
Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024
https://doi.org/10.5194/gi-13-353-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Managing data of sensor-equipped transportation networks
using graph databases
Erik Bollen1,2, Rik Hendrix2, and Bart Kuijpers1

1Databases and Theoretical Computer Science Group, Data Science Institute (DSI), Hasselt University
and transnational University Limburg, Agoralaan building D Diepenbeek 3590, Belgium
2Data Science Hub, VITO, Boeretang 200 Mol 2400, Belgium

Correspondence: Erik Bollen (erik.bollen@uhasselt.be)

Received: 14 May 2024 – Discussion started: 28 June 2024
Revised: 30 September 2024 – Accepted: 6 October 2024 – Published: 27 November 2024

Abstract. In this paper, we are concerned with data perti-
nent to transportation networks, which model situations in
which objects move along a graph-like structure. We assume
that these networks are equipped with sensors that monitor
the network and the objects moving along it. These sensors
produce time series data, resulting in sensor networks. Ex-
amples are river, road, and electricity networks.

Geographical information systems are used to gather,
store, and analyse data, and we focus on these tasks in
the context of data emerging from transportation networks
equipped with sensors. While tailored solutions exist for
many contexts, they are limited for sensor-equipped net-
works at this moment. We view time series data as tempo-
ral properties of the network and approach the problem from
the viewpoint of property graphs. In this paper, we adapt and
extend the theory of the existing property graph databases
to model spatial networks, where nodes and edges can con-
tain temporal properties that are time series data originat-
ing from the sensors. We propose a language for querying
these property graphs with time series, in which time se-
ries and measurement patterns may be combined with graph
patterns to describe, retrieve, and analyse real-life situations.
We demonstrate the model and language in practice by im-
plementing both in Neo4j and explore questions hydrology
researchers pose in the context of the Internet of Water, in-
cluding salinity analysis in the Yser river basin.

1 Introduction

Transportation networks are a common research subject.
These networks range from river networks that transport wa-
ter and road networks that transport vehicles to heat or elec-
tricity networks that transport energy. A transportation net-
work is characterised by having a stable topology – that is,
the connectivity between nodes does not change often – and
objects or substances move through the topology. The ob-
jects or substances are measured or tracked by some sort
of sensor, and these sensors create time series data. Using
graphs to model transportation networks is a common prac-
tice based on the connection information often arising from
vector-based Geographical Information System (GIS) data.
Because these sensors themselves do not move, the time se-
ries can be attributed to the nodes and edges representing
the vector elements. In the networks, there are also static
data, which can be represented as common properties in the
graph, such as the IDs of the vector elements. As a result, re-
searchers have to process property graphs with time series in
the nodes and edges. This is different from the field of tem-
poral graphs because nodes and edges are always considered
present here. Only the properties can change through time, in
which case a property is considered to have different values
at different points in time. In contrast, most work about tem-
poral graphs assumes that nodes and edges can be removed or
added, resulting in graphs where nodes and edges are linked
to validity time intervals.

With the rise of the Internet of Things, the number of
sensors in transportation networks has grown considerably,
and the rate at which these sensors produce data is in-

Published by Copernicus Publications on behalf of the European Geosciences Union.

354 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

creasing too (McCabe et al., 2017). Therefore, the time se-
ries can have a high resolution of data points. Nodes and
edges are well-supported in graph databases, and query lan-
guages exist to process them. However, managing time se-
ries in graph databases is not trivial. Additional data struc-
tures are required to store the time series, and the existing
query languages do not support time series to express con-
straints (Gamper and Dignös, 2020). Similarly, time series
databases are well-established with their query languages to
deal with the timestamps and values. However, adding the
graph structure of the network is not supported. A system
that fully integrates and supports both graph structures and
time series data is missing.

In this work, we use an existing model for property graphs
to create a property graph model that includes time series in
nodes and edges. We leverage pattern matching, commonly
used in the current graph language, to create a query lan-
guage and logic that can answer queries over the proposed
graph model. One crucial part is that, in the query language
the temporal properties, with their timestamp–value pairs,
can interact with the nodes, edges, and their static properties.
The natural order present in the time series is built into the
query language to simplify writing constraints in the queries.
This provides tools for studying and transforming the data for
advanced analysis. The proposed logic is well-suited to ob-
jectively describe and study problems or shortcomings in the
model or query language. Next to the theory in this work, the
usage of the model and implementation is demonstrated on a
practical use case within the Internet of Water project where
electrical conductivity data are analysed for the Flemish Yser
river.

A very preliminary version of the theory, presented in this
paper, was published in Bollen (2022), without a theoretical
framework and implementation. We want to use the present
work to develop the theoretical foundation and to show how
it can be implemented. In addition, we discuss experiments
and additional examples here.

In Sect. 2, we discuss the related work, and in Sect. 3
the theoretical model for property graphs with time series
is given. Section 4 defines the logic for the proposed query
language and shows how this language can be realised using
the Graph Pattern Matching Language (GPML). The section
ends with some application examples. In Sect. 5, we describe
our implementation of the graph model and query language
using Neo4j and Cypher together with an experiment based
on the Internet of Water project. Sections 6 and 7 discuss the
proposed model and query language and present our conclu-
sion.

2 Existing work

There is a long-lasting overlap between geographical infor-
mation systems and the field of data management, especially
if physical networks are studied. Our sensor networks closely

align with the definition of “geosensor networks” by Nittel
(2017). She points out that data are often handled by do-
main scientists who need to work with the data, preferably
without needing to know the lower-level details of data man-
agement. This is also demonstrated in practice by the re-
search of Rodríguez-Alarcón and Lozano (2022) for river
basins, Hornsby and King (2008) for traffic on road net-
works, and Gilbert et al. (2018) for electricity networks,
where each network is a transportation network in our defini-
tion and is modelled using a graph. Especially in the case of
studying rivers, a lot of work is happening in Belgium, where
climate change has a big impact because of the increasing oc-
currences of extreme meteorological events (Brouwers et al.,
2015). It is, therefore, not surprising to see parties involved in
handling rivers joining forces and investing in full-stack ap-
proaches encompassing measuring, storing, analysing, and
managing data, as in the Internet of Water project (https:
//www.internetofwater.be/wat-is-internet-of-water/, last ac-
cess: 20 November 2024). In this context, colleagues also
studied the river Scheldt (Bollen et al., 2023) but approached
the transportation network by modelling it as an interval la-
belled graph. In this work, we want to focus more on the raw
time series in the geographical context.

In recent years, two types of graphs, resource description
framework (RDF) graphs and property graphs, have come to
the foreground. For the latter, the recent definition used is
the definition given by Angles (2018). Bonifati et al. (2018)
give a slightly different definition of property graphs. Before
that, other versions of graphs were used: for example, the
weighted graph (Devienne and Lebegue, 1986). George and
Shekhar (2018) use this model and define time-aggregated
graphs. In a time-aggregated graph, the weight of nodes and
edges can vary over time. An example is the travel time
in a network. This is part of dynamic, or temporal, graphs
where the study focuses on nodes and edges that exist dur-
ing a certain time (Debrouvier et al., 2021). There are also
advanced systems, for example GRADOOP by Rost et al.
(2022), that incorporate scaling and many interaction possi-
bilities. This field is still an active research domain, as the
recently started project HyGrpah (https://hygraph.net/, last
access: 20 November 2024) shows. Even though existing
temporal graphs might be able to accommodate our case, a
dedicated graph definition for a property graph where certain
properties are time series is not available to the best of our
knowledge.

One of the first publications regarding the underlying logic
or calculus for graph query languages is by Cruz et al. (1987)
from 1987 regarding a query language on graphs with recur-
sion. In this work, the relational model is used to store data.
An approach based on a graph model is called regular path
expression and is described by Backofen (1993). These ideas
have been extended to regular path queries in tandem with
the evolution of the graph model itself (Angles and Gutiér-
rez, 2008). Since then, different papers have been published
that further build on regular path queries. Angles et al. (2017)

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

https://www.internetofwater.be/wat-is-internet-of-water/
https://www.internetofwater.be/wat-is-internet-of-water/
https://hygraph.net/

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 355

show how this all fits together in the query languages. In their
vision, the two basic elements of the graph query language
are graph patterns and navigational patterns. The evolution
is summarised by Bonifati et al. (2018) as the existence of
regular path queries (RPQs) and conjunctive graph queries
(CQs), which, when taken together, make u the language of
conjunctive regular path queries (CRPQs). Adding disjunc-
tion to CRPQ results in a more expressive query language
called union conjunctive regular path queries (UCRPQs).
When considering edge labels in two directions, the theory
also talks about two-way regular path queries (2RPQs), con-
junctive two-way regular path queries (C2RPQs), and union
C2RPQs (Barceló Baeza, 2013). However, these language
classes do not account for reasoning over the properties of
graphs. To accommodate this, the class of regular property
graph queries can be used based on regular property graph
logic and regular property graph algebra (Bonifati et al.,
2018).

Despite the history, practical query languages have only
been implemented in recent years. In contrast to early graph
interaction, which was mainly imperative API-like, recent
query languages are declarative (API: Application Program-
ming Interface). The most important existing languages are
Cypher (OpenCypher and GQL), SPARQL, Gremlin, and
GSQL. There is an effort to standardise the graph query lan-
guages, as was done for SQL. This new standard, called
GQL, incorporates elements from (open)Cypher, G-core,
PGQL, and Tigergraph’s GSQL (https://www.gqlstandards.
org/existing-languages, last access: 20 November 2024).
As Deutsch et al. (2022) show, these languages, especially
GQL and SPARQL, have a common base for matching graph
patterns, and it is called Graph Pattern Matching Language
(GPML). The theoretical foundation of GPML has been re-
cently described by Francis et al. (2022). They provide a
calculus that uses the same concepts as the regular property
graph logic.

For time series, declarative time series query languages
and imperative query approaches exist. An elaborate the-
ory, as in the case of the graph databases, does not ex-
ist to the best of our knowledge. The first versions of the
time series database InfluxDB (https://www.influxdata.com/
products/influxdb/, last access: 22 November 2024) have
the query language InfluxQL, which uses SQL-like syntax
and describes the results of the query in a declarative for-
mat. Now, a new language is used, called Flux, which is
an imperative language where time series form a source in
transformations. In an extended version of PostgreSQL, us-
ing TimescaleDB (https://www.timescale.com, last access:
20 November 2024), time series can be queried using SQL.
However, they treat time series as tabular data, and they do
not exploit the order of the measurements in the time series
induced by the natural order of time.

3 A data model for property graphs with time series

The property graph model is well-suited to model trans-
portation networks, and various definitions of this model
exist: for example, the property graph model definition
of Angles (2018) and the definition of Bonifati et al. (2018).
In this work, the latter is used because it aligns better with
our applications. Our definition of the “property graph with
time series” model adapts the definition of Bonifati et al.
in the book Querying Graphs (Bonifati et al., 2018) and
adds time series based on the idea of Llusà Serra et al. (2016).

