonging (e.g. animals, hu-
mans, buildings).

Semantic segmentation can be a useful alternative to object
detection, as it allows the object of interest to cover multiple
areas of the image at the pixel level. This technique detects
irregularly shaped objects, unlike object detection, whereby
objects must fit into a bounding box (Felicetti et al., 2021).

Semantic segmentation of point clouds is also an impor-
tant step for understanding 3D scenes. For this reason, it has
received increasing attention in recent years and a lot of AI
approaches have been proposed to automatically identify ob-
jects (J. Zhang et al., 2019; Malinverni et al., 2019; Paolanti
et al., 2019).

2.2 Geomatics: a fundamental source of data

This section aims to classify the various types of sensors for
data acquisition and describe their characteristics. The clas-
sification scheme was selected according to the acquisition
device and data features, considering the following: (i) the
output data structuring, (ii) the active–passive sensors, and
(iii) the type of actuation. The main distinction in this review
is the type of sensor (i.e. if the acquisition system is supplied
with a laser sensor or on a vision sensor, such as a camera).
It is fair to state that this is not an exhaustive list of all pos-
sible geomatic techniques; rather, it attempts to embrace all
the sensors that generate data for which interpretation, given
their complexity, requires the aid of statistical learning-based
approaches.

A revolutionary turning point in terms of the concept of ge-
omatics was brought by the research paper titled “Geomatics
and the New Cyber-Infrastructure” (Blais and Esche, 2008).
In that paper, the authors state that geomatics deals with mul-
tiresolution geospatial and spatiotemporal information for all
kinds of scientific, engineering, and administrative applica-
tions. This can be summarised as follows: geomatics is far
more than the concept of simply measuring distances and
angles. A few decades ago, surveying technology and engi-
neering involved only distance and angle measurements and
their reduction to geodetic networks for cadastral and topo-
graphical mapping applications. Surveying still plays a lead-
ing technological role, but it has evolved in new forms. Topo-
graphical mapping, once conducted with bulky instruments
requiring complex computations on the part of researchers,

has now become a by-product of geospatial or GIS; digital
images, obtained with different sensors (from satellite im-
ages to smartphones), can be used to accomplish the tasks
of both classifying the environment and making virtual re-
constructions. Survey networks and photogrammetric adjust-
ment computations have largely been replaced by more so-
phisticated digital processing with adaptive designs and im-
plementations or ready-to-use equipment, such as terrestrial
laser scanners (TLSs). Multiresolution geospatial data (and
metadata) refer to the observations and/or measurements at
multiple scalar, spectral, and temporal resolutions, such as
digital imagery at various pixel sizes and spectral bands that
can provide different seasonal coverage.

Analysis tasks can be performed at a regional level thanks
to the use of high-resolution images from satellite or aerial
images; inferring information is possible through land usage
classification, and the shape can be described using ranging
techniques like lidar and radar pulse. The possibilities offered
by new acquisition devices for dealing with architectural-
scale complex objects are numerous. Low-cost equipment
(cameras, small drones, depth sensors, and so on) is capable
of accomplishing reconstructions tasks. Of course, accuracy
must also be considered. In fact, georeferencing complex
models require more sophisticated and accurate data sources
like a GNSS (Global Navigation Satellite System) receiver
or TLS. In the case of small objects or artefacts, terrestrial
imagery and close-range data are the best solutions for ob-
taining detailed information. In the following, we report the
main areas of application that are closely related to geomat-
ics, which emerged from the previous analysis: natural en-
vironment; quality of life in rural and urban environments;
predicting, protecting against, and recovering from natural
and human disasters; and archaeological site documentation
and preservation. In sum, geomatics can cover the spectrum
of almost every scale (Böhler and Heinz, 1999); while there
is no panacea, the integration of all these data and techniques
is the best solution for 3D surveying, positioning, and feature
extraction.

2.2.1 RGB-D cameras

Before Microsoft Kinect was launched in November 2010,
collecting images with a depth channel was a burdensome
and expensive task. Using depth as an additional channel
alongside the RGB input has the scale variance problem
present in image-convolution-based approaches. In the last
few years, there have been attempts to combine the increas-
ing popularity of depth sensors and the success of learning
approaches, such as ML and then DL (Chu et al., 2018; Wang
et al., 2021). RGB-D cameras generate a colour representa-
tion (red, green, and blue) of a scene and allow reconstruction
of a depth map of the scene itself (Han et al., 2013; Liciotti
et al., 2017). The depth map is an image M of M×N dimen-
sion, in which each pixel p(x,y) represents the distance in
the 3D scene of the point (x,y) from the sensor that gener-
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ated it (Fu et al., 2020; Jamiruddin et al., 2018). The use of
depth images compared to RGB or BW (black and white) im-
ages provides information about the third dimension and sim-
plifies many computer vision and interaction problems, such
as (i) background removal and scene segmentation, (ii) track-
ing of objects and people, (iii) 3D reconstruction of the envi-
ronment, (iv) recognition of body poses, and (v) implemen-
tation of gesture-based interfaces (Han et al., 2013). To de-
termine the depth map, the considered devices use a pattern
projection technique. This involves a stereo vision system
consisting of a projector and camera pair to define an active
triangulation process.

For a semantic segmentation task involving urban–rural
scenes, the work of (L. Li et al., 2017) proposes a method
based on RGB-D images of traffic scenes and DL. They use
a new deep fully convolutional neural network architecture
based on modifying the AlexNet (Krizhevsky et al., 2012)
network for semantic pixel-wise segmentation. The RGB-D
dataset is built by the cityscapes dataset (Cordts et al., 2016),
which comprises a large and diverse set of stereo video se-
quences of outdoor traffic scenes from 50 different cities.
The original AlexNet is modified since they perform a batch
normalisation operation on the output of each convolutional
layer, and during the experimental phase, they find that this
modification improves the segmentation accuracy. The modi-
fied version of AlexNet is used as the encoder network of the
architecture. During the test, they evaluate the semantic seg-
mentation performance of the proposed architecture, com-
paring the results obtained with RGB-D images as input and
only RGB images as input. The experimental results show
that the use of the disparity map increases the semantic seg-
mentation accuracy, achieving good real-time performance.

