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Abstract. Quantitative mapping of minerals in rock thin sec-
tions delivers data on mineral abundance, size, and spatial
arrangement that are useful for many geoscience and engi-
neering disciplines. Although automated methods for map-
ping mineralogy exist, these are often expensive, associated
with proprietary software, or require programming skills,
which limits their usage. Here we present a free, open-source
method for automated mineralogy mapping from energy-
dispersive spectroscopy (EDS) scans of rock thin sections.
This method uses a random forest (RF) machine-learning im-
age classification algorithm within the QGIS geographic in-
formation system and Orfeo ToolBox, which are both free
and open-source. To demonstrate the utility of this method,
we apply it to 14 rock thin sections from the well-studied
Rio Blanco tonalite lithology of Puerto Rico. Measurements
of mineral abundance inferred from our method compare fa-
vorably to previous measurements of mineral abundance in-
ferred from X-ray diffraction and point counts on thin sec-
tions. The model-generated mineral maps agree with inde-
pendent, manually delineated mineral maps at a mean rate of
95 %, with accuracies as high as 96 % for the most abundant
mineral (plagioclase) and as low as 72 % for the least abun-
dant mineral (apatite) in these samples. We show that the de-
fault random forest hyperparameters (i.e., tuneable settings
that control behavior) in Orfeo ToolBox yielded high accu-
racy in the model-generated mineral maps, and we demon-

strate how users can determine the sensitivity of the mineral
maps to hyperparameter values and input features. These re-
sults show that this method can be used to generate accurate
maps of major minerals in rock thin sections using entirely
free and open-source applications.

1 Introduction

Minerals are the fundamental units of rocks and many en-
gineered materials (Perkins, 2020; Callister and Rethwisch,
2020). Improving the quantification of mineral properties is
a long-standing research objective in industry and academic
research (Pirrie and Rollinson, 2011), given the importance
of mineral properties in chemical weathering (e.g., Hilton
and West, 2020), rock damage (e.g., Shen et al., 2019; Xu
et al., 2022), planetary evolution (e.g., Hazen et al., 2008),
crustal deformation (e.g., Burgmann and Dresen, 2008), and
nutrient supply (e.g., Callahan et al., 2022). Quantitative au-
tomated mineralogy, the computerized mapping of minerals
across a sample, results in measurements of mineral modal
abundance, mineral grain size and shape, and the spatial ar-
rangement of minerals amongst one another (Sutherland et
al., 1988; Sutherland and Gottlieb, 1991; Gu, 2003; Schulz
et al., 2020). Modal abundance is useful because it can yield
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information on the sedimentary and tectonic environments
in which the rock formed (Harlov et al., 1998; Hupp and
Donovan, 2018), while the spatial arrangement of minerals
in a rock, termed rock fabric, can yield further data on me-
chanical anisotropy and paleo-environmental conditions dur-
ing the rock’s formation and metamorphism (Přikryl, 2006;
Bjørlykke, 2014). Simultaneous quantification of modal min-
eralogy and detailed mapping of the spatial arrangement of
minerals in an automated manner, or automated mineralogy,
is thus a key tool for investigating many geologic processes.
Wide adoption of automated mineralogy techniques is lim-
ited by the prohibitive cost or programming skills required
to use many automated mineralogy software applications, so
this technique has mostly been restricted to ore characteriza-
tion, resource processing, and petroleum geology (Nikonow
and Rammlmair, 2017; Schulz et al., 2020).

In practice, automated mineralogy methods use a com-
bination of image analysis and classification methods to
identify minerals from elemental composition data (or their
derivatives), which can be collected with a variety of an-
alytical methods, including energy-dispersive X-ray spec-
troscopy (EDS), micro-X-ray fluorescence (µ-XRF), and
laser-induced breakdown spectroscopy (LIBS) (Nikonow et
al., 2019). Automated mineralogy is slowly being adopted
by researchers outside of resource extraction for combined
modal analysis of bulk mineralogy, estimates of grain size
distribution, and mineral association (Han et al., 2022),
which can be useful in a variety of disciplines such as petrol-
ogy, applied geochemistry, and rock mechanics (Sajid et al.,
2016; Elghali et al., 2018; Rafiei et al., 2020).