Definition 3.1. Given are a set of values V , a finite set of
labels L, and a set of timestamps T (equipped with a total
(temporal) order ≤). Further, we assume that a set of prop-
erty keys K is given, with two disjoint subsets KS (S stands
for static) and KT (T stands for temporal). The sets V , L,
T , and K are assumed to be pairwise disjoint. Lastly, the
set M⊆ T ×V denotes the set of measurements which are
(timestamp,value) pairs.

A property graph with time series is then defined to be
a structure

G= (N ,E,λ,υS,υT),

where

– N is a finite set of nodes;

– E is a set of directed edges, where each edge belongs to
N ×N ;1

– λ :N ∪ E→ P<ω(L) is a partial function assigning to
nodes and edges a finite set of labels (here, P<ω(L) de-
notes the set of all finite subsets of L);

– υS : (N ∪E)×KS→ V is a partial function assigning a
value to a static property of nodes and edges; and

– υT : (N ∪E)×KT→ P<ω(M) is a partial function as-
signing a finite set of measurements to a temporal prop-
erty of nodes and edges. We require that in such a set no
timestamp appears twice, and we call the image of the
function υT a time series. �

Now, we introduce our simplified fictitious running
example of such a graph, which is used throughout this
paper.

Example 3.1. Our example of a property graph with time se-
ries contains seven nodes that all have a numeric identifier
from 1 to 7, and these make up the set of nodes N . In ad-
dition, there are edges that represent the connectivity of the

1In the original work of Bonifati et al. (2018), these two sets are
disjoint subsets of a bigger object set. We simplify this approach by
not considering this object set. In addition, our directed edges are
defined by an ordered pair of nodes because of which the function
η is not needed.

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

https://www.gqlstandards.org/existing-languages
https://www.gqlstandards.org/existing-languages
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://www.timescale.com

356 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

network. The connectivity is chosen to be unidirectional to
reflect a river-like transportation network. There are six edges
in total, being (1,3), (2,3), (3,4), (4,5), (6,5), and (5,7). A
visual representation is shown in Fig. 1. Each edge is iden-
tified by a pair of node identifiers. All nodes and edges can
have zero or multiple labels to categorise them. In this exam-
ple, we label all nodes with the label point, and we label all
edges with the label path. Each node and edge is assigned a
name to demonstrate the static properties. For the nodes, this
name corresponds to the letter “N” together with the identi-
fier and for the edges “E” with a number. For example, node
1 has a static property with key name and value N1, thus
(1,name) is mapped to N1. The edge (1,3), together with
name, is mapped to the value E1. All mappings for the static
properties are listed below. The temporal properties form the
last part of the example. They consist of a property key and
a value. The property value is considered to be a time series,
which is a set of (timestamp,value) pairs. The values in the
time series can be almost anything, but in this example, we
use numerical values. For example, for node 1 the mapping
is

(1,water-level) 7−→

{(2022-08-15T10:00,14), (2022-08-15T11:00,14),
(2022-08-15T12:00,13), (2022-08-15T13:00,13),
(2022-08-15T14:00,12), (2022-08-15T15:00,12)},

which means that there is a time series with six values on
15 August 2022 around noon. Next to the nodes, there are
also edges that have a temporal property; the times series
represents the travel time for an object travelling along that
edge.

We remark that, in this example, the timestamps are be-
having perfectly. That is, timestamps are spread evenly, and
all time series use the same timestamps. This does not need
to be the case, and in reality it probably will not be the case.
However, the example is easier to understand by assuming
these characteristics.

The complete formal description of the example is as fol-
lows, with the remark that in the time series, the timestamps
are on 15 August 2022, but only the time is shown for read-
ability.

– N = {1,2,3,4,5,6,7};

– E = {(1,3), (2,3), (3,4), (4,5), (6,5), (6,7)};

– λ= {1 7−→ {point}, 2 7−→ {point}, 3 7−→
{point}, 4 7−→ {point}, 5 7−→ {point},
6 7−→ {point}, 7 7−→ {point}, (1,3) 7−→ {path},
(2,3) 7−→ {path}, (3,4) 7−→ {path}, (4,5) 7−→
{path}, (6,5) 7−→ {path}, (6,7) 7−→ {path}};

– υS = {

(1,name) 7−→ N1, (2,name) 7−→ N2, (3,name) 7−→
N3, (4,name) 7−→ N4, (5,name) 7−→ N5, (6,name)

7−→ N6, (7,name) 7−→ N7, ((1,3),name) 7−→ E1,
((2,3),name) 7−→ E2, ((3,4),name) 7−→ E3,
((4,5),name) 7−→ E4, ((6,5),name) 7−→ E5,
((5,7),name) 7−→ E6};

– υT = {

(1,water-level) 7−→ {(10:00,14), (11:00,14),
(12:00,13), (13:00,13), (14:00,12),
(15:00,12)},
(2,water-level) 7−→ {(10:01,15), (11:02,15),
(12:01,15), (13:01,15), (14:00,15),
(15:01,16)},
(3,water-level) 7−→ {(10:00,14), (10:30,13),
(11:00,14), (11:30,14), (12:00,14),
(12:30,15), (13:00,14), (13:30,14),
(14:00,13), (14:30,12), (15:00,13)},
(5,water-level) 7−→ {(10:00,14), (11:00,14),
(12:00,15), (13:00,15), (14:00,14),
(15:00,14)},
(6,water-level) 7−→ {(10:00,18), (11:00,18),
(12:00,17), (13:00,18), (14:00,19),
(15:00,19)},
(7,water-level) 7−→ {(10:00,18), (11:00,17),
(12:00,16), (13:00,17), (14:00,18),
(15:00,18)},
((3,4),travel-time) 7−→ {(10:00,3.10),
(11:00,3.50), (12:00,3.49), (13:00,3.47),
(14:00,3.46), (15:00,3.44)},
((4,5),travel-time) 7−→ {(10:00,3.20),
(11:00,3.15), (12:00,3.53), (13:00,3.51),
(14:00,3.48), (15:00,3.46)}}.

This concludes our example, a vi-
sual representation of which is shown in
Fig. 1. �

The total temporal order ≤ on the set T , assumed by
Definition 3.1, induces a total order on the measurements
in a time series. Indeed, the temporal order ≤ on T in-
duces an order (which we also denote by ≤) on M, as fol-
lows: for m1,m2 ∈M, we define m1 ≤m2 if and only if
τ(m1)≤ τ(m2), where τ :M→ T is the projection on the
time component (that is, τ returns the timestamp of a mea-
surement). Furthermore, we define ν(m) to be the value of
the measurement m (that is, its second component). In other
words, a measurement m ∈M is the couple (τ (m),ν(m)).
The above order allows us to define a “next” relationship
and a “previous” relationship between measurements in a
time series. The definition of both is as follows. Given two
measurements m1 and m2 in a time series s, m2 is the next
measurement afterm1, denoted next(m2,m1, s) if and only if
m1,m2 ∈ s, and m1 <m2, and there is no measurement m in
s with m1 <m<m2 (here, < has the obvious meaning of ≤
but not equal). The definition for the previous measurement,
previous(m1,m2, s), then corresponds to next(m2,m1, s). In
the case that the second condition is dropped (that is, there
might be another measurement between the other two), then

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 357

Figure 1. Visual graph representation of Example 3.1. The nodes are assigned a label point and the edges are labelled path; these labels
are not shown. The timestamps also include a date, such as 15 August 2022, but it is not shown to reduce the clutter.

we use predicates after(m2,m1, s) to indicate that m2 oc-
curred after m1 and before(m2,m1, s) for the other case. In
addition, we can extend this idea to define the first and last
measurements. The first(m,s) and last(m,s) predicates are
true for a measurementm, within a time series s, where there
is no previous or next measurement for m in s, respectively.

4 A formal query language for property graphs with
time series

4.1 Extending regular property graph logic

The concept of regular path queries is well-established and
is an important concept (Nolé and Sartiani, 2016; Abiteboul
and Vianu, 1999; and Libkin and Vrgoč, 2012). For exam-
ple, Cypher and GQL are based on the theory of regular prop-
erty graph queries, described by Bonifati et al. (2018). These
queries can be described using regular property graph logic
or regular property graph algebra. To obtain a query language
for property graphs with time series, we extend the regular
property graph logic with elements to incorporate the time
series. More specifically, we add the description of time se-
ries patterns for a temporal property in a node or an edge.
The result is that the temporal properties are handled just like
the nodes, edges, and properties. A query can contain node,
edge, path, static property, and temporal property constraints
that can be evaluated simultaneously. These constraints may
depend on each other without the need for multiple queries.

We take the syntax and semantic definitions of regular
property graph logic by Bonifati et al. (2018) and with it de-
fine our logic for property graph query language with time
series, or GQL-TS logic. This is done by adding formal de-
scriptions for temporal properties and querying them. We
show how these logical elements can be realised as time se-
ries and measurement patterns in the Graph Pattern Match-
ing Language. In the last part, example queries are given to
demonstrate the different possibilities of our graph query lan-
guage with time series, which we abbreviate as GQL-TS. The
entire definition of regular property graph language is also
included in this section. We add to it elements that deal with
temporal properties – that is, time series – and how these
are concatenated with the constraints. For the syntax and the
semantics, the existing theory is first given, and we subse-
quently introduce the new elements added by us.

4.1.1 Syntax of GQL-TS logic

In this section, we give the syntactical definition of GQL-TS
logic.

A query, expressed in GQL-TS logic, is conceived to take
a property graph with time series (as presented in Defini-
tion 3.1) as input, and it takes the form of a set of non-
recursive datalog-style rules. Each rule is a description of a
sub-graph pattern or path of the input graph and is of the form

head← body1, . . .,bodym,constraint1, . . .,constraintn, (1)

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

358 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

which has a head predicate and, in the body, a sequence
of body predicates, possibly in combination with additional
constraints.

First, we need some additional notions and notations. We
use N var to denote the (possibly infinite) set of variables that
represent nodes in a graph. Similarly, we have the set Evar of
variables that refer to edges in a graph. Finally, we assume
an infinite set L(2) of fresh predicate names of arity 2.

We define the components of a query rule in GQL-TS
logic. First, we define the form of the “head” of a rule, which
either creates a new relation (called `2) or a result relation of
some arity a.

Definition 4.1. The head of rule (1) either has the form

`2(x,y),

where `2 ∈ L(2), x,y ∈N var , or the form

result(x1, . . .,xa),

with a ≥ 1 and x1, . . .,xa ∈N var . In the first case, we de-
fine var(head) := {x,y}, and in the second case, we define
var(head) := {x1, . . .,xa}. �

Next, we define the form of the “body” components of
a rule, which either uses an existing or previously created
edge relation (called `2), computes the transitive closure of
such an edge relation (denoted by `∗2), or uses an existing
unary node relation (called `1).