To semantically segment RGB-D frames collected in com-
mercial buildings and to recognise all component classes
of buildings, a DL artificial neural network method is used
in Czerniawski and Leite (2020). The purpose is to demon-
strate that the proposed method can semantically segment
RGB-D images into 13 classes of components even if the
training dataset is very small. The dataset was purposely built
and manually annotated using a common building taxonomy
to provide complete semantic coverage. The supervised neu-
ral network used is DeepLab (Chen et al., 2017), a state-of-
the-art model for semantic segmentation of images that as-
signs a semantic label to each pixel of the image. To demon-
strate the validity of the approach, the authors compare the
performance with several state-of-the-art DL methods used
for building object recognition.

Finally, RGB-D images have been exploited to fulfil local-
isation tasks (Zhang et al., 2021) and 3D object part segmen-
tation (Zhuang et al., 2021).

2.2.2 Infrared cameras

Thermography, or thermovision, is a non-invasive, simple,
and precise investigation system that provides real-time in-

frared images of any object opaque to this radiation, allowing
the visualisation (and quantitative representation) of its sur-
face temperature (Gade and Moeslund, 2014). The images
are usually represented in false colour scales, in which a cer-
tain colour corresponds to a certain temperature and is not
the real colour of the object.

Infrared thermography (IRT) is a well-known method of
examination, which is useful because it is safe, painless, non-
invasive, easy to reproduce, and has low running costs. IRT
combined with AI-based automated image processing can
easily detect and analyse damage or other failures in images
(Kandeal et al., 2021). Despite the literature proposing ap-
proaches based on single RGB data (Espinosa et al., 2020),
IRT images proved to be more reliable.

The classification of defects in thermal images through
an initial prevention mechanism is dealt with in the work
of Ullah et al. (2017), which uses an artificial neural network
architecture, specifically multi-layered perceptron (MLP),
for this task. The system classifies the thermal conditions
of components into two classes: “defect” and “non-defect”.
They initially extract statistical first- and second-order fea-
tures departing from thermal sample images. To increase
the classification performance, they augment MLP with the
graph cut, obtaining better performance in the identification
of defects and the classification of the images.

The same application is considered in the paper of Nasiri
et al. (2019), in which the authors propose a convolutional
neural network architecture to automatically detect faults and
monitor equipment operations of a cooling radiator. They
consider infrared thermal images and a DL architecture that
has the task of feature extraction and classification of six con-
ditions of the radiator. The architecture is constructed based
on a VGG-16 structure, followed by batch normalisation,
dropout, and dense layers. During the experimental phase,
they compare the classification performance with other tra-
ditional artificial neural networks, demonstrating high per-
formance and accuracy in various working conditions. In the
work of Ullah et al. (2020), a novel model is proposed that
detects an increase in temperature in high-voltage electrical
instruments to promptly intervene to avoid equipment fail-
ure that could damage the system. Any anomalies must be
detected and eliminated. In this context, the authors identify
faults and anomalies in IRT images using a combined DL
architecture. The infrared thermal images are the input of a
convolutional neural network for the feature extraction task.
Then, the features vector is the input of five different ML
models (RF, SVM, J48, NB, BayesNet), which are selected
to categorise the performance in the classification task into
defective and non-defective classes. The experimental results
demonstrate that the best classifier is the RF classifier, which
is the best for discriminating the binary classification.

Classification of faults in electrical equipment is consid-
ered in the work of Duan et al. (2019). They use an artificial
neural network to automatically classify defects as water, oil,
and air, which can reduce the performance of some mate-
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rials. Through a quantitative comparison, they demonstrate
that the approach that uses coefficients as features provides
better performance than the one using raw data.

Finally, another interesting method is proposed by Chel-
lamuthu and Sekaran (2019), which uses a deep neural net-
work to classify parts of infrared images into two classes:
defect and non-defect. They intend to evaluate and moni-
tor the parts of electrical equipment to identify thermal de-
fects at an early stage in order to promptly intervene to avoid
worse damage. First, the segmented thermal images are con-
sidered. Then, based on the optimal features, the feature ex-
traction procedure follows. The optimal feature extraction is
obtained using the Opposition-based Dragonfly Algorithm
(ODA). The experimental results demonstrate that the ap-
proach provides better accuracy in performance than other
classification methods.

Defect detection in infrared images of photo-
voltaic (PV) modules is addressed in the works
of Akram et al. (2020), Pierdicca et al. (2018), and Luo
et al. (2019). The increase in the number of PV installations
makes automatic monitoring methods important since
manual and visual inspection has several limitations. In
this context, these works propose a method based on a DL
algorithm that can automatically identify defects in infrared
images on PV modules. The main approaches used are visual
geometry group-Unet (VGG-Unet) and mask region-based
convolutional neural network (Mask R-CNN) architecture
that simultaneously performs object detection and instance
segmentation (Pierdicca et al., 2020a).

Considering the high performance in object detection
achieved by YOLO (You Only Look Once) (Redmon et al.,
2016), the authors in Tajwar et al. (2021) developed a tool for
hotspot detection of PV modules using YOLO. Firstly, the
IRT images were converted into a dataset for a classifier to
detect the hotspot of PV modules. Then the learner is trained
and tested with the dataset. After that, the output validates
with the IRT images of PV modules. The same deep learn-
ing model choice was also adopted in Greco et al. (2020) for
addressing the problem of PV panel detection.

PV module faults are also classified in the work of X. Li
et al. (2018), which aims to propose a new method for auto-
matically classifying defects in infrared thermal images.

Defect detection is the focus of the work
of Gong et al. (2018), in which the authors aim to identify
anomalies in electrical equipment by implementing a model
based on DL. The implemented defect identification models
are InceptionV2 and Inception Resnet V2. The performance
of the method is also evaluated for infrared images with
artificial defects.

Finally, IRT images are also used to detect faults in in-
frared thermal images of composite materials used in air-
craft, vehicles, and several industries by exploiting their me-
chanical properties (Bang et al., 2020) and building monitor-
ing (Al-Habaibeh et al., 2021).

2.2.3 Digital photogrammetry and terrestrial laser
scanning

Photogrammetry is a technique that enables metrically de-
termining the shape, size, and position of an object having
two distinct photographic frames that should be central pro-
jections of the object itself (Baqersad et al., 2017). Also, 3D
laser scanning technology (Lemmens, 2011) has been widely
used in the engineering and construction industries. 3D laser
scanners work on the principles of lidar (light detecting and
ranging) by emitting a laser pulse, which hits a target and
subsequently returns to the sensor (Liscio et al., 2018; Di Ste-
fano et al., 2021).