Automated mineralogy from EDS with the aid of back-
scattered electron (BSE) imaging has been developing since
the 1980s and has grown alongside advances in scanning
electron microscopy (SEM) and image processing algorithms
(Miller et al., 1983; Fandrich et al., 2007). Commercial
automated mineralogy systems are available as integrated
hardware–software systems or as standalone software pack-
ages which are combined with scanning electron micro-
scopes (Schulz et al., 2020). Some systems only work with
certain scanning electron microscopes and detectors from the
same company, such as QEMSCAN (Gottlieb et al., 2000),
FEI-MLA (Fandrich et al., 2007), and TESCAN TIMA-X
(Hrstka et al., 2018). Others are purely software-based solu-
tions which are integrated with various SEMs: ZEISS Miner-
alogic, Oxford AZtecMineral, and Thermo-Scientific MAPS
Mineralogy. The price of hardware and software upgrades
required to accommodate these systems renders them cost-
prohibitive to many labs outside the resource extraction in-
dustry (Nikonow and Rammlmair, 2017). All systems have
some general ability to classify EDS spectra based on a
database of predefined and/or customizable mineral spectra
standards (Schulz et al., 2020). Since the underlying software
is proprietary, no source code is available for these systems,
and details on how they use spectra to classify minerals are
sparse to non-existent (Kuelen et al., 2020). Furthermore, the

accuracy of mineral prediction from these systems has rarely
been quantified (Blannin et al., 2021).

To date, several open-source (i.e., source code is available
and modifiable) automated mineralogy solutions have been
implemented. Ortolano et al. (2014, 2018) predicted modal
mineralogy and mapped minerals from a multistep workflow
involving principal component analysis, maximum likeli-
hood classification, and multi-linear regression performed on
EDS or WDS (wavelength-dispersive X-ray spectroscopy)
spectral data using the Python extension within ArcGIS. Li
et al. (2021) used a variety of legacy machine-learning and
deep-learning models to classify minerals in oil reservoir
rocks using mineral maps generated from proprietary soft-
ware as training data. In terms of image classification, deep-
learning methods are state of the art but currently require the
user to be relatively adept at programming and knowledge-
able of the computer vision principles employed (Khan et
al., 2018; Zhang et al., 2019). A method that requires little
to no programming ability would allow more users to ben-
efit from automated mineralogy data. An example of this
approach is XMapTools by Lanari et al. (2014), a graphi-
cal, open-source automated mineralogy solution with multi-
ple machine-learning classification algorithms within a stan-
dalone MATLAB-based environment.

Random forest (RF) classification is a supervised classi-
fication algorithm (i.e., the user generates training data) in
which an ensemble of decision trees produces a majority
vote that assigns a thematic classification to unknown data
(Breiman, 2001). Each decision tree within the ensemble is
trained on a random sample of the training data using only a
set number of random features at each branch (Cutler et al.,
2011). During prediction, for each decision tree, unknown
data traverse a sequence of rule-based branches which culmi-
nate in the assignation of a predicted class (Breiman, 2001).
Each tree gets one vote for each pixel; the predicted class
with the most votes is assigned to the unknown data. There
are several reasons why RF classification is useful for auto-
mated mineralogy mapping. It is well suited for accommo-
dating unbalanced training data and nonparametric data dis-
tributions (Maxwell et al., 2018), which are common in rock
samples due to large differences in relative mineral abun-
dances and elemental intensities (Ahrens, 1954). In addition,
recent work showed that RF classification performed better
than other legacy machine-learning algorithms (e.g., support
vector machines; Hearst et al., 1998) in mineral classification
of reservoir rocks (Li et al., 2021).

The main goal of this study is to present a new, user-
friendly quantitative automated mineralogy method that
we developed and implemented within QGIS, a free and
open-source geographic information system. Unlike previous
methods, the method presented here uses only freely avail-
able and open-source applications, and it requires no pro-
gramming by the user. We use the free and open-source Orfeo
ToolBox plugin for QGIS (Grizonnet et al., 2017) to predict
thin-section-scale bulk mineralogy from EDS elemental in-
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tensity data using an RF image classifier (Breiman, 2001).
Situating the workflow within a GIS environment has advan-
tages over standalone programs such as direct access to raster
and vector manipulation and analysis tools and database
management (Tarquini and Favalli, 2010; Berrezueta et al.,
2019). Furthermore, we present an overview of the auto-
mated mineralogy method and apply it to a set of rock
samples from the Rio Blanco tonalite to demonstrate the
method’s utility. By outlining an easy-to-use and open-source
solution, we intend to provide an automated mineralogy
method to a broader community of users.