Definition 4.2. Each bodyi in rule (1) has the form

– `2(x,y) AS e,

– `∗2(x,y), or

– `1(x),

where `2 ∈ λ(E)∪L(2) is of arity 2 and is not the predi-
cate name used in the head of the rule, `1 ∈ λ(N) is of
arity 1, x,y ∈N var , and e ∈ Evar . In the first case we
define var(bodyi) := {x,y,e}, in the second case we de-
fine var(bodyi) := {x,y}, and in the third case we have
var(bodyi) := {x}. �

Next, we define the form of the “constraint” components
of a rule and distinguish between “static constraints” and
“time series constraints”. In this definition, we need a set
Mvar of measurement variables that range over measure-
ments. When m ∈Mvar , then m.value is a variable that
ranges over values in V and m.time is a variable that ranges
over timestamps in T . Finally, we have a set 2v of binary
operators (or relations) on the set of values V and a set
2t of binary operators on T , to which the total order on
timestamps ≤ is assumed to belong. Typically, we take 2v
and 2t to be {=, 6=,≤,<,≥,>}.

Definition 4.3. Each constraintj in rule (1) is either a static
constraint or a time series constraint.
(1) Static constraints are of the form

– x.ρ1 θv y.ρ2,

– x.ρ1 θv val, or

– x = y,

where x,y ∈N var
∪ Evar , ρ1,ρ2 ∈KS, val ∈ V , and θv is

a binary operator from 2v . We define var(constraintj)=
{x,y} for the first and third case and var(constraintj)= {x}
in the second case.
(2) Time series constraints are of the form

– x.σ = [m1, . . .,mp], with p ≥ 1;

– x.σ = [m1, . . .,mk,∗,mk+1, . . .,mp], with p ≥ 2 and
1≤ k < p;

– v1 θv v2; or

– t1 θt t2,

where x ∈N var
∪Evar , σ ∈KT, andm1, . . .,mp ∈Mvar and

where, furthermore,

– θv ∈2v , v1, and v2 are

– values from V;

– of the form m.value, with m ∈Mvar ; or

– the result of a function (with co-domain in V) ap-
plied to value and time constants as well as vari-
ables.

– θt ∈2t , t1, and t2 are

– timestamps from T ;

– of the form m.time, with m ∈Mvar ; or

– the result of a function (with co-domain in T) ap-
plied to value and time constants and variables.

�

We are ready to give the definition of a rule in GQL-TS
logic.

Definition 4.4. A GQL-TS logic rule has the form

head← body1, . . .,bodym,constraint1, . . .,constraintn,

with m> 0 and n≥ 0, where head, bodyi , and constraintj
are as defined in Definitions 4.1, 4.2, and 4.3, with the addi-
tional restriction that

var(head)⊆

m⋃
i=1
var(bodyi)∪

n⋃
j=1

var(constraintj). �

A query expressed in GQL-TS logic is then simply
described by a (non-recursive) collection of GQL-TS logic
rules. At least one rule in a query needs to have a special
head result describing the final output of the query.
We need to discuss the notion of the “dependency graph”

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 359

of query Q such that we can define what is meant by
non-recursive. In the rules of Q, several predicates may
appear: some are existing node and edge predicates of the
property graph with time series, and some are newly created
predicates. In the dependency graph of Q, the predicates are
nodes, and there is an edge from predicate ` to predicate `′

if ` appears in the head and `′ in the body of some rule in Q.
When ` appears in the head and `′ in the body of some rule,
we call `′ a “successor” of ` and ` a “predecessor” of `′.
This dependency graph is called non-recursive if it is acyclic
and recursive if it contains a cycle. With that, we can give
the formal definition of a GQL-TS logic query.

Definition 4.5. A GQL-TS logic query is a finite non-empty
and non-recursive set of rules such that at least one rule has a
head predicate result and all result predicates have the
same arity. �

When the predicate result appears more than once, we
assume that this results in the union of the rules, as will be
clear in the next section, where we define the semantics of
GQL-TS logic.

Example 4.1. To make this more tangible, two example
queries are now discussed. Take the graph in Example 3.1: on
it, we want to find all nodes with the same temperature at the
same moment in time as node N1. In other words, we need
a query that expresses two node patterns where one matches
node N1 and the other a node with the same value at the same
moment for the temporal property “temperature”.

result(m,a,b)←

point(n),point(m),n.name= N1,

n.temperature= [a],m.temperature= [b],

a.value= b.value,a.time= b.time,n.name 6=m.name

First the head of the rule result(m,a,b) is given. It states
that the query will return all matches for the variables m,
a, and b, for which additional criteria are defined. Start-
ing with the body predicates, point(n) and point(m),
match a node with the label “point” to the node variables
n and m. The node’s name matched to n needs to be equal
to N1, which is expressed by the constraint n.name= N1.
This last part is already a constraint as given in Defini-
tion 4.3. The next four constraints focus on the temporal
properties, with the first two matching a measurement a and
b in the temporal node property temperature in node n and
m, respectively. These measurements need to have the same
value at the same moment in time, expressed by the con-
straints a.value= b.value and a.time= b.time. Finally, the
constraint n.name 6=m.name is needed to prevent the query
from matching the same node to m and n. This is done with
the name in this case but can be realised with any node prop-
erty that can differentiate any two nodes.

Edges and the temporal properties of those are the focus
of the second example query. In the example graph, we want

to find two consecutive edges where the travel time on the
second edge (in direction) is lower than the travel time on
the first edge.

result(e1,e2)←

path(n,m) as e1,path(o,p) as e2,m= o,

e1.travel-time= [a],e2.travel-time= [b],

a.time= b.time,a.value< b.value

This formal query example includes two edge variables in
the header: e1 and e2. Here, two different body predicates
are used, path(n,m) as e1 and path(o,p) as e2, that match
edges with the label “path”. These predicates also explicitly
link four node variables to the nodes that make up the edges.
In this example, we named these variables n, m, o, and p.
The constraints can be written using these variables, defining
the requirements to which the matches must adhere. First,
the constraint m= o ensures that the two edges are consec-
utive because the end node of the first edge needs to be the
same as the start node of the second edge. Secondly, con-
straints e1.travel-time= [a] and e2.travel-time=
[b] again match a measurement in each edge’s temporal prop-
erty “travel time”. These measurements have to adhere to the
constraints expressed on the last line: a.time= b.time and
a.value< b.value, expressing the requirements for the val-
ues and timestamps.

4.1.2 Semantics of GQL-TS logic

In this section, we give the semantics of GQL-TS logic
queries when applied to a property graph with time series.
Two parts form the following semantics: (a) the bodies and
constraints of rules are satisfied by an assignment, and (b)
each valid assignment contributes elements to a set defined
by the head of a rule. The first part will be called the satis-
faction of rules, and the second part will be the evaluation of
rules. We first define the rule evaluation and then discuss the
satisfaction problem for the bodies and constraints.

Given a property graph with time series G=

(N ,E,λ,υS,υT), a query Q, expressed in GQL-TS
logic, consists of a finite set of rules RQ, where a rule
r ∈ RQ is a GQL-TS logic rule and where at least one rule
in RQ has result(x1, . . .,xa) as its head. We denote the
predicate of the head of rule r by head(r).

When a rule r has head predicate `= head(r), and only
when the semantics of all predicates `′ that are successors
of ` in the dependency graph of Q have been evaluated on
G, we can define the semantics of the predicate ` on G. We
remark that this recursive process stops since the dependency
graph of Q is acyclic.

The evaluation of a rule r ∈ RQ onG results in the creation
of a cr -ary relation, where cr is the arity of `= head(r). This
cr -ary relation is defined in terms of assignments of the form

µ :N var
∪ Evar ∪Mvar

→N ∪ E ∪M,

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

360 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

which assign identifiers to node, edge, and measurement
variables. Suppose that rule r has the form head←

body1, . . .,bodym,constraint1, . . .,constraintn; then we
define Sat (r) to be the set of assignments µ for which

G|H(body1 ∧ ·· · ∧ bodym ∧ constraint1 ∧ ·· · ∧

constraintn)[µ]

in the usual sense used in predicate logic (for our specific
constraints, in particular those on time series, we give the
details below). If the head of r has the form `(x1, . . .,xcr),
then the evaluation of the rule r on G is the set

[[r]]G := {(µ(x1), . . .,µ(xcr)) | µ ∈ Sat (r)}.

The head `(x1, . . .,xcr) of rule r may appear in several rules
of the query Q (possibly with other variable names). Then,
we define the semantics of this predicate ` in G to be

[[`]]G :=
⋃

r∈RQ,head(r)=`

[[r]]G.

The result of the evaluation of the query Q on the property
graph with time series G is then defined to be the a-ary rela-
tion

[[Q]]G :=
⋃

r∈RQ,head(r)=result

[[r]]G.

What remains to be specified is the meaning ofG|Hbodyi[µ]
andG|Hconstraintj [µ] for a bodyi in a rule r (as in Defini-
tion 4.2) and constraintj in a rule r (as in Definition 4.3).

Satisfaction of body predicates. We define the meaning
of G|Hbodyi[µ] for each of the various forms of bodyi that
we defined earlier in Definition 4.2.

A body predicate bodyi in a rule r is satisfied by a map-
ping µ.

The following applies.

– If bodyi is of the form `2(x,y) AS e and `2 ∈ λ(E),
then G|H(`2(x,y) as e)[µ] if an edge exists in E such
that µ(e)= (µ(x),µ(y)) ∈ E and `2 ∈ λ(µ(e)).

– If bodyi is of the form `2(x,y) AS e and `2 ∈ L(2),
then G|H(`2(x,y) AS e)[µ] if an edge exists in
[[`2]]G with µ(e)= (µ(x),µ(y)) ∈ [[`2]]G.

– If bodyi is of the form `∗2(x,y), an additional set is
needed before we can define the satisfaction condition.
For this purpose, we introduce the following notation:

x
`,G
−−→ y,

which expresses that the tuple (x,y) belongs to (1) the
transitive closure of the edges in G with label ` when `
is an existing label in G or (2) the transitive closure of

a newly created relation, labelled `, when ` is not in the
original graph G. The set [[`∗2]]G is then defined as

{(x,x) | x ∈N } ∪ {(x,y) | x,y ∈N and x
`2,G
−−→ y}.

We want to remark that the meaning of this set has to be
interpreted as “zero or more times an edge with label `”.
Therefore, the pairs (x,x) | x ∈N are included to en-
sure that assignments where the edge occurs zero times
are possible. Finally, G|H(`∗2(x,y)) if (µ(x),µ(y)) ∈
[[`∗2]]G.

– If bodyi is of the form `1(x) with `1 ∈ λ(N), then
G|H(`1(x)) if µ(x) ∈N and `1 ∈ λ(µ(x)).