The points captured are called a point cloud, which is then
exported into laser scanning software that can create fully
coloured 3D models that allow for point-to-point measure-
ments and excellent visualisation of the scene.

The use of ML and DL techniques for point cloud classi-
fication and semantic segmentation was successfully investi-
gated in the last decade in the geospatial environment (Wein-
mann et al., 2015; Qi et al., 2017a; Özdemir and Remondino,
2019). Several methods have been recently proposed (Shen
et al., 2021; Xiao et al., 2021; Geng et al., 2021), and in the
following a detailed review of the main approaches in the
geomatics field is reported.

The pioneer DL algorithm that processes 3D point clouds
is in Qi et al. (2017a). It automatically classifies and performs
the semantic segmentation directly on the point clouds. They
consider an architecture that first analyses the features of the
single points and then identifies them globally. However, this
architecture does not capture local geometries, so optimisa-
tion of this methodology is presented in Qi et al. (2017b).
In this paper, to learn local features by exploiting the metric
space distances, a hierarchical grouping is considered. For lo-
cal neighbourhoods, the experimental phase shows improved
results compared with other state-of-the-art architectures.

To handle 3D point clouds with spectral informa-
tion acquired by lidar systems, the work presented
by Yousefhussien et al. (2018) uses a method based on DL
algorithms. They propose a modified version of PointNet (Qi
et al., 2017a) to obtain a model able to operate with com-
plex 3D data acquired from overhead remote sensing plat-
forms using a multi-scale approach. Their DL network can
directly deal with unordered and unstructured point clouds
without modifying the representation and losing informa-
tion. Moreover, to demonstrate the accuracy of their method,
they present a performance comparison with other state-of-
the-art methods. Papers like Zhang and Zhang (2017), Wang
and Ji (2021), and Lee et al. (2021) make extensive use of
approaches based on DL for semantic parsing of 3D point
clouds of urban building scenes.
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In Zhang et al. (2018), the problem of semantic segmenta-
tion of 3D scenes on a large scale is tackled by considering
a fusion between 2D images and 3D point clouds. The au-
thors create a Deeplab-Vgg16 high-resolution model (DVL-
SHR) based on Deeplab-Vgg16 and the Deep Visual Ge-
ometry Group (VGG16), which is successfully optimised by
training seven deep convolutional neural networks on four
reference datasets. The preliminary segmentation is made us-
ing 2D images, which are then mapped into 3D point clouds,
taking into account the relationships among the images and
the point clouds. Subsequently, based on the mapping, the
physical planes of buildings are extracted from the 3D point
clouds.

In the field of digital cultural heritage (DCH), the work
of Pierdicca et al. (2020b) uses an improved version of
DGCNN (Wang et al., 2019) that adds meaningful features,
such as normal and colour. The aim is to semantically seg-
ment 3D point clouds to automatically interpret the architec-
tural parts of buildings and obtain a useful framework for
documenting monuments and sites. They use a novel dataset
comprising both indoor and outdoor scenes, which are man-
ually labelled by experts and which belong to different his-
torical periods and styles (Matrone et al., 2020b). Extensive
experiments on the purposely created dataset show the effi-
ciency of the optimised architecture, and the results are com-
pared with those of other state-of-the-art models. The authors
have also extended the proposed approach by comparing the
DL approach with an ML-based one and by the improve-
ment of DGCNN with other relevant features (Matrone et al.,
2020a).

A DL-based framework for automatically extracting,
classifying, and completing road markings from three-
dimensional mobile laser scanning (MLS) point clouds is
presented by Wen et al. (2019). A modified version of the
UNet architecture is used to extract road markings. For clas-
sification, a method based on clustering and convolutional
neural networks is developed, and it is more efficient with
different sizes. Finally, to complete the road marking, a
method based on a conditional generative adversarial net-
work (cGAN) is used, which is more effective since it consid-
ers the continuity and regularity of the lane lines. The dataset
consists of three scenes: highways, urban roads, and under-
ground parking, with raw point clouds and labelled road
marking ground truths.

In the context of urban and rural scenes, the paper of Yang
et al. (2017) proposes a method for semantically labelling
3D point clouds acquired by an airborne laser scanner using
an approach based on DL. A point-based feature image gen-
eration method extracts local geometric features, global ge-
ometric features, and full-waveform features from 3D point
clouds, transforming them into an image. Then, the feature
images are the input of a convolutional neural network for
semantic labelling. Finally, to compare the performance of
the proposed approach with state-of-the-art methods, they
test the framework using other publicly available datasets,

achieving a high level of overall accuracy with the proposed
network.

To solve a similar issue, the papers of Wang et al. (2019)
and Can et al. (2021) use a novel convolutional neural net-
work called Dynamic Graph CNN (DGCNN), which in-
cludes a new module called EdgeConv that acts on graphs dy-
namically computed in each layer of the network. The Edge-
Conv module incorporates local neighbourhood information,
can be applied to learn global shape properties, and cap-
tures semantic characteristics in the original embedding. To
demonstrate the performance of the proposed model, the au-
thors use different public datasets: ModelNet40, ShapeNet-
Part, and S3DIS. Moreover, they compare the results with
other models based on DL, obtaining better results in terms
of accuracy.

To minimise the large number of point clouds
needed to classify urban objects, a solution is proposed
by Balado et al. (2020). The problem that they intend to
address is in Balado et al. (2020). They use convolutional
neural networks to convert point clouds into personal com-
puter (PC) images, taking into account that acquiring and
labelling point clouds is more expensive and time-consuming
than the corresponding image. They generate several sample
images per object (point clouds) using multi-view and com-
bine PC images with images derived from online datasets:
ImageNet and Google Images. The DL algorithm chosen is
InceptionV3. To validate the proposed methodology, they
also consider the IQmulus & TerraMobilita Contest dataset,
obtaining correct classification with few samples.

Complex forest scenes represented by 3D point clouds
are classified using a method based on DL in the work
of Zou et al. (2017). A new voxel-based DL method classifies
species of trees using 3D point clouds of forests as input and
consisting of three phases: individual tree extraction, feature
extraction, and classification using DL. Moreover, two differ-
ent datasets acquired using terrestrial laser scanning systems
are used. Then, to evaluate the performance and demonstrate
the effectiveness of the proposed method, they also compare
it with other classification methods for 3D tree species. Other
interesting works worth mentioning in this field are Chen
et al. (2021) and Pang et al. (2021).