2 Overview of the method

The goal of our automated mineralogy method is to produce
quantitative mineralogy maps of rock thin sections solely
from EDS data acquired using an SEM. Here, in Sect. 2, we
briefly summarize each step needed to reach a predicted min-
eral map. In Sect. 3, we demonstrate how to use the method
by applying it to a set of rock thin sections, during which we
elaborate on the choices users need to make and the functions
they need to use during each step. We also provide a detailed
step-by-step guide in the Supplement (Reed et al., 2024).

The starting point for this method is elemental rasters de-
rived from EDS-generated scans of rock thin sections. For the
purposes of our method, we take these scans as already mea-
sured and in hand. Generating such scans requires preparing
thin sections and analyzing them with a scanning electron
microscope, both of which are done by established proce-
dures (Goldstein et al., 2018). The necessary output from
such scans are rasters of elemental intensity (counts eV−1),
one for each element of interest (e.g., Ca, Na, K). After the
EDS elemental intensity rasters have been generated, all the
remaining steps in the method are conducted in QGIS. No
programming is required in any step. Instead, users need only
be familiar with QGIS and their samples.

The first step involves importing the raw elemental inten-
sity rasters into QGIS with no coordinate reference system
(Fig. 1a). This also involves compiling a list of all the min-
erals that will be mapped in the thin section, which can be
assessed based on prior knowledge, literature, and exami-
nation of EDS spectra. Our method is not viable for those
thin sections from completely unknown lithologies that re-
sist efforts to identify minerals under the microscope and/or
manual examination of EDS data. As we describe in Sect. 4,
we recommend restricting this to minerals with sufficiently
high abundance (> 0.1 %) to be adequately trained upon. For
those workers that require high accuracy in very low abun-
dance minerals, our method is not advisable.

The second step is to smooth the raw elemental intensity
rasters (Fig. 1b). This is useful because EDS-generated ele-
mental intensity rasters are subject to noise, which can arise
through electron beam interactions with the sample (Gold-
stein et al., 2018). As we describe in Sect. 4.3, we found that

this smoothing step was best done with a 7-pixel-radius cir-
cular mean filter, in which each pixel is assigned the mean
value of the surrounding pixels in a circular window (Gonza-
lez and Woods, 2018). We performed this on intensity rasters
from the example samples to which we applied our method
in Sect. 3. For this, we used the free and open-source Sys-
tem for Automated Geoscientific Analyses (SAGA) plugin
for QGIS (Conrad et al., 2015).

The third step is to gather the smoothed elemental intensity
rasters into a virtual raster, a type of container for multiple
rasters, with one band for each element of interest (Fig. 1c).
For example, if the user chooses to import elemental intensity
rasters for six elements, as we did in the application of this
method to our samples in Sect. 3, this will result in a virtual
raster with six bands. For this, we used the Geospatial Data
Abstraction Library (GDAL/OGR contributors, 2022), which
is a standard library in QGIS.

The fourth step is to train an RF image classification model
on the virtual raster (Fig. 1d). This requires generating a large
number (∼ hundreds) of small polygons on the virtual raster.
Each of these small polygons must lie within a single min-
eral, which the user must identify and assign to the polygon.
Collectively, these small polygons must cover all the miner-
als of interest in the thin section in sufficient number to train
the RF model. If the user wishes to assess the accuracy of
the RF-predicted mineral map to a manually mapped portion
of the thin section, we recommend restricting the location of
these small training polygons to a relatively small portion of
the thin section (∼ 10 %–20 % by area). This will ensure that
other portions of the thin section can be mapped manually to
compare against the RF-predicted mineral map. If the user
does not wish to conduct such an accuracy assessment after
the RF-predicted mineral map is complete, then these small
training polygons can be generated anywhere across the en-
tire thin section.

After the RF model has been trained, the fifth step is to ap-
ply the trained RF model to the entire virtual raster (Fig. 1e).
During this step, the RF model assigns a mineral class to ev-
ery pixel in the virtual raster, which yields a mineral map
for the entire thin section. For these RF modeling steps, we
used the free, open-source Orfeo ToolBox plugin for QGIS
(Grizonnet et al., 2017).