Satisfaction of constraints. We define the meaning of
G|Hconstraintj [µ], for each form of constraintj that ap-
pears in Definition 4.3. For each of the comparison relations
θv and θt , we also use this symbol for their interpretation in
the structure G (abusing notation).

– If constraintj is of the form x.ρ1 θv y.ρ2, then
G|H(x.ρ1 θv y.ρ2)[µ] if µ(x),µ(y) ∈N ∪ E and
υS(µ(x),ρ1) θv υS(µ(y),ρ2)).

– If constraintj is of the form x.ρ1 θv val,
then G|H(x.ρ1 θv val)[µ] if µ(x) ∈N ∪ E and
υS(µ(x),ρ1) θv val.

– If constraintj is of the form x = y, then G|H(x =
y)[µ] if µ(x)= µ(y).

For the constraints concerning the time series, two addi-
tional functions are assumed to exist. We assume a function
exists, with co-domain in V , that takes as input value and
time constants as well as variables. We denote this function
with fV . Similarly, the function taking value and time con-
stants as well as variables with co-domain T is represented
with fT .

– If the form of constraintj is x.σ = [m1, . . .,mp], then
G|H(x.σ = [m1, . . .,mp])[µ] if

1. µ(x) ∈N ∪ E ,

2. {µ(m1), . . .,µ(mp)} ⊆ υT(µ(x),σ), and

3. for all ml values with 1≤ l ≤ p µ(ml) ∈M and
next(µ(ml+1),µ(ml),υT(µ(x),σ)) holds.

We remark that if p = 1, then next() cannot be satisfied
and should be ignored (similarly, when l = p).

– If the form of constraintj is x.σ =

[m1, . . .,mk,∗,mk+1, . . .,mp], with p ≥ 2 and 1≤
k < p, then G|H(x.σ = [m1, . . .,mk,∗,mk+1, . . .,mp])

if

1. µ(x) ∈N ∪ E ,

2. {µ(m1), . . .,µ(mp)} ⊆ υT(µ(x),σ), and

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 361

3. for all ml values with 1≤ l ≤ p µ(ml) ∈M
and next(µ(ml+1),µ(ml),υT(µ(x),σ))

holds, except for l = k, and then
after(µ(ml+1),µ(ml),υT(µ(x),σ)) holds.

The following applies.

– If constraintj has the form v1 θv v2 and v1 is of the
form m.value and v2 ∈ V , then G|H(v1 θv v2)[µ] if
µ(m) ∈M and ν(µ(m)) θv v2.

– If constraintj has the form v1 θv v2 and v1
is the result of fV (m.time) with m ∈Mvar and
v2 ∈ V , then G|H(v1 θv v2)[µ] if µ(m) ∈M and
fV (τ (µ(m))) θv v2.

– If constraintj has the form v1 θv v2 and v1 and v2 are
value constants, the result of fV applied to time con-
stants, or the result of fV after µ is applied to variables,
then G|H(v1 θv v2)[µ] if v1 θv v2.

The following applies.

– If constraintj has the form is t1 θt t2 and t1 is of
the form m.time and t2 ∈ T , then G|H(t1 θt t2)[µ] if
µ(m) ∈M and τ(µ(m)) θt t2.

– If constraintj has the form is t1 θt t2 and t1 is the result
of fT (m.value) with m ∈Mvar , then G|H(t1 θt t2)[µ]
if µ(m) ∈M and fT (ν(µ(m))) θt t2.

– If constraintj has the form is t1 θt t2 and t1 and t2 are
value constants, the result of fT applied to value con-
stants, or the result of fT after µ is applied to variables,
then G|H(t1 θt t2)[µ] if t1 θt t2.

Example 4.2. In order to have a more practical understanding
of the evaluation of the rules, the two queries introduced in
Example 4.1 are evaluated here.

The first query contains one rule with head result
that needs to be evaluated. This means that the eval-
uation of the query, denoted as [[Q]]G, is given as⋃
r∈RQ,head(r)=result

[[r]]G. There is only one; there-
fore, the expression can be simplified to [[Q]]G := [[r]]G,
with r the rule as given in the example. The evalua-
tion of the rule is defined as finding all possible map-
pings for identifiers to node, edge, and measurement vari-
ables that satisfy all the constraints in the rule. In gen-
eral [[r]]G := {(µ(x1), . . .,µ(xcr)) | µ ∈ Sat (r)}, and this re-
sults in [[Q]]G := {(µ(n),µ(m),µ(a),µ(b)) | µ ∈ Sat (r)}
for this exact query, where the node variables n and m

need to mapped, as well as the measurements variables a
and b. To conclude the evaluation, each possible mapping
with the graph needs to be considered. First, the node vari-
ables are mapped, and if there is a valid mapping consid-
ering the constraints, then the measurement variable map-
pings are tried. There are seven nodes in total, which yields
49 possible mappings. One possible mapping is n← 2 and

m← 3, which already satisfies the predicates point(n) and
point(m), but the constraint n.name= N1 is not satisfied.
Consequently, we can already see that only mapping where
n← 1 can satisfy the entire rule. Similarly,m← 1 can never
be a part of the mapping because it would violate constraint
n.name 6=m.name. We are left with six possible mappings
where either 2, 3, 4, 5, 6, or 7 is mapped to m. For each
of these, we have to see if there is a valid mapping for a
and b. The constraint a.time= b.time reduces the number of
possible mappings drastically. What remains is to see that
a.value= b.value. The following mappings satisfy this con-
straint.

– m← 2: none.

– m← 3: a← (10:00,14), b← (10:00,14); a←

(11:00,14), b← (11:00,14).

– m← 4: none because there is already no mapping for
b.

– m← 5: a← (10:00,14), b← (10:00,14); a←

(11:00,14), b← (11:00,14).

– m← 6: none.

– m← 7: none.

In total, four valid mappings can be found.

1. µ= (n← 1,m← 3,a← (10:00,14),b←
(10:00,14)),

2. µ= (n← 1,m← 3,a← (11:00,14),b←
(11:00,14)),

3. µ= (n← 1,m← 5,a← (10:00,14),b←
(10:00,14)), or

4. µ= (n← 1,m← 5,a← (11:00,14),b←
(11:00,14)).

This means that this query returns four answers when eval-
uated on the graph given in Example 3.1. Since the head of
the rules includes only the variables m, a, and b, the actual
result collection of the query is

{(3, (10:00,14), (10:00,14)), (3, (11:00,14),

(11:00,14)), (5, (10:00,14), (10:00,14)),
(5, (11:00,14), (11:00,14))}.

This nicely demonstrates how the variables denoted in the
result() head define what is returned by the query.

Only the mappings for the variables and the final result are
discussed for the second query. In theory, all possible map-
pings of edges need to be considered for e1 and e2. How-
ever, the constraint m= o only allows consecutive edges. In
addition, the constraint with e1.travel-time= [a] and

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

362 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

e2.travel-time= [b] quickly reduces the possible num-
ber of mappings to only one: e1← (3,4) and e2← (4,5).
As last time, all possible measurements need to be matched,
considering the constraints a.time= b.time and a.value<
b.value. Only one mapping with a← (11:00,3.50) and
b← (11:00,3.15) is able to do this. Therefore, the result
of this query contains only one entry: {((3,4), (4,5))}. We
remark that, if other measurements in these temporal prop-
erties yielded a valid mapping, the result would remain the
same since the union would eliminate the duplicate entry for
e1 and e2. If the measurements themselves were included,
then this would not happen.

4.2 Graph query language with time series

In this section, the GPML notation is extended with elements
to describe time series with time series patterns consisting of
measurement patterns. Important is that, in a time series pat-
tern, two consecutive measurement patterns indicate that the
measurements matched need to fulfil the next() relationship.
We start with an introduction of the existing GPML nota-
tion of queries. These express graph patterns matching nodes
and edges. The ability to express temporal properties in these
nodes and edges is added by us in the subsequent subsection.
First, the syntax of a measurement pattern is described. Af-
terwards, we demonstrate how these can be combined into
a time series pattern, and finally, these time series patterns
are linked with existing GPML notation. When all these el-
ements are described, then we will discuss a set of example
queries that demonstrate the use of the newly developed no-
tation.

4.2.1 GPML introduction

To recap, we will first show some important notations of
GPML. We refer to Deutsch et al. (2022) for a complete de-
scription of the notation. A pattern in GPML describes the
structure to which sub-graphs need to adhere to be consid-
ered a match. Additional information, such as properties and
labels, involves constraints added to the pattern.

A node is described by a set of round brackets, a pos-
sible name, and a label within the brackets separated by a
colon. Property constraints can be expressed after the WHERE
clause. The property key is written, followed by a constant
or variable that constrains the property value. This is demon-
strated in the following example.

(a:point WHERE name = 'N1');

The pattern describes a node with label point and a prop-
erty name that needs to have the value N1. Each node that
matches the pattern is assigned to the variable a. We remark
that a represents one node match at a time.

An edge is represented by two square brackets and an ar-
row. The pattern can contain a label, an edge type, a variable
name, and properties. The notation for these three elements
is exactly the same as for node patterns.

()-[b:path WHERE name = 'E3']->();

In this example, an edge is described with a type path, and
it must have a property name, which should be equal to E3.
The direction of the edge is indicated by the arrow to the
right. The two () patterns describe the existence of a node
with no additional requirements, but any valid node pattern
is allowed. Similar to the empty nodes, the most basic edge
pattern between two nodes is -[]-, which only requires the
existence of an edge with no additional constraints. Together
with two blank nodes, ()-[]-(), the pattern would pro-
duce all matches of two nodes with an edge between them.
An edge can be matched zero or multiple times by using the
Kleene star or one of the other repetition notations.

Finally, a query consists of node and edge patterns, pre-
ceded by the keyword MATCH and followed by an optional
keyword WHERE, after which additional constraints can be
written using the variables that are used in the node and edge
patterns.

4.2.2 Measurement pattern

We consider a measurement a timestamp–value pair.
A measurement pattern <m> describes a measurement,
where m.timestamp represents the timestamp compo-
nent and m.value the value component. For example,
if m is matched to (2022-08-15T13:00,17), then
m.timestamp = 2022-08-15T13:00 and m.value
= 17.

4.2.3 Time series pattern

A time series consists of one or multiple measurements with
an order on their timestamp. Therefore, a time series pattern
is one or multiple measurement patterns that describe a sub-
set of the time series together. Two concatenated measure-
ment patterns express two measurements for which the next
predicate holds. This means that for the pattern <m><n> and
series s, next(n,m,s) is true (or previous(m,n,s)).