2.2.4 Remote sensing: multispectral and hyperspectral
data

Remote sensing (Toth and Jóźków, 2016) is a technical and
scientific discipline that allows obtaining quantitative and
qualitative information and measuring the emission, trans-
mission, and reflection of electromagnetic radiation from sur-
faces and bodies placed at a long high distance from an ob-
server. Recently, ML approaches as part of the AI domain
and its DL subset have become increasingly important in
MSI and HSI remote sensing analysis (Yuan et al., 2021;
Zang et al., 2021). Several works have been proposed with
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the aim of expediting time-consuming processes (Zhu et al.,
2017).

In the following, different papers are presented to solve
the classification task of HSI–MSI images of urban and rural
scenes, mainly using DL algorithms.

The only paper considered that uses an approach based on
ML is Sharma et al. (2017). The aim is to evaluate the per-
formance of different supervised ML classifiers in the dis-
crimination of six vegetation physiognomic classes. They use
supervised approaches with different model parameters and
demonstrate that the random forests classifier provides the
greatest accuracy and kappa coefficient.

The work of Zhong et al. (2017) proposes a system that
classifies hyperspectral images using a supervised model
based on DL. The input of the Spectral–Spatial Residual Net-
work (SSRN) is represented by 3D raw cubes. Through iden-
tity mapping, each of the 3D convolutional layers is con-
nected by the residual blocks. Then, to improve the clas-
sification accuracy and the learning process, a batch nor-
malisation algorithm is used on each convolutional layer.
The dataset is made up of agricultural, rural–urban, and ur-
ban hyperspectral images. The qualitative and quantitative
experimental results indicate that the proposed framework
achieves good classification accuracy. Many other papers
adopt similar approaches, like Mendili et al. (2020) for LC–
LU classification, Audebert et al. (2018) for semantic la-
belling, shadow detection in Movia et al. (2016), and pre-
cision farming in Zheng et al. (2020).

To deal with the hyperspectral image classification prob-
lem, Yang et al. (2018b) present a method for increasing the
classification performance by exploiting both the spatial con-
text and spectral correlation, although in general only the
spatial context is considered. Specifically, they consider and
evaluate the performance of four convolutional neural net-
works: 2DCNN, 3DCNN, recurrent 2DCNN, and recurrent
3DCNN. Six open-access datasets are used for classification.
Moreover, to demonstrate that DL methods provide better
performance in the classification task, four architectures are
compared with other traditional methods.

In addition, Wu and Prasad (2017) propose a method for
classifying hyperspectral images using DL methods. They
highlight the need to have a large amount of labelled data
for training, and to solve this problem they propose a semi-
supervised DL approach that requires limited labelled data
and a large amount of unlabelled data, which they use with
their pseudo-labels (cluster labels) to pre-train a deep con-
volutional recurrent neural network that they fine-tune using
a smaller amount of labelled data. Moreover, to use spatial
information they implement a constrained Dirichlet process
mixture model (C-DPMM) for semi-supervised clustering,
also deriving a variational inference model.

The paper of Zhao and Du (2016) proposes a novel
classification framework based on a spectral–spatial feature
(SSFC) that uses dimension reduction and DL methods to ex-
tract spectral and spatial features, respectively. Spectral fea-

ture extraction is applied to high-dimensional hyperspectral
images using a local discriminant algorithm, while a convo-
lutional neural network is implemented to determine high-
level spatial features. Finally, the multiple features extracted
jointly considering spectral and spatial features are used to
train the multiple-feature-based classifier for image classifi-
cation. To demonstrate the performance of the SSFC classi-
fier, they compare the results with those of other traditional
classification methods.

A target detection for hyperspectral images us-
ing a deep convolutional neural network is proposed
in W. Li et al. (2017). To train this multi-layer network, a
high number of labelled samples is needed, but for target
detection, few labelled targets are available. Hence, to
enlarge the dataset, they further generate pixel pairs. In the
experimental phase, two cases are considered: in the first,
for anomaly detection, using similarity measurements, a
convolutional neural network classifies different pixel pairs
obtained by combining the centre pixel and its surrounding
pixels; in the second, for supervised target detection, a
convolutional neural network classifies different pixel pairs
obtained by combining the testing pixel and the known
spectral signatures.

The aim of Liu et al. (2016) is the classification of hyper-
spectral images using active DL. As obtaining well-labelled
samples for remote sensing applications is very expensive,
they consider weighted incremental dictionary learning. The
algorithm selects samples by maximising two selection cri-
teria: representativeness and uncertainty. Moreover, the net-
work is actively trained to select training samples in each it-
eration. To validate the proposed architecture, during the ex-
perimental phase they compare the performance with other
classification algorithms that use active learning.

In Chen et al. (2016), the argument concerns the classifica-
tion task of hyperspectral data. The authors propose a DL ap-
proach to elaborate hyperspectral images. In particular, they
combine a novel feature extraction (FE) and image classifi-
cation architecture based on a deep belief network (DBN) to
obtain high classification accuracy. During the experimental
phase, they demonstrate that the framework provides encour-
aging classification results compared with other state-of-art
methods. Moreover, they demonstrate the great potential of
DL methods for classifying hyperspectral images, even con-
firmed in more recent works (Xu et al., 2021).

The paper proposed by Hong et al. (2020b) aims to demon-
strate that the use of a framework based on DL, in partic-
ular a cross-modal DL framework called X-ModalNet, pro-
vides good results for classification tasks of multispectral im-
agery (MSI) and synthetic aperture radar (SAR) data. The
architecture consists of three well-designed modules: a self-
adversarial module, an interactive learning module, and a la-
bel propagation module. During the experimental phase, the
authors compare the classification performance with other
state-of-the-art methods, demonstrating significant improve-
ment.
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In the paper of Hong et al. (2020a), a framework based
on DL is presented to classify hyperspectral data. In par-
ticular, convolutional neural networks and graph convolu-
tional networks are used to classify hyperspectral images.
The authors develop a new minibatch graph convolutional
network to solve the problem of huge computational costs in
large-scale remote sensing problems. The mini-graph convo-
lutional network infers out-of-sample data without the need
to retrain the networks and improves the classification per-
formance. Since convolutional and graph convolutional net-
works extract different types of features, they are fused based
on three strategies (additive fusion, element-wise multiplica-
tive fusion, and concatenation fusion) to increase classifica-
tion performance. The experimental results from three dif-
ferent datasets demonstrate that the use of mini-graph con-
volutional networks provides better performance than graph
convolutional networks as well as combined convolutional
and graph convolutional GCN models.