The sixth and final step is to denoise the RF-generated
mineral map (Fig. 1f). For this, we applied a circular ma-
jority filter using the SAGA plugin for QGIS, in which each
pixel is assigned the modal value of the surrounding pixels
in a circular window (Gonzalez and Woods, 2018). As we
describe in Sect. 4.3, we found that this was best done with
a 10-pixel-radius majority filter in the example samples to
which we applied this in Sect. 3. This eliminates most iso-
lated pixels within larger groups of pixels of a uniform pre-
dicted mineral and rare pixels that were not classified due to
voting ties (Ortolano et al., 2018; Nikonow et al., 2019)

At this stage, the RF-predicted mineral map is complete. It
can now be examined or manipulated according to the user’s
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Figure 1. Example application of the automated mineralogy method. (a) Step 1: import raw elemental intensity rasters (Ca, Na, Mg, Fe,
K, and Ti) into QGIS. Here, the rasters shown are for the thin-section sample 1-13a. The zoomed-in view of the Ca raster exemplifies the
short-wavelength noise in the elemental rasters. (b) Step 2: smooth each elemental intensity raster with a circular mean filter. The zoomed-in
view shows that this filter has eliminated much of the short-wavelength noise that was in the raw elemental rasters. (c) Step 3: create a virtual
raster by combining the smoothed elemental rasters into a single image container with bands for each element. The white circle shows the
area within which polygons were generated to train the random forest (RF) model in Step 4. (d) Step 4: within the training area boundary
in the virtual raster (large white circle, as in Step 3), draw a series of small polygons (here, small white circles). Each polygon must lie
within a single known mineral, and collectively these small polygons must sample all minerals of interest (here, plagioclase feldspar, quartz,
hornblende, biotite, potassium feldspar, Fe–Ti oxides, apatite, and chlorite). These polygons collect the pixel-level data on which the RF
model will be trained. (e) Step 5: apply the trained RF model to the entire sample to create a thin-section-scale mineral map. (f) Step 6:
smooth the RF-predicted mineral map with a circular majority filter.
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needs. For instance, the mineral map can be converted from a
raster to a vector form to facilitate the measurement of min-
eral grain size and other properties (Sect. 5.2).

3 Application of the method

3.1 Preparation of rock thin sections from the Luquillo
Critical Zone Observatory

To demonstrate the utility of the method described in Sect. 2,
we applied it to 14 thin sections of Rio Blanco tonalite from
the Luquillo Critical Zone Observatory (LCZO) in Puerto
Rico, United States, a site that has been the subject of sub-
stantial research on the weathering of igneous rocks into
saprolite and soil (White et al., 1998; Riebe et al., 2003; Stal-
lard and Murphy, 2012; Brocard et al., 2023). The lithology
is a phaneritic, plutonic igneous rock with some evidence
of low-grade hydrothermal alteration (Speer, 1984). The Rio
Blanco tonalite provides an ideal case study because min-
eral abundance has been characterized previously via quan-
titative X-ray diffraction (XRD) and point-counting modal
analysis (i.e., systematic manual identification and counting
under microscope; Ingersoll et al., 1984), which indicated the
rock consists of plagioclase feldspar (andesine), quartz, bi-
otite, hornblende, potassium feldspar, magnetite, apatite, and
chlorite (Murphy et al., 1998; Buss et al., 2008; Ferrier et al.,
2010).

To ready the samples for EDS, 14 petrographic thin sec-
tions were prepared on 27×46 mm glass slides from bedrock
core quarters collected from the Rio Icacos catchment within
the LCZO (Comas et al., 2019). The samples ranged in
area from 34.7 to 139.5 mm2. Four samples are composed
of weathered rock nearer to the surface, while the rest are
more pristine bedrock (Orlando et al., 2016). From each core
depth, two thin sections were prepared in vertical and hori-
zontal orientations. Our own preliminary optical microscopy
observations revealed that these samples contained abundant
plagioclase, quartz, hornblende, and biotite, which is consis-
tent with previous modal analyses (Murphy et al., 1998; Buss
et al., 2008).