In GPML, some quantifiers allow patterns to be repeated.
The Kleene star is the most generic but is accompanied
by three additional quantifiers. These quantifiers can be
used in the time series patterns. However, the meaning is
slightly different. Between two measurements, m and n, an
additional, anonymous measurement can be matched if the
Kleene star precedes the second measurement pattern: for
example, <m>*<n>. The repetition can be limited by a min-
imum *{a,} – that is, the pattern has to occur at least a
times – or by a range *{a,b}, in which case the pattern has
to occur at least a times and not more than b times. The last
quantifier is +, which is equal to *{1,}.

4.2.4 Time series patterns as temporal properties

Finally, all we have to show is how the time series patterns
are linked to node and edge patterns. The same notation as

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 363

for the static properties is used to link the time series pat-
terns to a graph pattern. To express a temporal property of a
node or edge, a time series pattern needs to be added to the
node or edge properties, together with the name of the tem-
poral property. This is expressed by writing, after the WHERE
keyword, the temporal property key, then an equals sign, fol-
lowed by a time series pattern. To differentiate the static and
temporal properties, both groups are separated by the key-
word SERIES, and we will always place the static properties
first.

4.2.5 Examples

The following are queries for the running example, given in
Example 3.1 and shown in Fig. 1.

Example 4.3. In this example, the query’s result is the tem-
perature at 14:00 in a node with the name N6. The corre-
sponding pattern matches the node with name equal to N6
and a water-level property, which is a temporal prop-
erty, with one measurement pattern x. The timestamp of mea-
surement x needs to be equal to 2022-08-15T14:00.

MATCH (n:point WHERE name = "N6"
SERIES water-level = <x>)

WHERE x.timestamp = "2022-08-15T14:00";

There is only one match in the example graph – that is, node
6 with the value 19 at 14:00.

Example 4.4. In this second example, two different nodes
are matched, requiring both to have a temporal property
water-level, in which a measurement with the same
value at the same time exists.

MATCH (n:point WHERE SERIES water-level
= <a>),
(m:point WHERE SERIES water-level
=)

WHERE a.value = b.value
AND a.timestamp = b.timestamp
AND NOT n = m;

In the example graph, this query will produce eight matches:
one where n maps to node 1 and m maps to node 3 and
where the value is 14 at 10:00 and 11:00. There is also
one where m is mapped to 5 for 10:00 and 11:00 with a
value of 14. There is another one with n→ 3 and m→ 5 at
10:00 and 11:00 the value 14. The last match is for nodes
2 and 5, with a value of 15 at 12:00 and 13:00.

We remark that there are 16 matches. The same match can
be made for each match given with the nodes reversed for n
and m. These eight additional matches are not shown. This
query can prevent double results by requiring the ID of node
n to be smaller than that of node m.

Example 4.5. The following example focuses on variable
length paths and the variable-length time series patterns.

MATCH (n:point WHERE name = "N7" SERIES
water-level = <a>)

<-[:path+]-(m:point WHERE SERIES
water-level = *<c>

WHERE a.timestamp = "2022-08-15T15:00"
AND a.timestamp = c.timestamp
AND b.value >= a.value;

The query should match all nodes upstream of node 7 that
contain a temporal property water-level, wherein a mea-
surement exists that occurred before 15:00 and where the
value of that measurement is higher than the value in node
7 at 15:00. Valid matches are where m is equal to node
6 and where measurement b is assigned to (14:00,19),
(13:00, 18), (11:00, 18), or (10:00, 18). We
remark that the measurement of 15:00 in node 6 is not
matched because the previous() predicate still needs to be
true for measurements b and c. Similarly, node 7 is not
matched with n and m because + is used in the edge pattern,
which means the edge should occur at least once.

The temporal properties are treated at the same level
as static properties, nodes, and edges.2 This means the
dependency between temporal and static properties can be
expressed within one query. The following example depicts
a situation where node or edge properties determine the time
a temporal property needs to be constrained.

Example 4.6. In this example, the query matches measure-
ments based on values that occurred earlier in the path we
want to match. The time that the travel-time series are
matched depends on the measurements in the node. Further,
down the path, it again depends on the previous matches.3

MATCH (a:point WHERE SERIES water-level
=<m1>)

-[x:path WHERE SERIES travel-time
=<t1>]->(b:point WHERE SERIES
water-level=<m2>)

-[y:path WHERE SERIES travel-time
=<t2>]->(c:point WHERE SERIES
water-level=<m3>)

WHERE t1.value > threshold
AND t1.time = m1.time
AND m2.time = m1.time + t1.value
AND t2.time = m2.time
AND m3.time = m2.time + t2.value;

Extending this example to include static properties in the
constraints is possible. This could be, for example, when only
the speed is given, and the length of the edge is needed to cal-
culate the travel time. We want to remark that taking the sum
of two values is not described in the logic, nor are other oper-
ations on values. We assume they can be used as long as the
result is again a valid value. For example, in current Cypher
implementations, such operations do exist.

2We refer to Sect. 5 that shows an equivalence between temporal
properties and nodes and edges in the graph.

3There is more to be said about the equality of time stamps in
time series. One cannot easily assume that the exact same timestamp
is present in two different time series. However, for now, this is
assumed.

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

364 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

Compared to procedures implemented in a query language
or methods implemented using drivers for the databases, the
method presented here gives more possibilities for writing
constraints. In addition, early pruning of the graph or time
series matching is now possible. If they are treated separately,
the graph part needs to be retrieved first, and subsequently,
the time series need to be queried, or vice versa. This does
not provide the same flexibility as our method.

5 Implementation

To demonstrate the idea in practice, we developed a database
system that can store graphs as defined in Definition 3.1 and
query it with our proposed query language. Based on the ad-
ditions described in Sect. 4.2, an existing query language is
extended to facilitate queries considering the new temporal
properties. We chose to realise this with the Neo4j database.
It is well-established in practice and provides a good founda-
tion. The open-source query parser from OpenCypher, used
in Neo4j, provides a suitable starting place for the query lan-
guage implementation. Adding other functionalities to Neo4j
is possible by using user-defined functions and procedures.

5.1 Storing in practice

There are different options to store the actual time series in
the graph database. The storage approach is indifferent of
the model presented earlier but usually supports either effi-
cient storage or easier querying. In this work, we use the con-
cept of a full-graph-based approach. That is, to store the time
series in the graph database, we use the concept of the full
graph model. This means the graph database is used to store
the network’s topology and time series. The latter are repre-
sented as linked lists of nodes in the graph. For each mea-
surement, a node containing the timestamp and value of the
measurement is created. These measurements can be linked
by edges, connecting all measurements in the temporal order.
This means that for each time series, there is a linked list of
nodes where each node is a measurement. A head time series
node is added to these lists when the time series is linked to a
node (of the spatial part). This way, the node of the topology
and the head nodes can be linked by a specially typed edge.
For edges, this is not possible. There, a similar link can be es-
tablished by adding a unique ID in the head node of the time
series and the static properties of the edge. This would also
be possible for nodes, leading to a more consistent design.
But we determined that it would impact the query perfor-
mance, although future research has to verify this. We chose
to link the oldest measurement as the first measurement to
the head node. This means the latest measurement is stored
at the end of the linked list. We selected this approach be-
cause, this way, the order of measurements described in the
queries corresponds to the order in which they are matched.
It could be interesting to store the most recent measurement

first because users might be more interested in recent mea-
surements. Of course, the full graph model has a noticeable
impact on the total number of nodes and edges stored, as
we will show. However, practical experiments have not yet
shown any limitations.

5.2 Querying in practice

A new query parser was implemented using Antlr (https:
//www.antlr.org, last access: 20 November 2024) to imple-
ment the query language. This parser can parse the graph
query language with time series and translate the queries
into standard Cypher. This is possible because time series
and measurement patterns are actual graph patterns. Specifi-
cally, it is possible to translate each measurement pattern into
a node pattern and a time series pattern into a path pattern.
These translated patterns can be joined with the pattern for
the topology in one query, which can be evaluated by the de-
fault query engine of Neo4j. This query translator is imple-
mented with a Spring Boot server that takes a query, sends
the translation to the Neo4j database, and returns the result.
The user can interact with this system using a web interface
implemented using React.

Our grammar for the query language is based on the G4
Cypher grammar. The original grammar specification can be
found on the OpenCypher Git repository.4 The grammar de-
scribes valid measurement and time series patterns by adding
the following rules.

We first define the grammar describing a measurement it-
self. Therefore, a MeasurementPattern is defined and it
exists out of the two arrow heads with a variable in between.
The following grammar rule already provides the possibility
for the implementation to explicitly mention the timestamp
or value directly in the measurement patterns in the case of an
equality. For example, <2023-10-20,50> equals a mea-
surement on 20 October 2023 and a value of 50.

oC_MeasurementPattern :
oC_RangeLiteral?
oC_LeftArrowHead SP?
(oC_Variable | (oC_Expression SP?
',' SP? oC_Expression))
SP? oC_RightArrowHead ;

We remark that there is also a range literal that may oc-
cur in front of a measurement. This is useful for describing
two measurements where one or multiple measurements may
occur in between, as we discussed earlier.

The next three elements are all grammar rules we need to
describe a series pattern including the name and measure-
ment patterns.

oC_SeriesPatterns :
SERIES SP oC_SeriesPattern SP? (','

4It was deleted on 17 October 2022 (commit 38b5e39). We use
the version available on the repository on 27 July 2022.

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

https://www.antlr.org
https://www.antlr.org

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 365

SP? oC_SeriesPattern)* ;

oC_SeriesPattern :
oC_PropertyKeyName SP? ':' SP?
oC_MeasurementPattern+ ;

SERIES :
('S' | 's') ('E' | 'e')
('R' | 'r') ('I' | 'i')
('E' | 'e') ('S' | 's') ;

A series pattern consists of a name for the series followed
by a colon and at least one measurement pattern. We intro-
duce a new rule, SeriesPatterns, that allows the user to
describe different series patterns separated by a comma. In
order to differentiate the temporal properties from the static
properties we use the SERIES keyword for which a separate
definition rule is used.

To link these series patterns to the existing property pat-
terns, only the rule expressing the mapping for properties
needs to be updated to include the time series pattern.

oC_MapLiteral:
'{' SP?
(oC_PropertyKeyName SP? ':' SP?
oC_Expression SP?
(',' SP? oC_PropertyKeyName SP? ':'
SP? oC_Expression SP?)*)?
(oC_SeriesPatterns)?'}' ;

Compared to the description with GPML, the properties
of nodes and edges are not expressed after a WHERE clause
but are enclosed in curly brackets. In addition, equals signs
linking property keys and property values (for static and tem-
poral properties) are replaced by a colon. This nicely demon-
strates that the description of our query language with GPML
is easily implemented in any GPML-based query language.
We want to remark that, recently, a new specification ver-
sion was made available, and our changes are not yet com-
patible with this new version. Our full grammar specifica-
tion is available on OSF (https://osf.io/j9cn5/, last access:
20 November 2024).