The work presented by Y. Li et al. (2019) is worth men-
tioning, which detects changing in synthetic aperture radar
(SAR) images. The authors use a DL architecture, specif-
ically a convolutional neural network trained to obtain a
classifier able to distinguish modified pixels from unmodi-
fied pixels. This task is very important when disasters occur
where it is difficult to obtain prior knowledge. To address
this issue, they modify a supervised training process into an
unsupervised learning process. Moreover, this method does
not require image preprocessing and a filtering operation for
SAR images. A convolutional neural network makes use of
the spatial feature and neighbourhood information on pixels
to learn the hierarchical features of the images and imple-
ment an end-to-end framework.

2.2.5 GNSS positioning

The GNSS (Global Navigation Satellite System) is a po-
sitioning system based on the reception of radio signals
transmitted by various constellations of artificial satel-
lites (Groves, 2015). Modern GPS receivers have achieved
very low costs. The market now offers low-cost solutions
for all uses, which are effective not only for satellite nav-
igation but also for civil uses, monitoring mobile services,
and territorial control. Consequently, trajectory forecasting
has been a field of active research owing to its numerous real-
world applications, thanks to the ever-increasing availability
of GNSS data, for both pedestrians (Kothari et al., 2021) and
vehicles (Siddique and Afanasyev, 2021).

The aim of the paper of Endo et al. (2016) is to address
the problem of extracting the characteristics that estimate
users’ transport modes based on their movement trajecto-
ries. To compensate for a lack of handcrafted functionality,
they propose a method that automatically extracts additional
functionality using a deep neural network. A classification
model is constructed in a supervised manner using both deep
and handcrafted characteristics. The effectiveness of the pro-

posed method is demonstrated through several experiments
using two real datasets, comparing the accuracy with that of
previous methods.

Another paper (Habtemichael and Cetin, 2016) presents a
nonparametric, data-driven methodology for short-term traf-
fic prediction based on recognising similar traffic patterns,
employing an advanced K-closer algorithm. Additionally,
winsorisation of neighbours is implemented to reduce the
consequences of predominant candidates, and the rank ex-
ponent is applied to aggregate candidate values. The robust-
ness of the proposed method is demonstrated by implement-
ing it on large datasets derived from different regions and
comparing the performance with advanced time series mod-
els, such as the SARIMA and Kalman filter adaptive mod-
els proposed by others. Furthermore, the effectiveness of the
proposed advanced K-nearest neighbour (k-NN) algorithm is
evaluated for multiple prediction stages, and its performance
is also tested with data with missing values. This study pro-
vides strong evidence showing the promise of a nonparamet-
ric, data-driven method for short-term traffic prediction.

Obtaining knowledge from the GPS tracks of human ac-
tions is the topic of the work of Jiang et al. (2017). The au-
thors present TrajectoryNet, a neural network architecture for
point-based trajectory classification to infer real-world hu-
man transport modes from GPS tracks. A new representation
is developed that includes the original feature space into an-
other space, which can be recognised as a form of base ex-
pansion, to overcome the challenge of capturing the underly-
ing latent factors in the low-dimensional and heterogeneous
feature space imposed by GPS data. A classification accu-
racy greater than 98 % is achieved for identifying four types
of transport modes, which exceeds the performance of exist-
ing models without further sensory data or prior knowledge
of the location.

According to Xiao et al. (2017), transport mode identifica-
tion can be used in a variety of applications, including human
behaviour research, transport management, and traffic con-
trol (Yang et al., 2021). In this paper, a learning-set-based
method is presented to infer hybrid modes of transport em-
ploying only GPS data. First, to distinguish between diverse
modes of transport, a statistical approach is used to produce
global features and extract different local features from sub-
trajectories after trajectory segmentation before these fea-
tures are combined in the classification step. Second, to ob-
tain better performance, tree-based ensemble models (ran-
dom forest, gradient boosting decision tree, and XGBoost)
are used instead of traditional methods (K-nearest neighbour,
decision tree, and support vector machines) to classify the
different transport mode tools.

Correct detection in public transport modes is a fundamen-
tal task in smart transport systems according to James (2020).
Hence, the aim is to utilise GPS trajectories of random
lengths to produce efficient travel mode results in global and
online classification scenarios. Raw GPS data are processed
to calculate preliminary movement and displacement prop-
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erties, which are fed into a tailored deep neural network.
The results show that the approach can significantly exceed
state-of-art travel mode identifications with the same dataset
with little computation time. Moreover, an architecture test is
performed to determine the best-performing structure for the
proposed mechanism.

According to the work of Dabiri et al. (2019), recognising
passenger transport modes is important for many issues in
the transport field, such as travel demand analysis, transport
planning, and traffic management. The paper aims to classify
travellers’ modes of transport based only on their GPS tra-
jectories. First, a segmentation process is developed to clas-
sify a user’s journey into GPS segments with only one mode
of transport. Most researchers have suggested modality in-
ference models based on hand-built functionality, which can
be vulnerable to traffic and environmental conditions. SECA
combines a convolutional–deconvolutional auto-encoder and
a convolutional neural network into architecture to perform
supervised and unsupervised learning simultaneously.

In another paper (Dabiri et al., 2020), the same authors
consider the fact that transportation agencies are beginning
to leverage the more available GPS trajectory data to sup-
port their analyses and decision-making. Although this rep-
resentation of mobility data adds meaningful value to sev-
eral analyses, a challenge is the lack of knowledge regarding
the kinds of vehicles that produced the recorded tours, which
restricts the value of the trajectory data in the transport sys-
tem analysis. The paper presents a new design of GPS trajec-
tories, which is compatible with deep learning models and
also obtains vehicle movement features and road features. To
this end, an open-source navigation system is also applied
to obtain more detailed information on travel time and the
distance between GPS coordinates. The experimental phase
shows that the proposed CNN-VC model consistently out-
performs both classical ML algorithms and other essential
DL methods.

R. Zhang et al. (2019) consider that, although some studies
on the classification of trajectories have been conducted, they
require manual selection of characteristics or fail to com-
pletely consider the influence of time and space on the clas-
sification results. The features obtained are joined to provide
the results of the final classification. Then, they present an
approach based on the latest DenseNet image classification
network structure and include the attention tool and resid-
ual learning. This model can fully extract spatial features to
increase feature propagation and capture long-term depen-
dence. The results show that the design outperforms tradi-
tional models in terms of accuracy, recall, and f1 score (the
harmonic mean of precision and recall) .

