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Abstract. Electromagnetic exploration, characterized by its
low cost, wide applicability, and high operational effi-
ciency, finds extensive applications in fields such as oil and
gas exploration, mineral prospecting, and engineering ge-
ology. Traditional controlled-source electromagnetic detec-
tion methods are typically confined to operating frequencies
below 250kHz, resulting in insufficient detection accuracy
for applications such as shallow- and intermediate-depth ex-
ploration, thereby constraining their performance in high-
resolution imaging. To address these challenges, we propose
a controlled-source ultrasonic audio frequency electromag-
netic receive system based on the internet of things (IoT).
We investigate cascaded digital filtering and sampling tech-
niques to extend the receiver’s sampling rate range, thereby
elevating the operating frequency of controlled-source elec-
tromagnetic acquisition from the conventional maximum of
250kHz to 1 MHz. The receiver achieves a sampling rate
of up to 2.5 MHz, comprising three magnetic field measure-
ment channels and two electric field measurement channels.
The instrument is compact, lightweight, and capable of real-
time data storage locally and real-time data transmission to
an upper computer. Additionally, IoT technology is intro-
duced, leading to the design of a cloud-based real-time re-
mote control and data acquisition scheme. Experimental re-
sults demonstrate the stability of the instrument, meeting the
requirements of field exploration.

1 Introduction

Electromagnetic exploration, renowned for its low cost,
widespread applicability, and operational efficiency, is ex-
tensively utilized in fields such as oil and gas exploration,

mineral prospecting, and engineering geology (Teng et al.,
2022; Wang et al., 2022; Chun-lei et al., 2022; Zhou et al.,
2021a; Wang et al., 2023). The electromagnetic exploration
method (EM) can be categorized into time domain elec-
tromagnetic method (TEM) and frequency domain electro-
magnetic method (FEM). The FEM (Peng et al., 2024)
primarily encompasses magnetotellurics (MT), which em-
ploys natural field sources, and controlled-source magne-
totellurics (CSMT), which utilizes artificial field sources.
CSMT is commonly applied in geothermal resource explo-
ration (Aykag et al., 2015; Zhang et al., 2022), mineral re-
source exploration, hydrological surveys, engineering geol-
ogy, and other fields (Tang and Wang, 2023; Liu et al., 2022;
Guo et al., 2020; Farzamian et al., 2019). CSMT method can
be classified into controlled-source audio frequency magne-
totellurics (CSAMT) and controlled-source radio frequency
magnetotellurics (CSRMT) based on different operating fre-
quencies. CSAMT (Zhou et al., 2021b) typically operates
within the frequency range of 0.1 Hz to 10kHz, with ex-
ploration depths ranging from tens of meters to 2-3km,
making it suitable for exploring geothermal and mineral re-
sources in the subsurface. CSRMT (Xu et al., 2014) oper-
ates within the frequency range of 10 kHz to 250 kHz. Tradi-
tional controlled-source electromagnetic detection methods
are usually limited to operating frequencies below 250 kHz,
which poses challenges in achieving adequate detection ac-
curacy for applications such as shallow and intermediate-
depth exploration, thereby restricting its performance in
high-resolution imaging.

Additionally, a single transmission source and a single-
directional transmission strategy are typically employed in
existing controlled-source electromagnetic exploration meth-
ods. This makes them susceptible to shielding effects from
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underground resistive bodies, limiting the comprehensive
perception of electromagnetic field signals and thereby re-
ducing the effectiveness of exploration. Moreover, due to the
use of a single-directional transmission method, transmission
efficiency is low, further impacting the accuracy of explo-
ration. Therefore, the presence of these issues urgently neces-
sitates an innovative controlled-source electromagnetic ex-
ploration method to enhance operating frequencies, improve
detection accuracy, and address the obstacles to efficient ex-
ploration present in traditional methods.

