
Geosci. Instrum. Method. Data Syst., 13, 193–203, 2024
https://doi.org/10.5194/gi-13-193-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Airborne electromagnetic data levelling based on the
structured variational method
Qiong Zhang1,2, Xin Chen1,2, Zhonghang Ji1,2, Fei Yan1,2, Zhengkun Jin1,2, and Yunqing Liu1,2

1School of Electronics and Information Engineering, Changchun University of Science and Technology,
Changchun 130022, China
2Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing,
Changchun 130022, China

Correspondence: Yunqing Liu (mzliuyunqing@163.com)

Received: 1 February 2024 – Discussion started: 26 March 2024
Revised: 6 May 2024 – Accepted: 8 May 2024 – Published: 26 June 2024

Abstract. Levelling errors are defined as the data difference
among flight lines in airborne geophysical data. The differ-
ences in the signal levelling always appear as a striping pat-
tern parallel to the flight lines on the imaged maps. The fixed
structured pattern inspires us to structure a guided levelling
error model using an anisotropic Gabor filter. We then embed
the levelling error model into a total variational framework to
flexibly calculate levelling errors. The guided levelling error
model constrains the noise term of total variation rather than
just using blind removal. Moreover, we can also apply the
structured variational method to remove other noises in air-
borne geophysical data. This would just require replacing the
noise prior models in the proposed method. We have applied
this method to the airborne electromagnetic, magnetic, and
apparent conductivity data collected by the Ontario Geologi-
cal Survey to confirm its validity and robustness by compar-
ing the results with the published data. The structured varia-
tional method can better level the airborne geophysical data
based on the space properties of the levelling error.

1 Introduction

Airborne geophysical exploration is performed on an aircraft
that moves at a high speed and at a certain elevation. The
dynamic measuring mode brings convenience and efficiency
but also constantly changes with the surrounding environ-
ment of the aircraft (Luyendyk, 1997; Gao et al., 2021). The
aircraft data are acquired under different flight conditions
and have unequal data levels that are defined as levelling

errors. Levelling errors show up as a striping pattern along
the flight direction because of the continuous “S-type” flight
mode (Hood, 2007).

The airborne geophysical survey is commonly carried out
in a long-term and large-scale measurement. Mathematically,
a variety of factors contribute to the levelling errors, which
are described as a distributed parameter model. The uncon-
trollable external environment is the main source of the lev-
elling errors in an airborne geophysical survey. The seasonal
and regional climate brings with it temperature fluctuations
and natural wind changes. The temperature influences the in-
ternal aircraft configuration, and the wind directly changes
the external inclination angle of the aircraft (Huang and
Fraser, 1999; Valleau, 2000; Siemon, 2009). This leads to the
conclusion that the external environment cannot be deemed
to be a lumped parameter model and indirectly affects the
data levels of each survey point.

Other factors are related to the intrinsic property of air-
borne measuring. Airborne surveys routinely fly in a contin-
uous “S-type” flight mode at certain elevations. When the air-
craft changes direction, the left and right sides of the aircraft
alternately face the same surrounding environments. The op-
posite direction between adjacent lines causes the minor dif-
ference in flight attitude angle and other system configura-
tions (Yin and Fraser, 2004; Huang, 2008). In addition, it is
impossible to keep a constant flying altitude, no matter how
advanced the flight systems are and how much experience the
personnel operating them have (Tezkan et al., 2011; Eppel-
baum and Mishne, 2011). The minor fluctuation factors that
contribute to levelling errors are hard to control and measure.
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The sources of the levelling errors are multiplicative and
unable to quantitatively describe. It is hard to set up mecha-
nism modelling of levelling errors. Currently, geophysicists
base on the definition of levelling error and carry out data
processing.