Duan et al. (2018) consider the nonlinear and space–time
characteristics of urban traffic data, proposing a deep hy-
brid neural network enhanced by a greedy algorithm for the
prediction of urban traffic flow using GPS tracking of taxis.
They propose a deep neural network model that combines
a convolutional neural network, which extracts spatial fea-

tures with long-term memory that captures temporal infor-
mation, to predict the flow of urban traffic. Experimental re-
sults based on real taxi GPS trajectory data from the city of
Xian show that the enhanced deep hybrid CNN-LSTM model
has higher classification accuracy and requires a shorter time
than traditional methods.

Finally, based on GPS data the work presented in Pierdicca
et al. (2019b) shows that the case of urban parks is diffi-
cult, requiring knowledge of many variables, which are dif-
ficult to consider simultaneously. One of these variables is
the set of people who use the parks. This study aims to pro-
duce a method to identify how an urban green park is used
by its visitors to provide planners and managing authorities
with a standardised method. A trajectory classification algo-
rithm is implemented to understand the most common visitor
trajectories by obtaining the advantages of GPS and sensor-
based traces. Based on these user-generated data, the pro-
posed data-driven approach can determine the park’s mission
by processing visitor trajectories while using a mobile appli-
cation specifically designed for this purpose.

3 Results and analysis

As mentioned previously, the use of AI in geomatics data
management is not a new problem. Several studies have been
conducted on this topic, and many are currently in develop-
ment. Geomatics data are the core of several applications in
which ML and DL have been applied.

The use of geographical and spatial information within so-
ciety as well as in academic work has increased rapidly in
recent decades. This also means that geomatics has started
to create problems in both the academic and non-academic
worlds. First, it bridges borders that have been in place for a
long time. Second, geomatics, or rather the basic concepts of
geomatics, are increasingly being used. Spatial analysis has
proven to be important in all disciplines. We can find exam-
ples of strong GIS units in, for example, humanities (archae-
ology, human ecology, language studies, etc.), social science
(human and economic geography, economy, economic his-
tory, etc.), and medicine (social and occupational medicine,
epidemiology, etc.). Thus, geomatics are part of research in
most disciplines, and many users are facing issues related to
the integration of geomatics in their field. Geomatics are also
used frequently in interdisciplinary settings, which leads to
specific issues.

We close this paper by returning briefly to the questions
raised at the beginning, which remain largely open.

Comparing ML and DL, which is the most commonly
used in geomatics?

First of all, it is necessary to clarify that DL is a type of ML
approach; in the following we compare DL and ML, and we
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Figure 4. Comparison between ML vs. DL approaches adopted
among the research papers reviewed.

Figure 5. Comparison between ML vs. DL approaches divided per
year.

distinguish approaches that use DL from those that use ML
except DL.

The comparison between ML and DL methods is shown in
Figs. 4 and 5. Figure 4 shows that the most commonly used
method, especially in the last years, is DL, with an average
rate of 80 % compared to a rate of 20 % for ML.

Figure 5 compares the two methodologies during the time
interval considered, confirming that there is greater use of
DL than ML to deal with geomatics data in the period taken
into consideration.

Table 1 summarises 10 of the applications reviewed for
each kind of data, comparing the input, the task, and the AI
method chosen.

Do geomatics data influence the choice of using one
methodology rather than another?

Figure 6 shows the results in percentage terms. In the graphs,
we have grouped the papers on geomatics data and the em-
ployed approach. For all data, the use of DL is gaining in-
creasing importance, especially in point cloud semantic seg-
mentation and classification. While for IRT data the use of

DL techniques is slightly lower than the other data we con-
sidered in this work, this probably depends on the technical
and physical characteristics of the IRT data. Thus, the use of
one technology rather than another also depends on the type
of data processed. From this analysis, it is also possible to
answer RQ1, as the data demonstrate the trend in preferring
DL approaches rather than ML ones.

For which tasks are geomatics data used?

The main tasks performed using geomatics data are shown
in Figs. 7 and 8. Observing Fig. 7, the classification task
is the most commonly employed, with a rate of 42 %. The
object detection task is employed 22 % of the time, and the
semantic segmentation task has a rate of 18 %. The remain-
ing 18 % is segmentation, part segmentation, and clustering.
These results involve all geomatics data considered in this re-
view. These data, which have different characteristics mainly
due to the type of acquisition, are used in tasks that can be
included in the three identified categories.

Figure 8 considers the task referring to all types of data.
Classification is the task mostly employed with HSI and MSI
data, and object detection seems to be the preferred solution
when dealing with both IRT and RDB-D images. Meanwhile,
the point cloud data, confirming the trend from the literature
review, are mainly used for semantic segmentation (with a
rate of 40 %), classification (with a rate of 30 %), and part
segmentation (with a rate of 20 %) tasks. The object detection
task is not executed. On the contrary, the main task for IRT
data is object detection with a rate of 60 %, then classification
with a rate of 30 %, and finally segmentation with a low rate
(10 %). Classification and segmentation are the main tasks
for the trajectory data. Other tasks are clustering and object
detection with the same rate (10 %).

This analysis has been fundamental to answering RQ2. In-
deed, the AI approach is strictly connected with the kind of
data, thus depending on the domain in which the approach is
applied (see Sect. 3).

Are there relationships between application domains
and geomatics data?

Figures 9 and 10 answer RQ3 and RQ4, which seek to estab-
lish whether a relationship exists between the data type and
application domains.

Taking into account the research mentioned in this paper,
we have identified 10 different aspects (urban–rural scenes,
PV module, shadow detection, rice plants, electrical equip-
ment, composite material, road marking, building scenes,
complex forests, and indoor scenes).

The analysis shown in Fig. 9 considers each AI-based task
based on the application domain. This graph directly com-
prises the application domain and geomatics data. RGB-D
and PC data are most commonly used in different domains,
although RGB-D data are most commonly used in urban–
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Table 1. Brief review of information regarding the complex geomatics data analysed in this study, which are important for selecting an
appropriate AI technique.

Data Method Task Application Ref.