3.2 Measuring elemental intensity in thin sections with
energy-dispersive spectroscopy

Each thin section was mapped with energy-dispersive X-ray
spectroscopy (EDS) using a Hitachi S-3400 VP-SEM with
a thermionic tungsten electron source equipped with an Ox-
ford Instruments X-Act 10 mm2 silicon drift detector receiv-
ing X-rays across 2048 spectral bands. The EDS detector ac-
quires a spectrum showing the energy and intensity of char-
acteristic X-rays emitted from the sample to determine the
atomic composition of the sample within the analysis volume
of the primary beam (Goldstein et al., 2018). For the mea-
surements on our thin sections, the instrument and accompa-
nying software produced full thin-section elemental intensity

maps (counts eV−1) at a resolution of 4 µm pixel−1, which
was determined by the beam step size. EDS data were ac-
quired with an accelerating voltage of 15 kV and a beam cur-
rent of∼ 10 nA. The EDS process time (also known as “time
constant” by some manufacturers) was 4, which is an inter-
mediate value that balances acquisition time and data quality.
EDS acquisition time was ∼ 3.5 h for each thin section.

From the EDS analysis application included with this in-
strument (AZtec), we exported six TIF files for each sam-
ple (Fig. 1a) consisting of full-resolution elemental inten-
sity rasters for the elements of interest (Ca, Na, K, Mg, Fe,
and Ti). These rasters contain the X-ray counts of elemen-
tal intensity at each pixel and have a mean size of over 20
megapixels over the 14 studied thin sections. We selected
these elements because they are present in varying abundance
in the minerals within the Rio Blanco tonalite and hence are
useful for distinguishing among the minerals in these sam-
ples. For example, K, Mg, Fe, and Ti are present at high
abundance in biotite (Dong et al., 1999) but are present at
low abundance in other major minerals in this lithology (e.g.,
plagioclase feldspar, quartz). Our initial attempts at classifi-
cation showed that the inclusion of rasters of Si and Al had
no effect on classification accuracy, so we did not include
them here.

This method requires a list of minerals present in the sam-
ples for both training of and prediction by the RF models
(steps 4 and 5 in Sect. 2). Such a list can be obtained in a
variety of ways, including prior studies of qualitative min-
eralogy of the host lithology or mineral identification from
optical microscopy on the sample thin sections. For the 14
samples analyzed here, we generated a list of minerals by in-
specting the EDS-generated X-ray spectral data within Ox-
ford AZtec, a proprietary software package integrated with
the SEM that we used to measure EDS scans of our sam-
ples. From these spectra, we identified plagioclase feldspar,
quartz, hornblende, biotite, potassium feldspar, Fe–Ti ox-
ides (predominantly magnetite–titanomagnetite), and apatite
as mineral classes for the RF models (Sect. 3.3). For those
without offline access to a full EDS environment, some sys-
tems such as Oxford AZtec allow the full export of data into
text or binary formats, which can be accessed with free and
open-source tools (e.g., HDFView or NIST DTSA-II). Due to
trace abundance (Murphy et al., 1998), other minerals present
in the samples, such as epidote and titanite, lacked an ade-
quate number of trainable examples, so they were neglected
or combined with an associated mineral, Fe–Ti. For refer-
ence, the mean abundance of apatite, the lowest-abundance
mineral we trained, was∼ 0.1 %. We recommend that miner-
als present at abundances lower than this be omitted or com-
bined with the understanding that overall accuracy is most
likely being negatively impacted in a minor way.
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3.3 Smoothing and virtualization of the elemental
intensity rasters

We smoothed each elemental intensity raster with a 7-pixel-
radius circular mean filter using SAGA’s Simple Filter tool
to eliminate noise in the EDS data. We chose this filter size
because it optimized the accuracy calculated during the train-
ing and validation of the RF model. We test the sensitivity
of this choice in Sect. 4.3. We then used the GDAL gdal-
buildvrt command within QGIS to group the smoothed ele-
mental intensity rasters into a virtual raster dataset, in which
each elemental raster is represented as a separate band. A
virtual raster is a container for multiple rasters that encodes
metadata such as file locations and other attributes in ex-
tended markup language (XML) (McInerney and Kempe-
neers, 2014). Opening and processing virtual raster datasets
requires fewer computer resources, as the underlying rasters
are only accessed when required.

3.4 Training random forest models for mineral
classification

Before an RF model can be tasked with assigning a mineral
class to every pixel in an entire thin section, it must first be
trained upon the minerals in the thin section. On each of the
virtual rasters for the 14 thin sections, we selected an area en-
compassing less than∼ 15 % of the total thin-section sample
area within which we trained the model. We selected train-
ing areas that represented all minerals as well as possible so
that each mineral would receive an adequate amount of train-
ing data for each mineral. Selecting a small training area in
the thin section is useful because it enables users to test the
accuracy of the trained model on other areas of the thin sec-
tion, if desired. This is not a necessary step in the method,
but in Sect. 4 we show how such accuracy tests can be done
on other portions of the thin sections.