1.1 Tie line levelling method

A traditional but effective method is tie line levelling. Com-
paring the flight line data with tie line data at the same survey
point, the operators correct the crossover point based on the
differences between the tie lines and flight lines. The accu-
racy of tie line levelling mainly relies on whether the dif-
ferences match the levelling errors. Many geophysicists have
proposed algorithms to improve matching precision (Foster
et al., 1970; Yarger et al., 1978; Bandy et al., 1990; Mauring
et al., 2002; Srimanee et al., 2020). However, the flight line
data and the tie line data are flown in different aircraft con-
figurations and external environments. Moreover, airborne
electromagnetic data are relatively sensitive to altitude com-
pared with airborne magnetic data. The levelling error is not
the only reason for the accumulation of the differences in
the crossover point. It is hard to separate the levelling errors
from the differences. Furthermore, virtual tie lines (Huang
and Fraser, 1999; Fan et al., 2016; Zhang et al., 2018) are
skilfully constructed to level geophysical data instead of tie
lines.

1.2 Block levelling method

From the definition of levelling error, the inconsistent data
level in flight lines is attributed to levelling errors that are not
continuous between adjacent flight lines. However, as survey
area geology changes quite slowly, it is reasonable to assume
that the natural survey points are correlated in a certain re-
gion. The levelling errors can then be derived from line to
line based on the differences between adjacent flight lines
(Green, 2003; Huang, 2008; Zhu et al., 2020). Moreover,
geophysicists skilfully constructed one-dimensional (1D)
flight line windows and two-dimensional (2D) planar win-
dows, considering the statistical parameters difference be-
tween the flight line data and region data. The levelling er-
rors are calculated from point to point by matching the dif-
ference between the 1D and 2D window values (Mauring and
Kihle, 2006; Beiki et al., 2010; Ishihara, 2015). Moreover,
the geophysical data can be micro-levelled using the statis-
tical approach in a designated moving window (Davydenko
and Grayver, 2014; Groune et al., 2018).

1.3 Global levelling method

The line-to-line and point-to-point methods only level small
amounts of data in each loop that can be deemed as block
processing methods. A common problem is cumulative in-
accuracies that develop when the levelled data are used to
level in the next loop. In contrast, global processing meth-

ods operate the entire region data instead of only part data
in every iteration. The global processing methods available
mainly focus on airborne magnetic data levelling based on
the separated long-wavelength components (Urquhart, 1988;
Nelson, 1994; Luo et al., 2012; White and Beamish, 2015;
Zhang et al., 2021). The directional filters are designed to
level the geophysical data (Minty, 1991; Ferraccioli et al.,
1998; Siemon, 2009; Gao et al., 2021).

In summary, the conventional block processing methods
would inevitably transfer errors. The global processing meth-
ods mainly focus on levelling airborne magnetic data. As
with the levelling error properties discussed above, the lev-
elling error is an additive drift, presented as the inconsistent
data level among the flight lines. These inconsistencies are
affected by a variety of factors that make it hard to construct
a mechanism model for levelling errors. However, the strip-
ing errors would increase the total variation of the measuring
area. Total variational theory inspires us to level the data by
using an energy functional model. The proposed method is
described below.

2 Proposed method

During the survey area space analysis, levelling errors are
formed along the flight lines and have definitive directional
distribution properties (Zhang et al., 2022). The directional
stripes would further cause discontinuities in the vertical di-
rection and increase the horizontal gradient amplitude. The
total variational model can detect and remove all the com-
ponents that impair the total smoothness. While we specifi-
cally focus on levelling errors, a detailed constraint is help-
ful. Thus, we build a levelling error model based on the prior
information and properly embed the model in the total vari-
ational model. In the proposed method, only the levelling
errors are extracted and removed through solving the con-
strained and structured variational model.

2.1 Total variational model

The theoretical basis of most levelling techniques is that the
geophysical field is continuous. The observed data tend to
show significant correlations with their neighbouring points.
However, the levelling errors are not continuous between ad-
jacent flight lines (Huang, 2008). When the assumption is
valid, the geophysical data with levelling errors will have a
large variation amplitude compared with nature geophysical
data. It is thus advisable to estimate the levelling error com-
ponents based on total variation model.

We simply deemed the survey data consists of two parts:

S(i,j)= E(i,j)+D(i,j), (1)

where S(i,j) is the ith survey data in the j th flight line,
E(i,j) is the levelling error component of the survey point,
andD(i,j) is the levelled data. Here the survey data are con-
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sidered a 2D function in the entire region �, while (i,j) de-
fines the ith survey data in the j th flight line.