Simultaneously, the electromagnetic receivers widely used
in exploration commonly suffer from low sampling rates and
typically utilize data storage media such as SD cards, which
cannot meet the demands for multi-channel, high-sampling-
rate, and long-term continuous data acquisition. To address
these issues, we propose a controlled-source ultrasonic au-
dio frequency electromagnetic receiver with a working fre-
quency range of 1Hz to 1 MHz, which can further improve
accuracy in shallow- to intermediate-depth exploration. The
device is portable and capable of instantly storing data lo-
cally, while also supporting real-time data transmission to a
central processing unit. Additionally, by integrating internet-
of-things (IoT) technology, we have developed a cloud-based
solution that enables real-time remote control of the device
and data collection functionalities.

2 Basic principles

The magnetotellurics (MT) method was first proposed by the
French scholar Cagniard in 1953 (Cagniard, 1953). CSMT
evolved from audio magnetotellurics (AMT). In 1975, Gold-
stein and Strangway introduced the use of artificial electri-
cal sources in AMT and discussed their application in min-
eral exploration (Goldstein and Strangway, 1975). The emer-
gence of CSMT has addressed the instability of the field
source and the difficulty in obtaining high-signal-to-noise-
ratio data in AMT, greatly advancing the development of
electromagnetic exploration. However, it has also introduced
a series of source-related issues such as susceptibility to ter-
rain effects and non-planar wave effects.

A typical schematic diagram of a CSMT device is shown
in Fig. 1, and the scalar apparent resistivity calculation
method is represented by Eq. (1) (Zhang et al., 2021; Rong
and Liu, 2022; Yu et al., 2023). Here, E and H represent the
mutually perpendicular horizontal components of the elec-
tric and magnetic fields. In AMT, the field source is the elec-
tromagnetic field excited by distant lightning, which can be
approximated as a plane wave in the exploration area. How-
ever, when artificial sources are used for exploration, as the
sources are closer to the survey area, not all electromagnetic
waves in the exploration area can be simply regarded as plane
waves. In 1982, Sandberg described the distribution of elec-
tromagnetic fields excited by artificial sources in a uniform
half-space and pointed out that the electromagnetic waves at
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Figure 1. Schematic diagram of the CSEM (controlled source elec-
tromagnetic) system.

a position could be considered plane waves, and the appar-
ent resistivity calculated according to Formula 1 could ap-
proach the true resistivity only when the receiver—transmitter
distance was greater than 3 times the skin depth (receiver lo-
cated parallel to the transmitter) or 5 times the skin depth
(receiver located in the same direction as the transmitter).
This phenomenon is known as the near-field effect (Sandberg
and Hohmann, 1982). There are typically two ways to avoid
the near-field effect: one is to deploy stations reasonably to
exclude data from the near-field area, while the other is to
correct data using near-field correction algorithms to achieve
full-area detection.

1 |E?

= hwHP @

Pa

Here, p represents the magnetic permeability of the
medium, while @ represents the angular frequency of the
electromagnetic wave.

3 Design of IoT-based controlled-source ultrasonic
audio frequency electromagnetic receiver

3.1 Overview of the architecture

The overall hardware structure of the receiver is illustrated
in Fig. 2, comprising the interface board, analog board, con-
nection board, and main control board. The interface board
serves as the bridge between the internal and external compo-
nents of the instrument, integrating sensor interfaces, power
interfaces, communication interfaces, indicator light inter-
faces, and keypad interfaces. The sensor interfaces consist
of magnetic field sensors and electrode terminals, with their
connections linked to the analog channel input terminals on
the analog board. The power interface is responsible for sup-
plying external 12 V power, which is distributed through the
power distribution network to the entire system. The com-
munication interface, indicator lights, and keypad facilitate
human-machine interaction, with their internal wiring con-
nected to the multiprocessor system-on-chip (MPSoC) de-
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Figure 2. The overall architecture of the receiver.

sign of the main control board. Additionally, the interface
board has functions such as overcurrent protection and bat-
tery monitoring. The digital interfaces of the power monitor-
ing chip and power control chip on the interface board are
also connected to the MPSoC on the main control board.