RGB-D 1 DL Semantic segmentation Urban/rural scenes L. Li et al. (2017)
RGB-D 2 DL Semantic segmentation PV module Espinosa et al. (2020)
RGB-D 3 ML Object detection Shadow detection Movia et al. (2016)
RGB-D 4 ML Classification Rice plants Zheng et al. (2020)
RGB-D 5 DL Semantic segmentation Building scenes Czerniawski and Leite (2020)
RGB-D 6 DL Object detection Urban/rural scenes Gong et al. (2018)
RGB-D 7 DL Object detection Urban/rural scenes Duan et al. (2019)
RGB-D 8 DL Clustering Urban/rural scenes Y. Li et al. (2019)
RGB-D 9 DL Semantic segmentation Rice plants Yang et al. (2020)
RGB-D 10 DL Semantic segmentation Urban/rural scenes Wang et al. (2017)

IRT 1 ML Object detection Electrical equipment Ullah et al. (2017)
IRT 2 DL Object detection PV module Akram et al. (2020)
IRT 3 DL Segmentation PV module Luo et al. (2019)
IRT 4 DL Classification Electrical equipment Nasiri et al. (2019)
IRT 5 ML Object detection Electrical equipment Ullah et al. (2020)
IRT 6 DL Object detection Electrical equipment Gong et al. (2018)
IRT 7 ML Classification Electrical equipment Duan et al. (2019)
IRT 8 DL Object detection PV module X. Li et al. (2018)
IRT 9 DL Object detection Composite material Al-Habaibeh et al. (2021)
IRT 10 DL Classification Electrical equipment Chellamuthu and Sekaran (2019)

PC 1 DL Classification Building scenes Wang and Ji (2021)
PC 2 DL Classification Road marking Wen et al. (2019)
PC 3 DL Part segmentation Building scenes Zhang et al. (2018)
PC 4 DL Classification Complex forests Zou et al. (2017)
PC 5 DL Part segmentation Indoor scenes Yousefhussien et al. (2018)
PC 6 DL Semantic segmentation Urban/rural scenes Yang et al. (2017)
PC 7 DL Segmentation Urban/rural scenes Wang et al. (2019)
PC 8 DL Semantic segmentation Building scenes Pierdicca et al. (2020b)
PC 9 DL Semantic segmentation Indoor scenes Qi et al. (2017a)
PC 10 DL Semantic segmentation Urban/rural scenes Balado et al. (2020)

TRAJ 1 DL Classification Urban/rural scenes Endo et al. (2016)
TRAJ 2 ML Object detection Urban/rural scenes Habtemichael and Cetin (2016)
TRAJ 3 ML Segmentation Urban/rural scenes Jiang et al. (2017)
TRAJ 4 ML Classification Urban/rural scenes Xiao et al. (2017)
TRAJ 5 DL Classification Urban/rural scenes James (2020)
TRAJ 6 DL Segmentation Urban/rural scenes Dabiri et al. (2019)
TRAJ 7 DL Classification Urban/rural scenes Dabiri et al. (2020)
TRAJ 8 DL Classification Urban/rural scenes R. Zhang et al. (2019)
TRAJ 9 DL Segmentation Urban/rural scenes Duan et al. (2018)
TRAJ 10 ML Clustering Urban/rural scenes Pierdicca et al. (2019b)

MSI/HSI 1 ML Classification Urban/rural scenes Sharma et al. (2017)
MSI/HSI 2 DL Classification Urban/rural scenes Zhong et al. (2017)
MSI/HSI 3 DL Classification Urban/rural scenes Yang et al. (2018b)
MSI/HSI 4 DL Classification Urban/rural scenes Wu and Prasad (2017)
MSI/HSI 5 DL Classification Urban/rural scenes Zhao and Du (2016)
MSI/HSI 6 DL Object detection Urban/rural scenes W. Li et al. (2017)
MSI/HSI 7 DL Classification Urban/rural scenes Liu et al. (2016)
MSI/HSI 8 DL Classification Urban/rural scenes Chen et al. (2016)
MSI/HSI 9 DL Classification Urban/rural scenes Hong et al. (2020b)
MSI/HSI 10 DL Classification Urban/rural scenes Hong et al. (2020a)
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Figure 6. Comparison between ML vs. DL approaches, selected according to the respective geomatics data for which they have been applied.

Figure 7. Distribution (percentage) of papers subdivided following the AI-based task.

rural scenes. It is fair to say that a clear subdivision among
the countless application domains in geomatic is impervi-
ous; notwithstanding, Fig. 9 highlights the fact that cluster-
ing and classification tasks are currently performing best in
urban scenes, maybe due to the vast use of geomatic data
in such environments. PV plant applications, however, are
explored, indicating that AI approaches might be very use-
ful for decision-making in environmental applications, as PV
plants are. The remaining data are sparse, highlighting the
need for future investigations to outline a straightforward line
of research.

The analysis in Fig. 10 raises an additional question: does
the application domain change over the years? We can con-
firm that there is no relation between the application domain
and the year, although there is an increase in the application

of urban–rural scenes, mainly due to the type of associated
data.

4 Discussion: challenges, open issues, lesson learnt

Notwithstanding the success of AI in the geomatics, impor-
tant caveats and limitations have hampered its wider adop-
tion and impact. Figure 11 presents a radar chart that consid-
ers the tasks based on the kind of data. This summarises the
choice of task with available geomatics data.

Exploiting AI for the interpretation of complex geomatics
data comes with many challenges, including the variability
of the data source, the management of heterogeneous data,
the different scales of representation, and the purpose of data
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Figure 8. Comparison between geomatics data and AI-based tasks. The percentage of papers follow the criteria of matching, for each kind
of data, the type of AI approach used.

Figure 9. Relationship between a specific application and AI-based task.

processing. However, the more pronounced challenges re-
lated to the application can be categorised as follows.

– Lack of available dataset. Regardless of the topic and/or
the kind of data in the training phase (given the assump-
tion that DL models can be arranged to fit a specific
task), there is a lack of available datasets in the literature
to be used as benchmarks. The great interest demon-
strated by the research community in utilising geomat-
ics data with learning-based approaches is hampered by

the scepticism in sharing labelled datasets. It is well
known that ML and DL are data-driven techniques that
perform better as the number of input samples increases.
Attempts to solve this problem have involved the gener-
ation of synthetic datasets (Pierdicca et al., 2019a; Mor-
bidoni et al., 2020). Recently, generative models have
proven to be effective for this task. Generative adver-
sarial networks (GANs) are an appealing DL approach
developed in 2014 by Goodfellow et al. (2014). GANs
are an unsupervised deep learning approach in which
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Figure 10. Number of papers for each application divided by year.