Rudin et al. (1992) introduced total variation norm and
proposed Rudin–Osher–Fatemi (ROF) total variation model,
which has been widely used in image-denoising applications.
Based on total variational model, we can estimate the level-
ling error components by constructing an energy functional,

F(D)=

∫
�

‖S−D‖2+ λTV(D), (2)

where λ is the regularisation coefficient that quantifies the
degree of smoothness. Based on the multiscale hierarchical
decomposition theory (Tadmor et al., 2003), we can deter-
mine the regularisation coefficient by the spatially adaptive
multi-scale model (Zhang et al., 2022). TV(D) is the total
variation of the estimated solution D expressed as follows:

TV(D)=
∫
�

|∇D| =

∫
�

√(
dD
dx

)2

+

(
dD
dy

)2

dxdy. (3)

In the total variational model,
∫
�

‖S−D‖2 is a fidelity term

which ensures the similarity between the original data S and
the clear data D. In Eq. (2), L− 2 norm is selected to build
the fidelity term due to its excellent edge-preserving perfor-
mance.

TV(D) serves as the regularisation term, aimed at penalis-
ing undesirable damage in data. The regularisation term is the
total variation of the estimated solution. It means that sparse
gradient domain constraints are imposed along the horizon-
tal and vertical directions. Combined with prior information,
the levelling error components can be computed by minimis-
ing the total variation model in Eq. (2). The total variational
model has been applied to the striping noise removal (Zhang
and Zhang, 2016; Liu et al., 2019).

2.2 Levelling error model

Accurately extracting levelling errors requires us to com-
bine the total variation model with as much prior informa-
tion about the levelling error as possible. Levelling errors
present a significant directional property and show up as a
striping pattern along the flight direction. We can the design
an anisotropic Gabor filter with the principal axis directed by
the levelling error.

In geophysical exploration, the levelling error model
should estimate the intensity at each survey point, which can
be modelled as follows:

E = α ·G, (4)

where α is the weight coefficient that describes the intensities
of levelling error, while G is the noise pattern. We model
stripes as an anisotropic Gaussian function defined by

G(i,j)=e
−
x2
i

σ2
i

−
y2
j

σ2
j{

xi = i cosθ + j sinθ
yj =−i sinθ + j cosθ . (5)

In Eq. (5), (i,j) defines the location of the ith survey data
in the j th flight line. θ represents the normal’s orientation to
the Gabor function’s parallel stripes, that is, the flight line di-
rection. σi and σj are the Gaussian envelope’s standard devi-
ation in the x direction and flight line direction, respectively.

The pattern of levelling error is mainly described by the
Gaussian function. We can obtain the parameters in Eq. (5)
combined with prior shape information. The weight coeffi-
cient defines the levelling error intensity that is necessary to
solve from the overall view.

2.3 Structured variational model

When we guide the total variational model levelling by lev-
elling error model, the structured variational model provides
an accurate geophysical processing design. We obtain the fol-
lowing objective function:

F(α,λ)=

∫
�

‖α ·G‖2+ λTV(S−α ·G). (6)

Equation (6) contains two coefficients, α and λ, to balance
the fidelity term and regularisation term. It is permitted to
reasonably merge the two coefficients and express Eq. (6) as
follows:

F(α)=

∫
�

‖α ·G‖2+TV(S−α ·G). (7)

We then use alternating direction method of multipli-
ers (ADMM) to solve non-convex optimisation problems.
ADMM converts the original problem into subproblems with
closed-form solutions. It is an effective approach in a se-
quence of iterative sub-optimisations (Bertsekas, 1982).

While the levelling error intensity for each survey point is
solved, we complete the data levelling using Eqs. (1) and (4)
under the structured variational model.