5.3 Experiment

This section focuses on implementing the proposed theory
and testing its feasibility. An experiment was conducted to
study water quality measurements in the Internet of Water
project as a proof of concept. In this section, the tests are
designed to determine whether domain experts can express
their questions in the newly designed system. A benchmark
or performance study is not yet included, but we do report
some performance statistics to give some context.

In Flanders, the Internet of Water (IoW) project (https:
//www.internetofwater.be/wat-is-internet-of-water/, last ac-
cess: 20 November 2024) aims to enhance monitoring and

governance of the Flemish waterways. Hundreds of sensors
are deployed and monitored along the Flemish rivers. The
sensor data are made available on the data platform of the
Flemish environmental agency, which is one of the part-
ners in the project. VITO (Flemish Institute for Technolog-
ical Research) contributes to the project by analysing the
data (Pagán et al., 2020) to answer questions such as the fol-
lowing: what is the salinity at any possible part of the river?
What is the current drought status of a river? These ques-
tions are important to scientists and managers since climate
change leads to more extreme meteorological weather phe-
nomena. These situations affect water supply and water qual-
ity, for example, due to the influence of the salty sea on rivers,
which can contaminate the drinking water and surrounding
land area (Gobin, 2012).

In this set-up, we study the Yser river west of Flanders,
depicted in Fig. 2. It is a region prone to salt intrusion be-
cause it is close to the sea. In dry periods, salty seawater will
push land inwards along the river and intrude via groundwa-
ter (Desmet and Bauwel, 2023). For this reason, 42 electrical
conductivity (EC) and water temperature (WT) sensors have
been placed on the river, and we use the resulting measure-
ments to pose typical questions.

To model the river, we use the Vlaamse Hydrographic At-
las (VHA), a digital GIS data set representing all rivers in
Flanders. In this data set, the rivers consist of smaller river
segments, represented as line geometries. Sensors are at-
tributed to segments, and because the researchers are inter-
ested in studying the river per segment, we chose to model
each segment as a node in the graph. If water flows from
one segment to another, the two nodes, representing those
two segments, are connected by an edge indicating the wa-
ter flow. In total, there are 534 segments in this use case.
The graph thus contains 534 nodes, and they are connected
by 541 edges. Distributed over this network are 42 sensors,
each producing EC25 measurements every 15 min.5 From
now on, when values of the measurements are shown, they
are in micro-Siemens per centimetre, µS cm−1. We selected
the data between 1 January 2022 and 1 May 2022. One time
series has 4 months of data with a resolution of 15 min, which
results in 11 520 measurements per sensor. However, since it
is real life and some measurements are missing, not all series
have so many measurements. With the measurements added,
the database using the full graph model consists of 395 074
nodes. This results in Neo4j (version 4.2.3) in 53 MB of disk
space usage. Details are included in Table 1.

Before we discuss the queries in detail, some additional
information about the use case is needed. Most of the sen-
sors in the Internet of Water are numbered and named: for
example, IOW1 for Internet of Water sensor number 1. Some
sensors have slightly different names because they already

5http://Waterinfo.be (last access: 20 November 2024) already
takes into account the water temperature when providing the EC25
values.

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

https://osf.io/j9cn5/
https://www.internetofwater.be/wat-is-internet-of-water/
https://www.internetofwater.be/wat-is-internet-of-water/
http://Waterinfo.be

366 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

Figure 2. Overview of the Yser river in the west of Belgium. Only
a subset of the stations is shown. There are more stations in the data
set, but they are not drawn to reduce clutter.

Table 1. Disk usage of the Neo4j database for the Yser data.

Node storage Edge storage Property storage Total storage

5.93 MB 13.49 MB 32.53 MB 53.04 MB

existed before the project. This name can be used to iden-
tify the series of the sensor in the graph uniquely. Our im-
plementation allows users to add labels to the series, as is
possible for nodes and edges. For this use case, all series are
EC25 measurements, so we assign the label “ec25” to each
series. To identify a series by name or label, the following
notation is used: name:label:pattern. For example,
IOW1:ec25:<a> is the pattern for a series with the name
IOW1 and the label ec25. Similarly, we can use the pattern
IOW1::<a> for the series with the name IOW1 and no label
requirements or :ec25:<a> for a series that has the label

ec25 with no name requirements. This addition is not yet de-
scribed or defined in our proposed logic but is implemented
in the proof of concept. We will study the data by posing dif-
ferent questions that researchers within the Internet of Water
project pose. These queries will be increasingly complex.

Query 1. Every segment is uniquely identified with the
vhas number (the ID of the segment). In this first query, we
are going to look up the location of a sensor by querying for
the vhas of the segment. The DISTINCT keyword ensures
that only one row is returned. Because every measurement in
the series can be matched with the pattern, the query without
DISTINCT would return as many rows as measurements in
the series. The result of this query is one record containing
the value 6033646 for n.vhas.

MATCH (n:segment {SERIES IOW1:ec25:
<a>}) RETURN DISTINCT n.vhas;

Query 2. The second example query is a typical ques-
tion where the value of a specific moment and location is
requested. In this case, the value of the IOW1 sensor at mid-
night on 30 March.

MATCH (n:segment {SERIES IOW1::<a>})
WHERE a.timestamp = datetime("2022-
03-30T00:00:00+0000")
RETURN a.value;

The value – that is, a.value – is 1230 for the series of
IOW1 at the specified timestamp. The result of the query con-
tains only one record because there is only one match in the
graph for this pattern.

Query 3. With this example, we show how a label can
access a series with a specific type. The names or locations
might be unknown, but the series type is known. Here, we
want to access EC measurements and see their values on
30 March at midnight. The results are shown in Table 2,
where, next to the value, the vhas of the segment is returned
where the series is on. In total 36 records are returned, but
we truncated the table for readability reasons.

MATCH (n:segment {SERIES :ec25:<a>})
WHERE a.timestamp = datetime("2022-
03-30T00:00:00+0000")
RETURN n.vhas, a.value;

Query 4. This query demonstrates a more advanced series
pattern. Because consecutive measurement patterns match
consecutive measurements in the series, it is possible to de-
scribe a peak. A peak is described as three measurements a,
b, and c, where the value of b is higher than the value of a
and c.

MATCH (n:segment {SERIES IOW1:ec25:
<a><c>})
WHERE a.value < b.value AND c.value

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 367

Table 2. Result table containing the first 10 records from the answer
to Query 3.

n.vhas a.value

6042697 7441.90
6018926 2899.00
6033571 777.16
6021226 3705.00
6021185 1470.00
6033487 751.89
7073733 2388.43
6033467 10362.00
6033467 7842.00
6033615 8597.00
.

Table 3. Five first records retrieved by Query 4 showing five peak
values in sensor IOW1.

b.timestamp b.value

2022-01-01T01:00:00Z 536.72
2022-01-01T02:00:00Z 536.17
2022-01-01T06:30:00Z 557.84
2022-01-01T07:30:00Z 557.15
2022-01-01T11:15:00Z 550.97

< b.value
RETURN DISTINCT b.timestamp, b.value
LIMIT 5;

The result of this query, where only the first five matches
are returned, is shown in Table 3. With each peak, we also
return the timestamp of measurement b to see when the
peak occurred. Although this query matches many small lo-
cal peaks, it demonstrates the declarative power of time se-
ries patterns. More advanced peak descriptions can be built
to find peaks of interest more precisely.

Query 5. This query demonstrates how surpassing a
threshold in a series can be identified. Such a query inter-
ests scientists who, for example, want to find river pollution
spills. They know that the EC value would pass a threshold
in the event of a spill, but they do not know if and where this
happens. The following query matches measurements pass-
ing a threshold and returns where and when this occurred.

MATCH (n:segment {SERIES :ec25:<a>})
WHERE a.value > 90000
RETURN n.vhas, a.timestamp, a.value;

The database returns one record: ("6033602",
2022-02-22T11:45Z, 99999.0). The vhas indi-
cates on which segment in the river the spill would happen,
the timestamp of the measurements indicates the time of the
event, and we added the measured EC value. This type of
query can also be used to set up data validation or find faulty

Table 4. Records showing the average moving window returned by
Query 6.

a.timestamp (a.value + b.value + c.value +
d.value + e.value) / 5

2022-01-01T00:00:00Z 537.16
2022-01-01T00:15:00Z 536.79
2022-01-01T00:30:00Z 536.53
2022-01-01T00:45:00Z 536.31
2022-01-01T01:00:00Z 536.20
2022-01-01T01:15:00Z 536.09
2022-01-01T01:30:00Z 536.10
2022-01-01T01:45:00Z 536.35
2022-01-01T02:00:00Z 536.69
2022-01-01T02:15:00Z 537.12
2022-01-01T02:30:00Z 537.57
2022-01-01T02:45:00Z 538.22
2022-01-01T03:00:00Z 539.80
2022-01-01T03:15:00Z 541.69
2022-01-01T03:30:00Z 543.76
2022-01-01T03:45:00Z 546.06

measurements. Likely, this result could be a positive match
as a faulty measurement since it is exceptionally high.

Query 6. The values of the measurements can be used to
derive analytical results. In this case, the query retrieves a
series at a specific location and calculates a moving average
window. Every possible pattern match is returned as a record,
and each record selects five consecutive measurements.

MATCH (n:segment {SERIES IOW1:ec25:
<a><c><d><e>})
WHERE a.timestamp < datetime("2022-
01-01T04:00:00+0000")
RETURN a.timestamp, (a.value+b.value
+c.value+d.value+e.value)/5;

The results in Table 4 show the moving average for sensor
IOW1 during the first 4 h of 01 January.

Query 7. Using more advanced graph patterns is useful to
describe network structures where the location might be un-
known. As this query shows, it looks for a path between two
given locations in the network and retrieves the value mea-
sured on 30 March at midnight along possible paths. Specifi-
cally, the query looks for each ec25-labelled series on a pos-
sible path between segment 6031906 and segment 6033656.

MATCH (:segment {vhas: "6031906"})
-[:flowsto*]->

(n:segment {SERIES :ec25:<a>})
-[:flowsto*]->

(:segment{vhas: "6033656"})
WHERE a.timestamp = datetime("2022-
03-30T00:00:00+0000")
RETURN n.vhas, a.value;

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

368 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

The database returns the information that at this point in
time, there is a path with a series on segment 6042697, and
the value there at this point in time is 7441.90.

Query 8. In the IoW project, the water team of VITO es-
tablished different use cases and models to analyse the Yser
river and its water quality. One of the results is the IGOR
tool (Desmet and Bauwel, 2023), which is used to analyse
electrical conductivity on the Yser river. IGOR provides the
ability to interpolate the sensor’s measurements for any given
location on the river. This interpolation query is the final
analysis step to demonstrate and test the database in this con-
text. In the graph, it should be possible to do the same inter-
polation for any location. Locations in the graphs are consid-
ered to be the nodes, and the nodes correspond to segments.
This would mean the interpolation can be done for each seg-
ment, with or without a sensor. This matches the closest sen-
sor upstream and downstream of the specified location. Sub-
sequently, it interpolates the values for all the provided points
in time linearly to the distance between the sensors and the
location. This means that, for a given location, the entire time
series is interpolated as long as both sensors have a value for
the same moment in time.