On the connection board, there is a magnetic coupling iso-
lation module, which connects to the digital signal ports of
both the analog board and the main control board. It is re-
sponsible for isolating the digital and analog parts, severing
electrical connections to reduce interference from the digital
part on the analog signals.

3.2 Design of the analog board

The analog board is designed with five analog channels, each
responsible for conditioning and analog-to-digital conversion
(ADC) of signals from two electric field components and
three magnetic field components. As shown in Fig. 5, the
signal conditioning circuit mainly consists of input protec-
tion circuits, programmable gain amplifiers, single-ended to
differential conversion circuits, and anti-aliasing filtering cir-
cuits. We employ the AD8253 amplifier (Yuan et al., 2016)
as the programmable gain amplifier, which boasts a high slew
rate of up to 20 V us~!, meeting the bandwidth requirements
for ultrasonic data acquisition. It provides programmable
gains from 1 to 1000, enhancing the circuit’s capability to
capture weak signals. The analog-to-digital conversion cir-
cuitry includes the AD7760 (Zhang et al., 2015) analog-to-
digital converter and its peripheral circuitry, with its digi-
tal interface connected to the MPSoC on the main control
board via the connection board. The AD7760 is capable of
outputting 24-bit precision sampling data at a maximum fre-
quency of 2.5 MHz.

As shown in Fig. 3, the electric field sensor uses an active
transmission line with a front-end amplifier, connected to a
metal rod buried in the soil. The magnetic field sensor uses an
inductive magnetic sensor. The input circuit for the signal is
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Figure 4. Analog channel circuit.

protected by Schottky diodes and current-limiting resistors,
as shown in Fig. 4.
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Figure 5. Block diagram of analog channels.

Figure 6. Image of main control board.

3.3 Design of main control board

We employ the XCZU3EG MPSoC as the primary control
chip (Khandelwal and Shreejith, 2022), and the physical ap-
pearance of main control board is depicted in Fig. 6. Inter-
nally, XCZU3EG consists of two internal components, ARM
(advanced RISC machine) and FPGA (field programmable
gate array), with both having distinct responsibilities. The
FPGA portion primarily manages the analog board for ADC,
receives and parses converted data, processes GNSS data,
calibrates the oven-controlled crystal oscillator (OCXO), and
controls system power. On the other hand, the ARM portion
handles the overall workflow control of the entire acquisi-
tion station, human—machine interaction, and data storage.
Communication between the ARM and FPGA sections oc-
curs via the internal AXI (advanced extensible interface) bus,
allowing the ARM part to configure acquisition parameters
and control acquisition start and stop by accessing FPGA
registers. After parsing by the FPGA, the analog-to-digital
converted data is transmitted to the ARM section in the
form of data streams, stored onto external solid-state drives,
and transmitted in real time to the host computer via Ether-
net. The ARM part also manages functions related to but-
tons and LEDs and facilitates remote real-time monitoring
through data transmission with a 4G module. Additionally,
the main control board includes circuits for storing program
code on a microSD card, storing acquisition data on solid-
state drives, providing communication via gigabit Ethernet,
ensuring time synchronization via GNSS, and providing sta-
ble clock signals through OCXO. The solid-state drives of-
fer read and write speeds of up to 3.5GBs™!, meeting the
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requirements for real-time storage of multi-channel high-
sampling-rate full waveforms in ultrasonic data acquisition
(40MB s~ ). The OCXO-related circuits consist of a DAC
(digital-to-analog converter) circuit and a voltage-controlled
OCXO, where the DAC generates a voltage signal to cali-
brate the voltage-controlled OCXO.

3.4 The 4G module

To ensure efficient and reliable data transmission and re-
mote management in our system, we have selected the cost-
effective USR-G771-GL 4G DTU (data transfer unit) module
(Zhang and Wang, 2022), manufactured by USR IoT. This
module supports multiple 4G LTE frequency bands world-
wide, ensuring extensive network coverage and compatibil-
ity. Moreover, it offers high-speed data transmission and ex-
tremely low communication latency, enabling real-time data
processing and rapid response. The USR-G771-GL module
is an ideal choice for the digital transformation and network
expansion of our system, meeting the stringent requirements
of the modern industry for high-speed, stable, and remote
communication.