In exploration field, airborne geophysical measurement
data contains a large amount of noise due to atmospheric
flow, lightning, aircraft vibration, and unstable speed fac-
tors (Yin et al., 2015). In addition to levelling errors, dif-
ferent kinds of noises damage the measurement data simul-
taneously. Here, we simply assume the measurement data
contains levelling errors and Gaussian white noise. In that
case, the proposed levelling method has an obvious advan-
tage compared with other levelling methods. The proposed
method constructs an energy functional as Eq. (2). For other
noise, we can consider the denoising problem under the
framework similarly. The noise model in Eq. (4) describes
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the noise distribution and geometrical structure. When we
try to remove several kinds of several kinds of disturbances,
Eq. (4) is extended as follows:

E =

n∑
i=1

αi ·Gi, (8)

where n is the number of noise type.
For Gaussian white noise, it can be obtained by convolv-

ing a Dirac function with a sample of white Gaussian noise.
The proposed method simultaneously removes the levelling
errors and Gaussian white noise in one step processing that
helps to improve electromagnetic exploration accuracy.

Thus, there are three evident advantages in proposed lev-
elling method.

1. The total variation model designs the total energy as
a constraint condition and obtains the constrained gra-
dient minimisation using the regularisation coefficient.
When we use total variational model to deal with survey
area data, it can reasonably remove the levelling errors
that increase the gradient of survey area data.

2. Due to the complexity of airborne geophysical field
measurement, there are multiple components in air-
borne geophysical data. To focus on levelling error ex-
traction, we construct a rough levelling error model
based on the striping pattern. The levelling error model
is then embedded into the gradient minimisation func-
tional and clearly solved in the structured variational
model.

3. The structured variational model can be carried over
into other noise. If it accesses the noise characteris-
tic and establishes the noise model, we can speculate
that the structured variational model can remove other
noises. The framework may take effect based on the pre-
cise noise model.

We have verified these advantages through experimentation.

3 Results

3.1 Airborne magnetic data levelling

3.1.1 Real dataset example

The levelling method has been tested on magnetic field data
obtained by Geotech Limited. Figure 1 shows the magnetic
data before and after levelling. The survey area data include
117 flight lines with a line spacing of 200 m and contain
striped levelling errors along flight line direction. In the ex-
ample, we only focus on levelling errors in Fig. 1a. The noise
pattern in Eq. (5) is set based on the prior information about
levelling errors. For example, we set the normal orientation θ
as 90° because the flight line direction is vertical in the gen-
eral coordinate system. The Gaussian envelope’s standard

deviation σi and σj decide the number of stripes. The ratio
of σi and σj represents the spatial shape of the Gabor func-
tion. When we use the Gabor function to describe levelling
errors, σi/σj should be much lower than 1. Figure 1b shows
the data processed by the proposed levelling method, while
Fig. 1c presents the data levelled by the classic tie line level-
ling method.

3.1.2 Synthetic dataset example

The example is from a synthetic magnetic dataset with addi-
tional Gaussian white noise and levelling errors. We selected
the levelling results that used the tie line levelling method
as the clean data. The data have been explained in the real
dataset example and are presented in Fig. 1c. We then tested
our algorithm on the noisy magnetic data as shown in Figs. 2
and 3. There are three experiments, including specific clean
data with Gaussian white noises, clean data with levelling er-
rors, and clean data with Gaussian white noises and levelling
errors.

The first synthetic dataset focuses on removing Gaussian
white noises. We are required to estimate and obtain the noise
model using the white noise estimation method. The struc-
tured variational model will then be guided to remove the
corresponding noise type. Figure 2a and d show the data be-
fore and after processing. The second synthetic dataset fo-
cuses on removing levelling errors. Figure 2b is the clean
data with levelling errors. We use a Gabor filter to simu-
late the levelling error model, and Fig. 2e shows the data
after processing. The third synthetic dataset is designed with
two noise components as shown in Fig. 2c. While the pro-
posed method intends to remove the noises simultaneously,
the noise model in Eq. (8) must include the Gaussian white
noise model and levelling error model. The proposed method
then removes the two noise sources via an objective function.
Figure 2c and f shows the noisy magnetic data before and af-
ter processing.