MATCH up_path = (up:segment {SERIES
IOW19:ec25:<x>})-[:flowsto*]
->(i:segment {id:"14674"}),

down_path = (i:segment
{id:"14674"})-[:flowsto]->
(down:segment {SERIES
IMC_910040:ec25:<y>})

WHERE x.timestamp = y.timestamp
WITH *, REDUCE(s = 0, seg IN

nodes(up_path) | s + seg.length)
as up_distance,
REDUCE(s = 0, seg IN
nodes(down_path) | s
+ seg.length) as down_distance

RETURN x.timestamp,
(x.value*(1-(up_distance/
(up_distance+down_distance))))
+ (y.value*(1-(down_distance/
(up_distance+down_distance))))

The system’s power lies in the fact that the sensors do not
need to be known. With an additional subquery, the closest
sensors can be determined. The first MATCH part is the sub-
query that first explores the shortest path to a sensor and cal-
culates the distance to the sensors using two WITH clauses.
This step must be separated from the rest because taking the
minimum of a group of matches is impossible if other fields
are used. Using other fields with aggregation functions re-
sults in “group-by” clauses, similar to SQL. To prevent this,
the minimum is determined in the subquery. These minimum
distances are subsequently used in the second MATCH query
to look up the series values and interpolate the EC values.
The second part is the same query as before, except that no

sensor name is used, and instead, the distance of the matched
sensor is compared to the minimum distance obtained in the
first part.

MATCH up_path = (up:segment {SERIES
:ec25:<x>})-[:flowsto*]->
(i:segment {id: "14674"}),

down_path = (i)-[:flowsto*]->
(down:segment {SERIES :ec25:<y>})

WITH REDUCE(s = 0, seg IN nodes(up_path)
| s + seg.length) as up_distance,

REDUCE(s = 0, seg IN nodes(down_path)
| s + seg.length) as down_distance

WITH min(up_distance) as up_min,
min(down_distance) as down_min

MATCH up_path = (up:segment {SERIES
:ec25:<x>})-[:flowsto*]->
(i:segment {id:"14674"}),

down_path = (i)-[:flowsto*]->
(down:segment {SERIES
:ec25:<y>}),

WHERE x.timestamp = y.timestamp
WITH *,

REDUCE(s = 0, seg IN nodes(up_path)
| s + seg.length) as up_distance,
REDUCE(s = 0, seg IN nodes(down_path)
| s + seg.length) as down_distance

WHERE up_distance = up_min AND
down_distance = down_min

RETURN i.id, x.timestamp, x.value, y.value,
(x.value*(1-(up_distance/(up_distance
+down_distance))))
+ (y.value*(1-(down_distance/
(up_distance+down_distance))))
as inter;

For the evaluation, the interpolation is executed for seg-
ment 14674 with all values available from 1 until 5 Jan-
uary. The sensor IOW18 is located on this segment, meaning
all interpolated values can be compared to actual measured
values. The root mean square error can be determined from
this, which is 44.61. With values in the range of 450 to 675,
this error is less than 10 %. Considering that the sensors have
an error margin of up to 10 % for the measured EC values,
this result can be considered good. However, the interpola-
tion performance is not the goal of this paper. The main take-
away of this use case is that the proposed system can aid in
solving relevant questions for transportation networks. This
is what we considered to be proven by being able to fulfil the
same work as a dedicated programmed tool such as IGOR.

6 Discussion

We acknowledge that it is possible to use existing temporal
graphs to model and query transportation networks. There is
work from Kuijpers et al. (2022) that models property graphs
with categorical properties through time. Here, we explicitly
want to model time series, possibly with a high resolution,
and we want to emphasise that the network is stable, whereas
the properties can take on many values through time. In ad-
dition, our approach exploits the fact that time series have a
natural order and uses this in graph pattern expressions. We

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 369

discussed the advantages of our query language compared to
the procedures defined in addition to the existing query lan-
guage. Nonetheless, procedures might need to be written be-
cause not everything is expressible in the proposed query lan-
guage. That is, expressing constraints on each pair of nodes
in a path where the path length is unbounded or expressing
constraints on each pair of measurements where the number
of measurements is unbounded is impossible.

The usage of labels in the experiment is a useful feature
that was possible because the full graph model is used in
the implementation. The implementation allows the labels
of nodes to be used as labels for the time series. However,
this use of labels for time series properties is not fully ex-
plored and defined. This should be realised in future steps to
standardise the working, independent of the implementation
method.

For each topology pattern, multiple measurement patterns
can be valid in a time series. The number of matches in the
end result is the sum of all valid patterns in the time series
for each valid spatial pattern. At most, each measurement is
a valid match for a time series pattern, and then the number
of topological matches needs to be multiplied by the number
of measurements in the relevant time series. This can impact
the efficiency. Based on the model and logic presented here,
this can now be studied more formally.

At the time of writing, the system is being demonstrated to
and evaluated by expert researchers in hydrology and energy
fields to evaluate the performance further and identify addi-
tional functionality. Therefore, the experiment shown should
be seen as a proof of concept. A performance analysis or
benchmark is not conducted because the current implemen-
tation is not mature enough, and such a study would lead to
false results. For example, the current translated queries rely
on the transitive closure computation (the “*” operator) in
Neo4j. However, earlier research has shown that this operator
cannot handle path queries with unbound length as efficiently
as other functions (Bollen et al., 2021). However, we would
like to indicate the usability based on this proof of concept.
The database Neo4j (version 4.2.3) was deployed on a server
with Ubuntu 20.04, a two-core system (Intel Xeon Gold 6136
CPU at 3.00 GHz) with 16 GB of memory. Queries 1 to 7 ran
and retrieved results between 399 ms and 299 s (299 358 ms),
including transferring the records over the network to the lo-
cal computer. Also, 1 min query times occurred for queries
3, 7, and 8. The translation of the queries from our language
to full Cypher was performed between 5 and 382 ms. Again,
we want to stress that all these results merely indicate the
current state. The implementation is focused on functionality
and not performance-oriented, nor are the timings conducted
repeatedly. An objective study needs to be conducted to val-
idate the performance of an implementation that exhibits a
higher level of technological readiness.

7 Conclusions

Transportation networks are a recurrent research topic and
can be modelled using property graphs. With the rise of the
Internet of Things, measuring the status of the networks has
become easier and the data volume has increased in terms of
the number of sensors and resolution of the measurements.
These sensors produce time series that, ideally, should be
included in the property graphs. Temporal graphs focus on
nodes and edges being valid at a certain time. In contrast,
transportation networks rarely change their topology, but the
measurements are properties of nodes or edges, where the
values change through time. Graph databases also exist for
storing property graphs, as do time series databases to store
the measurements, but a combination, exploiting the char-
acteristics, is missing. In this work, a property graph model
with time series is proposed to provide a basic model. This
model considers time series on nodes and edges together with
the traditional properties as first-class citizens. The model is
accompanied by a query language logic, exploiting the natu-
ral order in time of the measurements, to describe graph pat-
terns that can be matched. In addition, the paper shows how
this logic can be realised in graph query languages based on
the Graph Pattern Matching Language (GPML). This all to-
gether creates property graphs with time series and leads to
a tool set for querying transportation networks or transform-
ing them for more advanced processing. For the first time,
it is possible to express patterns where there are constraints
that take into account nodes, edges, properties, and measure-
ments of time series – that is, timestamp and value pairs – at
the same time. These can all depend on each other, provid-
ing the possibility to search and evaluate graphs on all these
constraints at the same time. There is more work needed to
formally study these graphs with respect to complexity and
evaluation, as the increased data size might impact the query
evaluation. However, there are also possibilities to exploit op-
timisations. For example, the new constraints can prune path
searches earlier, or path searches can be limit the number of
time series that need to be processed. The next step is to re-
alise all this in practice by implementing the property graphs
with time series in an actual database and providing the pro-
posed query language together with a query engine that pro-
cesses the queries. With this theory, a first step is set to store,
process, and then also analyse transportation networks based
on property graphs with time series. This, in turn, can sup-
port research concerned with these networks such as river
networks, electricity networks, and heat networks, amongst
others.

Data availability. The sensor data used in this paper are owned by
the Flemish Environmental Agency and made available at https:
//www.waterinfo.be (last access: 20 November 2024). The source
network structure data are free and publicly accessible on the web-
site of the Flemish Government at https://download.vlaanderen.be

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

https://www.waterinfo.be
https://www.waterinfo.be
https://download.vlaanderen.be

370 E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases

(last access: 20 November 2024). A processed version of these
two data sets, as used in the Experiment section, can be found
as a Neo4J database dump on OSF with the following DOI:
https://doi.org/10.17605/OSF.IO/J9CN5 (Bollen, 2023).

Author contributions. All authors contributed equally to this pa-
per’s conceptualisation and writing (review and editing). Erik
Bollen did the investigation, software visualisation, and writing
(original draft preparation). All of this is under the supervision of
Rik Hendrix and Bart Kuijpers. All authors have read and agreed to
the published version of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors would like to thank Alejandro
Vaisman and Valeria Soliani for fruitful discussions on property
graphs with time series data.

Review statement. This paper was edited by Fernando Nardi and
reviewed by Maxim V. Philippov and one anonymous referee.

References

Abiteboul, S. and Vianu, V.: Regular Path Queries
with Constraints, J. Comput. Syst. Sci., 58, 428–452,
https://doi.org/10.1006/jcss.1999.1627, 1999.

Angles, R.: The Property Graph Database Model, in: Proceed-
ings of the 12th Alberto Mendelzon International Workshop
on Foundations of Data Management, Cali, Colombia, 21–
25 May 2018, vol. 2100 of CEUR Workshop Proceedings, 1–
10, https://CEUR-WS.org (last access: 20 November 2024), Cali,
Colombia, 2018.

Angles, R. and Gutiérrez, C.: Survey of graph database models,
ACM Comput. Surv., 40, 1:1–1:39, 2008.

Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter,
J., and Vrgoč, D.: Foundations of Modern Query Lan-
guages for Graph Databases, ACM Comput. Surv., 50, 1–40,
https://doi.org/10.1145/3104031, 2017.

Backofen, R.: Regular path expressions in feature logic, in: Rewrit-
ing Techniques and Applications, edited by: Kirchner, C., 121–
135, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-
3-662-21551-7, 1993.

Barceló Baeza, P.: Querying Graph Databases, in: Proceedings
of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, PODS ’13, 175–188, As-
sociation for Computing Machinery, New York, NY, USA,
https://doi.org/10.1145/2463664.2465216, 2013.