Equipped with standard serial port interfaces, the mod-
ule seamlessly connects to the main control unit, facilitat-
ing seamless data exchange. This simple connectivity greatly
promotes the intelligent upgrading of traditional serial port
devices, providing them with wireless network access capa-
bilities. Whether in industrial automation, intelligent trans-
portation systems, or environmental monitoring, the module
demonstrates outstanding performance.

By employing the USR-G771 module, users can achieve
remote monitoring and management of the receiver, enabling
centralized data collection and control regardless of the re-
ceiver’s location. This capability significantly enhances oper-
ational efficiency, reduces maintenance costs, and increases
system flexibility. The connection topology is illustrated in
Fig. 7, and the interface of the remote operating system is
shown in Fig. 8.

3.5 Programming design

3.5.1 Lower-computer program framework

The FPGA part of the MPSoC is a programmable logic de-
vice and serves as the main component of the digital circuitry

in the receiver. The program structure of the FPGA is ex-
pected to include various modules, as illustrated in Fig. 9.
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Figure 8. Interface of the remote operating system.

The data acquisition module is responsible for configuring
the ADC’s acquisition parameters, controlling ADC start and
stop, and retrieving and parsing ADC data. It consists of five
identical ADC control sub-modules, each handling data ac-
quisition for one channel. The data from the five channels is
stored in separate FIFO (first input—first output) memories,
processed, and then sent to the DMA (direct memory access)
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control module for transmission to the ARM part. Addition-
ally, this module controls the gain of the programmable am-
plifier.

The DMA control module handles the transfer of collected
data to the ARM part. It includes a FIFO memory. When the
amount of collected data exceeds a predefined threshold, the
DMA module initiates data transfer. The data are transmitted
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directly to the DDR (double data rate) memory on the ARM
side via the AXI4-Full bus. After completing the set number
of transfers, the DMA module generates an interrupt. Upon
receiving this interrupt, the ARM processor retrieves the data
from the DDR memory, switches the DMA storage target ad-
dress, reconfigures the DMA module via the AXI4-Lite bus,
and starts the next round of data transfer.

The purpose of the signal calibration module is to calibrate
the inductive magnetic field sensor. The inductive magnetic
field sensor contains an internal coil that can generate a mag-
netic field. During calibration, our instrument outputs a sinu-
soidal signal with a specific amplitude to this coil, generating
a magnetic field of a certain magnitude. Our instrument then
receives the response of the magnetic sensor to this magnetic
field signal, allowing us to calibrate the sensitivity coefficient
of the magnetic sensor at different frequencies. This sensitiv-
ity coefficient is used to convert the electrical signals output
by the sensor back into magnetic field signals during actual
measurements.

The oscillator calibration module is responsible for cali-
brating the oven-controlled crystal oscillator (OCXO) to pro-
vide accurate clock signals for the entire FPGA section. It
includes a DAC control sub-module and a frequency mea-
surement sub-module. The frequency measurement module
measures the frequency of the OCXO signal after multipli-
cation by the GNSS pulse per second signal. Based on the
difference between the measured frequency and the standard
frequency, the DAC control sub-module adjusts the voltage
signal to regulate the OCXO frequency until the difference
falls within a certain range, completing the calibration.

The real-time clock module receives serial data and pulse
per second signals from GNSS, parses the serial data to ob-
tain the current time, and synchronizes the system time based
on the rising edge of the second pulse. After synchronization,
the real-time clock module continuously generates local time
using the calibrated local clock signal for the entire system.

The signal calibration module generates square wave sig-
nals at specific frequencies to provide reference signals for
the calibration circuitry of the analog board. It divides the
calibrated local clock signal and outputs it as a reference sig-
nal, with the division ratio configured by the instruction con-
trol module.