Furthermore, we calculated the signal-to-noise ra-
tio (SNR) for the three experiments. The quantitative com-
parison is shown in Table 1, and Fig. 3 illustrates the transient
data to compare the results in greater detail. There are four
flight lines that have been locally enlarged, corresponding to
the dotted black rectangle in Fig. 2. The three subgraphs sep-
arately analysed the three experiments above. In every sub-
graph, the blue curve represents the clean magnetic data, the
red curve represents the noisy magnetic data, and the green
curve represents the denoised magnetic data.

3.2 Apparent conductivity data levelling

We also tested the levelling method on the apparent conduc-
tivity data provided by Ontario Airborne Geophysical Sur-
veys. The dataset used in the paper is formed by 70 flight
lines named L310–L1000 as a part of Geophysical Data Set
1076 measured in the surveys (Ontario Geological Survey,
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Figure 1. Airborne magnetic data levelling. (a) Raw magnetic data. (b) Levelling results using the proposed levelling method. (c) Levelling
results using the tie line levelling method.

Table 1. SNR of synthetic airborne magnetic data processing.

Gaussian Levelling Gaussian white
white errors noise and
noise levelling errors

Before data processing 65.62 dB 51.44 dB 51.40 dB
After data processing 72.34 dB 75.94 dB 65.30 dB

2014). Geotech Limited carried out a helicopter-borne com-
bined aeromagnetic and electromagnetic survey for the Min-
istry of Northern Development and Mines in 2014 in the

Nestor Falls area in northwestern Ontario. Based on the resis-
tivity depth imaging (RDI) technique (Meju, 1998), Geotech
Limited converted the EM profile decay data into an equiv-
alent resistivity versus depth cross-section via deconvolution
of the measured TEM data. Data compilation and processing
were carried out using Geosoft® OASIS montajTM and pro-
grams proprietary to Geotech Ltd (Ontario Geological Sur-
vey 2014).

Figure 4 presents the apparent conductivity data before
and after levelling processing. As Fig. 4a shows, there are
only slight striped errors along the flight line direction in
the apparent conductivity data. While the electromagnetic
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Figure 2. Synthetic airborne magnetic data processing. (a) Magnetic data with Gaussian white noise. (b) Magnetic data with levelling
errors. (c) Magnetic data with Gaussian white noise and levelling errors. (d) Denoised results of (a) data. (e) Denoised results of (b) data.
(f) Denoised results of (c) data. Panels (a)–(c) have been adjusted to use the same colour bar. Panels (d)–(f) have been adjusted to use the
same colour bar.
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Figure 3. Levelling result analysis of synthetic airborne magnetic data. (a) Magnetic data with Gaussian white noises. (b) Magnetic data
with levelling errors. (c) Magnetic data with Gaussian white noises and levelling errors.

data are transformed into conductivity parameters, the alti-
tude sensitivity is strongly weakened (Fraser, 1972; Huang
and Fraser, 1999).

We then applied the structured variational model to the
apparent conductivity data and got the levelling results as
Fig. 4b shown. In the analysis of the data, it is assumed that
the levelling error is the only noise source. Figure 5 illustrates
the transient data to compare the results in greater detail. Two
parts of the data are plotted corresponding to the black rect-
angle in Fig. 4. The first part includes 10 flight line datasets
as shown in Fig. 5a. We then selected a smaller data scope
(0–2.4×10−3 S m−1) to locally enlarge and draw the data in
Fig. 5b. Figure 5c and d are drawn using the five flight line
dataset that are correspond to the dashed–dotted black rect-
angle in Fig. 4.

4 Discussion

Firstly, we analysed and discussed the levelling results in an
airborne magnetic data example in Fig. 1. As seen in Fig. 1b
and c, most of the striped levelling errors have been removed
using the proposed levelling method and tie line levelling
method. A careful contrast of the two results shows that tie
line levelling method leaves some weak levelling errors that
are clear in the dotted black rectangle in Fig. 1.