Figure 11. Spider chart representing the distribution of AI-based approaches in relation to the specific geomatics data.

two neural networks challenge each other, and each of
the two networks improves at its given task with each
iteration. For the image generation issue, the genera-
tor begins with Gaussian noise to generate images, and
the discriminator determines how valuable the gener-
ated images are. This process proceeds until the gen-
erator development of outputs. GANs have been used to
generate artificial images and videos as well as to gener-
ate point clouds (Vondrick et al., 2016; Sun et al., 2020;
Rossi et al., 2021). Despite exceptional results in su-
pervised learning since the DL developments, collecting
enough data to train the models remains a challenge, and
some methods have been developed to train models with
little or no data. Zero-shot learning (ZSL) is the task of
training a model in some (seen) classes and testing it in
other (unseen) classes. Good results have been achieved
in ZSL, especially with the adoption of generative meth-
ods, but it is unclear whether these results are generalis-
able to the real world. Moreover, self-supervision as an

auxiliary task to the main supervised few-shot learning
is considered to be an equivalent method to learning a
transferable feature representation from limited exam-
ples, since self-supervision can contribute to additional
structural information easily ignored by the main task.

– Domain-dependent models. Regarding its respective ge-
omatics compartment, when there is no all-in-one solu-
tion for every task, each AI-based model should be cho-
sen according to the task one is attempting to solve. In
other words, as AI improves, the need has emerged to
understand how to make such models effective, choos-
ing them according to the kind of data for which they
have been designed. Integrating the knowledge of do-
main experts into AI models increases the reliability and
the robustness of algorithms, making decisions more ac-
curate. Moreover, the knowledge acquired for one task
can be used to solve related ones thanks to transfer-
ring learning strategies. Transfer learning allows lever-
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aging knowledge (such as features and weights) from
previously trained AI models for training newer mod-
els and even tackling problems like having less data for
the newer task. Future models should integrate process-
based and machine learning approaches. Data-driven
machine learning approaches to geoscientific research
will not replace physical modelling but strongly com-
plement and enrich it. Specifically, synergies between
physical and data-driven models are needed, with the
ultimate goal of hybrid modelling approaches. Impor-
tantly, machine learning research will benefit from plau-
sible physically based relationships derived from natu-
ral phenomena.

– Data preprocessing. Broadly speaking, geomatics data
have intrinsic features that make them very challeng-
ing for DL, especially convolutional neural networks.
The reason for this is that AI is intended to utilise data
that are ordered, regular, and on a structured grid. This
means that data should be ordered, and pre-processing
operations are still time-consuming. This represents one
of the main bottlenecks, as it requires the presence of an
expert for every single application domain.

– Hardware limitations. Despite the growing computa-
tional capabilities of better-performing CPUs and the
advances in distributed and parallel high-performance
computing (HPC), the computational costs of the above-
mentioned tasks remain high. We are not still at a stage
where the ratio between time gained and resources spent
is in balance, making the use of AI-based methods
unhelpful at times compared with time-consuming but
more affordable manual solutions.

5 Concluding remarks

AI is thoroughly changing several application domains. In
the geospatial domain, the data characteristics are particu-
larly suitable for ML and DL approaches. Above all, ML-
and DL-based interpretation of 3D geomatics enables us to
transcend explicit geospatial modelling and therefore to over-
come complex, heuristics-based reconstructions and model-
based abstractions. This paper provides insight into new
trends, techniques, and methods of GeoAI. In particular, a
thorough survey of the literature related to the use of AI in
geomatics and its methods has been presented, with a par-
ticular focus on ML and DL methods. Considering the last
years, we can see that there was mainly an increase in RGB-
D data and a small reduction of IRT data compared to the
previous year. IRT data increased starting in 2017 until 2019,
and then in 2020, it had a reduction. Trajectories and HSI
and MSI data were mainly an object of research in 2016 and
2017, and then there was a reduction until 2020 when the
topic received renewed attention. There was an absence of
IRT and PC in 2016, and this subject has been extensively

studied, particularly in recent years. The advancing applica-
tion areas of point cloud processing have already covered not
only conventional fields in geospatial analysis, but also in-
clude civil engineering, manufacturing, transportation, con-
struction, forestry, ecology, and mechanical engineering, be-
coming more affordable, more versatile, and thus more stud-
ied and examined. Specific emphasis has been given to RGB-
D images, thermal images, HSI and MSI, and point cloud
analysis and management. AI techniques offer a promising
solution to system development and rapid innovation. Fur-
ther, AI approaches have addressed various challenges, such
as point cloud classification, semantic segmentation object
detection, and image classification. Methods and techniques
for each kind of geomatics data have been analysed, the main
paths have been summarised, and their contributions have
been highlighted. The reviewed approaches have been cat-
egorised and compared from multiple perspectives, pointing
out their advantages and disadvantages. Finally, several in-
teresting examples of the GeoAI applications have been pre-
sented along with input patterns, pattern classes, and the ap-
plied method. We are confident that this review offers rich
information and improves the understanding of the research
issues related to the use of AI with geomatics data, as well
as helping to inform researchers about whether and how AI
methods and techniques could help in the creation of appli-
cations in various fields. This paper thus paves the way for
further research and pinpoints key gaps that serve to pro-
vide insights for future improvements, especially consider-
ing the complexity introduced by image fusion methods and
multi-task learning (S. Li et al., 2017; Laska and Blanken-
bach, 2022). Future research directions include the improve-
ment of the algorithms to use other comprehensive features,
thereby achieving better performance. Moreover, as these
models were considered “black box” operators, they need to
be interpretable and explainable. The perception of DNNs
as black box algorithms makes it difficult to ethically jus-
tify their use in high-stake decisions, especially in the case
of failure. The adverse effect of black-box-ness is that trans-
parency becomes difficult in the search for a direct under-
standing of the mechanism by which a model works. Thus,
the introduction of interpretability and explainability tech-
niques is crucial, including the visualisation of the results
for analysis by humans. Otherwise, domain experts would
be hesitant to use techniques that are not straightforwardly
interpretable, tractable, and trustworthy given the increasing
request for ethical AI. We aim to continue advancing the field
now that we have understood its low-maturity but neverthe-
less promising nature.
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