The instruction control module controls and configures the
other modules. The program in the ARM part can read and
write a series of registers in the instruction control module
via the AXI4-Lite bus to control the operation of the other
FPGA modules.

3.5.2 Cascade digital filter sampling technology

To meet the wide-bandwidth requirements of the receiver,
the cascade digital filtering and sampling function is imple-
mented in the FPGA part of the MPSoC. Its structure, as
depicted in Fig. 10, consists of cascaded stages, each com-
posed of a 96-tap FIR filter, providing 120 dB attenuation at
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the Nyquist frequency. Cascade digital filtering and sampling
prevent spectrum aliasing effects during down-sampling and
suppress out-of-band quantization noise generated by the
ADC process. Through cascade digital filtering and sam-
pling technology, the sampling rate range of the analog-
to-digital converter is expanded from 78 kHz-2.5 MHz to
305 Hz-2.5 MHz, ensuring collection accuracy while allow-
ing the instrument to be more flexibly applied in electromag-
netic exploration across various frequency bands.
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Table 1. Comparison of performance indicators of electromagnetic receivers. NA: not available

Instrument model Stratagem EHS5 V8 GDP-3211 ADU-07 Developed receiver
Manufacturer Geometrics Phoenix Zonge Metronix China University of Geosciences
Sampling rate 75Hz-192kHz 96kHz 32kHz 512kHz 305Hz-2.5MHz

Frequency range 10Hz-96 kHz 0.00005 Hz-10kHz  0.015625 Hz-8 kHz DC-250kHz 1Hz-1MHz

Number of channels 5 6 1to 16 1to 10 5

ADC bits 32 24 16 24 24

Dynamic range 127dB NA 190dB 130dB 143 dB

Power consumption <8W I5W NA <5W 10W

Synchronization method ~ GNSS GNSS Quartz crystal and GNSS ~ GNSS GNSS +0CXO

Storage medium Local storage Local storage Local storage Local storage  Local storage 4 remote transmission
Weight 5.8kg 7Tkg 13.7kg 7.1kg 5.7kg
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Figure 14. Measured value of the maximum undistorted sine wave.
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Figure 15. Measured value of short-circuit noise.

3.5.3 Upper-computer program design

The upper computer mainly performs functions such as data
reception and storage, waveform display, and instrument
control. The functional architecture of the upper-computer
software is shown in Fig. 11.

When using the instrument, GNSS synchronization and
network connection is the first step. And then configure the
acquisition frequency and time table to collect data. The
overall workflow of the receiver is shown in Fig. 12.

3.6 Comparison of key instrument indicators

Some of the internationally advanced electromagnetic re-
ceivers include the GEOMETRICS EHS5 from the United
States (Geometrics, 2024), Metronix ADUOQ7 from Germany
(Metronix, 2024), Zonge GDP-32II from the United States
(Zonge International, 2012), and Phoenix V8 from Canada
(Phoenix Geophysics, 2023). Partial parameters of these four
instruments are presented in Table 1. From the table, it can be
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observed that current electromagnetic receivers already cover
a wide frequency range. To be more specific, the Metronix
ADUO7 from Germany is a full-band magnetotelluric instru-
ment, covering frequencies from direct current to radio fre-
quency, enabling various detection methods such as magne-
totellurics and controlled-source electromagnetic methods.
Additionally, current electromagnetic receivers are moving
towards multi-channel synchronous acquisition. All four in-
struments listed in Table 1 have at least two electric field
channels and three magnetic field channels. The German
Metronix ADUOQ7 utilizes a combination of high-frequency
and low-frequency dual channels, with a total of 10 chan-
nels, providing the most detailed electromagnetic data for
subsequent data processing. However, the sampling rates of
these instruments do not exceed 512 kHz. In terms of storage
media, they all use SD cards or other removable flash mem-
ory for data storage, and the speed of the storage media may
become a bottleneck for high-speed continuous acquisition.
The 190dB dynamic range of the Zonge-GDP-32II likely
does not refer to the instantaneous dynamic range but rather
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Figure 17. Image of outdoor testing.

to the ratio of the maximum input voltage to the minimum de-
tectable signal when considering the channel gain. According
to its manual, the maximum input voltage is £32 V, while the
minimum detectable signal is 0.03 uV, with gain adjustable
from 0.125 to 65536 V/V. In fact, the dynamic range speci-
fication of our instrument is determined in the same method,
and here the gain is 40 dB.