The residue in the tie line levelling method may be caused
by an incompatible data alignment. Although the levelling
errors show a striped pattern in the survey area map, they are
slowly changing from point to point in a certain flight line.
The tie line levelling method adjusts the flight line data to
match the tie line data. Because the tie line number is much
lower than the point survey number, it needs to build a model

using the crossover point differences of the tie lines and flight
lines. When only a few tie line data points are used to calcu-
late the levelling error of every point, it is hard to balance
every point using an exact model.

In this paper we proposed a new technology based on
the ROF total variation model that focuses on the gradient
change in measured data. As the basic principle of data lev-
elling, theoretical geophysical data have continuous change
regularities. Levelling errors break the continuity and in-
crease the total variation of the survey area data (Zhang et
al., 2022). In the proposed levelling method, the structured
variational model aims to minimise the energy functional to
better explore the levelling errors in the data.

We then evaluated a synthetic magnetic example to further
analyse the results. There are three experiments with differ-
ent noises: (1) Gaussian white noise, (2) levelling errors, and
(3) mixed noise with Gaussian white noise and levelling er-
rors. As shown in Fig. 2, the structured variational model
can visibly remove the noise. In theory, noise increases the
gradient amplitude. The proposed model can be robust for
smoothing the gradient of the survey area data in an energy
functional.

There is a transient data comparison in Fig. 3. In the three
experiments, the results of the transient data (yellow lines)
are very similar to the clean data (black lines). The data pro-
cessing is without the localised anomalies being trimmed.
Three groups of SNRs are calculated in Table 1. The robust-
ness of the proposed model means it can deal with different
noise type. A suitable noise model still needs to be set, oth-
erwise it may lead to over-smoothing effect.

Finally, we test the levelling method on apparent conduc-
tivity data. Compared with Figs. 1a and 4a, apparent conduc-
tivity as a response domain is slightly affected by levelling
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Figure 4. The levelling of the apparent conductivity data. (a) The raw data. (b) Levelling results using the proposed levelling method.

errors. However, the differences in data levels still interfere
data interpretation. Figure 5 can better evaluate how well the
method is working. We deem the bottom of data curve to
represent the data level and enlarge the small data scope as
shown in Fig. 5b and d, and a dashed black line is added as a
measured rule. The blue lines in Fig. 5 are the apparent con-
ductivity data without levelling. It is obvious that the bottom
of blue lines hover around the dashed black lines in Fig. 5b
and d. When we adjusted the data, the data levels are united
as the red lines show in Fig. 5. The slight levelling errors are
tested and removed by the proposed levelling method. The
method is effective to time-domain airborne electromagnetic
data and response-domain airborne electromagnetic data.

5 Conclusions

In this paper, we proposed a levelling method based on a
structured variational method. The basis of this method is
that levelling errors increase the gradient of survey area data.
The ROF total variation model has been proposed by Rudin
et al. (1992) and designed with the total energy as a con-
straint condition. Moreover, it shows potentially good perfor-
mance in smoothing the total gradient by minimising the con-
strained gradient. The regularisation coefficient plays a role
in controlling the smoothness. The ROF total variation model
can adjust the airborne electromagnetic data by smoothing
the total gradient.

A rough levelling error model is constructed to focus on
levelling error accurately. Based on the levelling error char-
acteristic, we introduced the Gabor filter to match the level-
ling error with the striping pattern. Furthermore, the rough
levelling error model is embedded into the ROF total vari-
ation model to construct a structured variational model. The
proposed model is guided to deal with the additional gradient
caused by levelling errors. We have confirmed the method’s
reliability by applying it to the magnetic, synthetic magnetic,
and apparent conductivity data.

In addition, the synthetic magnetic example has tested the
structured variational model, which can also handle other
noise. A suitable noise model still needs to be embedded into
the ROF total variation model. Otherwise, it may lead to an
over-smoothing effect and loss of accuracy.
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Figure 5. Levelled apparent conductivity data. (a) The 10 flight line datasets, corresponding to the dotted black rectangle in Fig. 4. (b) Local
enlarged curves of (a) data. (c) The five flight line datasets, corresponding to the dashed–dotted black rectangle in Fig. 4. (d) Local enlarged
curves of the data in (c).
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