Bollen, E.: 2023_Extending-Property-Graphs-with-Time-
Series_artifacts, https://doi.org/10.17605/OSF.IO/J9CN5,
2023.

Bollen, E.: Querying Sensor Networks Using Temporal Property
Graphs, in: New Trends in Database and Information Systems
– ADBIS 2022, Turin, Italy, September 5-8, 2022, Proceedings,
edited by: Chiusano, S., Cerquitelli, T., Wrembel, R., Nørvåg,
K., Catania, B., Vargas-Solar, G., and Zumpano, E., vol. 1652
of Communications in Computer and Information Science, 607–
614, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-
031-15743-1_55, 2022.

Bollen, E., Hendrix, R., Kuijpers, B., and Vaisman, A. A.: Towards
the Internet of Water: Using graph databases for hydrological
analysis on the Flemish river system, Trans. GIS, 25, 2907–2938,
https://doi.org/10.1111/TGIS.12801, 2021.

Bollen, E., Hendrix, R., Kuijpers, B., Soliani, V., and Vaisman,
A. A.: Analysing River Systems with Time Series Data Using
Path Queries in Graph Databases, ISPRS Int. J. Geo Inf., 12, 94,
https://doi.org/10.3390/IJGI12030094, 2023.

Bonifati, A., Fletcher, G., Voigt, H., and Yakovets, N.: Query-
ing graphs, Synthesis Lectures on Data Management,
Morgan & Claypool Publishers, San Rafael, CA, USA,
https://doi.org/10.1007/978-3-031-01864-0, 2018.

Brouwers, J., Peeters, B., Van Steertegem, M., Van Lipzig, N.,
Wouters, H., Beullens, J., Demuzere, M., Willems, P., De Rid-
der, K., Maiheu, B., De Troch, R., Termonia, P., Vansteenkiste,
T., Craninx, M., Maetens, W., Defloor, W., and Cauwenberghs,
K.: MIRA Climate Report 2015, Tech. rep., VMM, Aalst, https://
researchportal.be/nl/publicatie/klimaatrapport-2015 (last access:
20 November 2024), 2015.

Cruz, I. F., Mendelzon, A. O., and Wood, P. T.: A Graph-
ical Query Language Supporting Recursion, in: Proceed-
ings of the 1987 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’87, 323–330, Asso-
ciation for Computing Machinery, New York, NY, USA,
https://doi.org/10.1145/38713.38749, 1987.

Debrouvier, A., Parodi, E., Perazzo, M., Soliani, V., and Vaisman,
A. A.: A model and query language for temporal graph databases,
VLDB J., 30, 825–858, 2021.

Desmet, N. and Bauwel, F. V.: Handleiding IGOR: Interpolatie
van Geleidbaarheidsmetingen Over een Rivier, VITO, Boeretang
200, 2400 Mol, Belgium, https://igor.marvin.vito.be/documents/
manual.pdf (last access: 20 November 2024) (in Dutch), 2023.

Deutsch, A., Francis, N., Green, A., Hare, K., Li, B., Libkin, L.,
Lindaaker, T., Marsault, V., Martens, W., Michels, J., Murlak,
F., Plantikow, S., Selmer, P., van Rest, O., Voigt, H., Vrgoč,
D., Wu, M., and Zemke, F.: Graph Pattern Matching in GQL
and SQL/PGQ, in: Proceedings of the 2022 International Con-
ference on Management of Data, SIGMOD ’22, 2246–2258,
Association for Computing Machinery, New York, NY, USA,
https://doi.org/10.1145/3514221.3526057, 2022.

Devienne, P. and Lebegue, P.: Weighted graphs : A tool for logic
programming, in: CAAP ’86, edited by: Franchi-Zannettacci, P.,
100–111, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN
978-3-540-39783-0, 1986.

Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024 https://doi.org/10.5194/gi-13-353-2024

https://doi.org/10.17605/OSF.IO/J9CN5
https://doi.org/10.1006/jcss.1999.1627
https://CEUR-WS.org
https://doi.org/10.1145/3104031
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.17605/OSF.IO/J9CN5
https://doi.org/10.1007/978-3-031-15743-1_55
https://doi.org/10.1007/978-3-031-15743-1_55
https://doi.org/10.1111/TGIS.12801
https://doi.org/10.3390/IJGI12030094
https://doi.org/10.1007/978-3-031-01864-0
https://researchportal.be/nl/publicatie/klimaatrapport-2015
https://researchportal.be/nl/publicatie/klimaatrapport-2015
https://doi.org/10.1145/38713.38749
https://igor.marvin.vito.be/documents/manual.pdf
https://igor.marvin.vito.be/documents/manual.pdf
https://doi.org/10.1145/3514221.3526057

E. Bollen et al.: Managing data of sensor-equipped transportation networks using graph databases 371

Francis, N., Gheerbrant, A., Guagliardo, P., Libkin, L., Marsault,
V., Martens, W., Murlak, F., Peterfreund, L., Rogova, A., and Vr-
goč, D.: GPC: A Pattern Calculus for Property Graphs, arXiv
[preprint], https://doi.org/10.48550/ARXIV.2210.16580, 2022.

Gamper, J. and Dignös, A.: Processing Temporal and Time Se-
ries Data: Present State and Future Challenges, in: Advances
in Databases and Information Systems, edited by: Darmont, J.,
Novikov, B., and Wrembel, R., 8–14, Springer International Pub-
lishing, Cham, ISBN 978-3-030-54832-2, 2020.

George, B. and Shekhar, S.: Time Aggregated Graphs, in: Encyclo-
pedia of Database Systems, Second Edition, edited by: Liu, L.
and Özsu, M. T., Springer, https://doi.org/10.1007/978-1-4614-
8265-9_5053, 2018.

Gilbert, T., Barr, S. L., James, P., Morley, J. G., and Ji, Q.: Software
Systems Approach to Multi-Scale GIS-BIM Utility Infrastruc-
ture Network Integration and Resource Flow Simulation, ISPRS
Int. J. Geo Inf., 7, 310, https://doi.org/10.3390/IJGI7080310,
2018.

Gobin, A.: Impact of heat and drought stress on arable crop produc-
tion in Belgium, Nat. Hazards Earth Syst. Sci., 12, 1911–1922,
https://doi.org/10.5194/nhess-12-1911-2012, 2012.

Hornsby, K. S. and King, K.: Modeling Motion Relations for Mov-
ing Objects on Road Networks, GeoInformatica, 12, 477–495,
https://doi.org/10.1007/S10707-007-0039-7, 2008.

Kuijpers, B., Soliani, V., and Vaisman, A. A.: Modeling and Query-
ing Sensor Networks Using Temporal Graph Databases, in:
New Trends in Database and Information Systems – ADBIS
2022, Turin, Italy, 5–8 September 2022, Proceedings, edited by:
Chiusano, S., Cerquitelli, T., Wrembel, R., Nørvåg, K., Cata-
nia, B., Vargas-Solar, G., and Zumpano, E., vol. 1652 of Com-
munications in Computer and Information Science, 222–231,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-031-
15743-1_21, 2022.

Libkin, L. and Vrgoč, D.: Regular Path Queries on Graphs
with Data, in: Proceedings of the 15th International
Conference on Database Theory, ICDT, 74–85, Associ-
ation for Computing Machinery, New York, NY, USA,
https://doi.org/10.1145/2274576.2274585, 2012.

Llusà Serra, A., Vila-Marta, S., and Escobet Canal, T.: Formalism
for a multiresolution time series database model, Inform. Syst.,
56, 19–35, https://doi.org/10.1016/j.is.2015.08.006, 2016.

McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlen-
hoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E.
C., Franz, T. E., Shi, J., Gao, H., and Wood, E. F.: The future
of Earth observation in hydrology, Hydrol. Earth Syst. Sci., 21,
3879–3914, https://doi.org/10.5194/hess-21-3879-2017, 2017.

Nittel, S.: Geosensor Networks, 705–708, Springer Interna-
tional Publishing, Cham, https://doi.org/10.1007/978-3-319-
17885-1_497, 2017.

Nolé, M. and Sartiani, C.: Regular Path Queries on Massive Graphs,
in: Proceedings of the 28th International Conference on Scien-
tific and Statistical Database Management, SSDBM ’16, 1–10,
Association for Computing Machinery, New York, NY, USA,
https://doi.org/10.1145/2949689.2949711, 2016.

Pagán, B., Desmet, N., Seuntjens, P., Bollen, E., and Kuijpers, B.:
Data driven methods for real time flood, drought and water qual-
ity monitoring: applications for Internet of Water, EGU Gen-
eral Assembly 2020, Online, 4–8 May 2020, EGU2020-9291,
https://doi.org/10.5194/egusphere-egu2020-9291, 2020.

Rodríguez-Alarcón, R. and Lozano, S.: Complex network mod-
eling of a river basin: an application to the Guadalquivir
River in Southern Spain, J. Hydroinform., 24, 559–573,
https://doi.org/10.2166/hydro.2022.148, 2022.

Rost, C., Gómez, K., Täschner, M., Fritzsche, P., Schons, L., Christ,
L., Adameit, T., Junghanns, M., and Rahm, E.: Distributed tem-
poral graph analytics with GRADOOP, VLDB J., 31, 375–401,
https://doi.org/10.1007/S00778-021-00667-4, 2022.

https://doi.org/10.5194/gi-13-353-2024 Geosci. Instrum. Method. Data Syst., 13, 353–371, 2024

https://doi.org/10.48550/ARXIV.2210.16580
https://doi.org/10.1007/978-1-4614-8265-9_5053
https://doi.org/10.1007/978-1-4614-8265-9_5053
https://doi.org/10.3390/IJGI7080310
https://doi.org/10.5194/nhess-12-1911-2012
https://doi.org/10.1007/S10707-007-0039-7
https://doi.org/10.1007/978-3-031-15743-1_21
https://doi.org/10.1007/978-3-031-15743-1_21
https://doi.org/10.1145/2274576.2274585
https://doi.org/10.1016/j.is.2015.08.006
https://doi.org/10.5194/hess-21-3879-2017
https://doi.org/10.1007/978-3-319-17885-1_497
https://doi.org/10.1007/978-3-319-17885-1_497
https://doi.org/10.1145/2949689.2949711
https://doi.org/10.5194/egusphere-egu2020-9291
https://doi.org/10.2166/hydro.2022.148
https://doi.org/10.1007/S00778-021-00667-4

	Abstract
	Introduction
	Existing work
	A data model for property graphs with time series
	A formal query language for property graphs with time series
	Extending regular property graph logic
	Syntax of GQL-TS logic
	Semantics of GQL-TS logic

	Graph query language with time series
	GPML introduction
	Measurement pattern
	Time series pattern
	Time series patterns as temporal properties
	Examples

	Implementation
	Storing in practice
	Querying in practice
	Experiment

	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