4 Instrument testing and result analysis
4.1 Frequency range testing

After the development was completed, we conducted sys-
tem integration testing and performance evaluation (as shown
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Table 2. The 1 Hz to 1 MHz signal attenuation result table.

Frequency Voltage  Attenuation
(Hz) amplitude (V)  factor (dB)
1 1.00076 0.0066
10 1.00044 0.0038
100 1.00078 0.0068
1000 0.99885 —0.010
10000 0.99467 —0.046
100000 0.99617 —0.033
600000 0.96660 —0.30
1000000 0.95021 —-0.44

in Fig. 13), including tests on frequency range, background
noise, dynamic range, and others.

After powering on the prototype, we connected the re-
ceiver and signal generator. A sinusoidal wave with a peak-
to-peak amplitude of 1 V was applied to the input of the re-
ceiver. The test results are summarized in Table 2.

By varying the input signal frequency from 1 Hz to 1 MHz,
it was observed that the attenuation factor remained below
3 dB. This indicates that within the frequency range of 1 Hz
to 1 MHz, the receiver operates within the —3 dB bandwidth.

4.2 Background noise and dynamic range testing

We kept the same connection setup, with the receiver in-
putting a sine wave with a peak-to-peak amplitude of 1 V.
The input signal amplitude was gradually increased until the
maximum undistorted sine wave was identified, resulting in
a measured value of 3.5 Vrms, as depicted in the graph.
When the receiver input was shorted, the effective value of
the short-circuit noise was measured, yielding a result of
0.25uV, as shown in Figs. 14 and 15. Based on calculations,
the dynamic range was determined to be around 143 dB.

https://doi.org/10.5194/gi-13-325-2024



Z. Lin et al.: IoT-based controlled-source ultrasonic audio frequency electromagnetic receiver 335

4.3 Transceiver frequency test

We conducted a joint debugging test of the transmitter and
receiver outdoors. A 100 m cable was laid across the cam-
pus as shown in Fig. 16, with a distance of 10 m between
the transmitting electrodes. Stainless-steel electrodes and in-
duction magnetic sensors were used for reception, with a re-
ceiving cable of 50 m and a receiving distance of 10m. The
outdoor test photos are shown in Fig. 17. We use a trans-
mitter to emit a 614.4 kHz square wave, and the receiver col-
lects the spectrum of underground electric and magnetic field
data, as shown in Fig. 18. It can be seen that both the electric
and magnetic field channels can clearly receive the 614.4 kHz
signal, verifying the accuracy of the signal.

5 Conclusions

In this study, we have developed a novel loT-based
controlled-source ultrasonic audio frequency electromag-
netic receiver and provided a comprehensive description
of its software and hardware architecture. The system is
compatible with both electrical and magnetic measure-
ment techniques, with the receiver capable of sampling up
to 2.5 MHz, effectively extending the operating frequency
of controllable-source electromagnetic acquisition from the
conventional 250kHz to 1 MHz. This equipment is compact
and portable, allowing for easy transportation, and it can in-
stantly store collected data locally or transmit it in real time
to higher-level devices such as computers. Furthermore, the
system incorporates IoT technology, supporting remote real-
time monitoring and control functions, significantly simpli-
fying the complexity of field operations. Through experimen-
tal testing, we have validated the integrity of the system data,
the efficiency of communication with the upper computer,
and other performance indicators, all of which have met the
expected design requirements.
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