For each mineral within the training area, we manually
generated hundreds of circular polygons upon the virtual
raster using the knowledge gained previously from exam-
ining the EDS spectra (Fig. 1). A single training polygon
within the training area collects all pixel values contained
within it from each elemental intensity raster composing the
virtual raster. Labeling this polygon as a single mineral effec-
tively labels every pixel value contained within it as that min-
eral. We note that, during this training step, the user should
take care not to misidentify or neglect training upon abun-
dant minerals, which could have a detrimental effect on the
classification accuracy. To prevent this outcome, we used all
available elemental rasters to verify that training polygons
were within the bounds of the identified mineral. For a few
thin sections, multiple subareas composed the training area
to incorporate enough data on less abundant minerals such as
apatite. Because each training polygon encompassed pixel-
level data for all bands from the virtual raster, the training
datasets were large (> 105 pixel-level samples for each thin

section). Hundreds to thousands of pixel-level training sam-
ples per class are generally considered sufficient for RF mod-
els (Cutler et al., 2012). Training samples per mineral were
highly unbalanced (i.e., some minerals covered many more
pixels than others) due to the high abundances of quartz and
plagioclase relative to those of a minor mineral such as ap-
atite. Orfeo ToolBox handles this potential problem automat-
ically by randomly selecting samples at a rate relative to the
size of the smallest class, ensuring that the minority classes
such as apatite have an equal probability of being drawn into
a sample subset used to construct an individual decision tree.

Using the training data obtained from the virtual raster for
each thin section, we trained RF image classification models
using the TrainImagesClassifier function in Orfeo ToolBox.
In this function, users must select hyperparameter values for
the RF model, which are tuneable parameters that control
model behavior. In machine learning, hyperparameters define
the general behavior of a model and are distinct from model
parameters, which are learned through training. For more de-
tails about RF machine-learning model hyperparameters, see
the review in Probst et al. (2019). We used the default hyper-
parameter values pre-selected in Orfeo ToolBox (Table 1) for
the models employed for our final predicted mineral maps.

A measure of model accuracy is automatically calculated
by the TrainImagesClassifier function at this step using un-
seen training data, which can be useful to examine before
proceeding so as to ensure that the RF model is operating
correctly. The accuracy metric we focus on in this study is
the F1 score (Eq. 3), which is the harmonic mean of the pre-
cision metric (Eq. 1) and the recall metric (Eq. 2). This is
a useful measure of the accuracy of RF-predicted minerals
because it penalizes false positives and false negatives while
rewarding true positives and neglecting true negatives (Chin-
chor and Sundheim, 1993), which can be very plentiful for
low-abundance minerals:

precision=
truepositives

truepositives + falsepositives
, (1)

recall=
truepositives

truepositives + falsenegatives
, (2)

F1score=
2(precision)(recall)
precision+ recall

. (3)

In the application of Eqs. (1)–(3) to mineral maps, a true
positive is defined as pixel-level agreement on the presence
of a given mineral between the model prediction and un-
used training data, which the algorithm holds out from train-
ing for the purpose of calculating metrics such as the F1
score. Similarly, a true negative is agreement on the absence
of a given mineral class. False positives and false negatives
are disagreements on the presence and absence of a given
mineral class, respectively. Application of the default hy-
perparameters to our samples yielded very high F1 scores
(∼ 0.99). This gave us confidence that the predicted mineral
maps generated using the default hyperparameters were near
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optimal for comparison with manually delineated test maps
(described in Sect. 4.1).

We applied each trained model to its corresponding virtual
raster to predict a single mineral class at each pixel, except
in the case of ensemble voting ties, in which case no min-
eral class was assigned to that pixel. This resulted in mineral
maps at the same resolution as the virtual rasters (∼ 4 µm).

3.5 Using the random forest models to generate
mineral maps

In our application of the trained RF models to our thin sec-
tions, the models calculated the entire thin-section-scale min-
eral maps in a under 1 min using a desktop computer (4 GHz
processor, 64 GB memory). Figure 1 shows an example of
one of these mineral maps.

After a thin section’s mineral map has been generated, it is
trivial to calculate the abundance of each mineral by count-
ing pixels. Figure 2 shows the abundance of each mineral
across all 14 samples with the error given by the mean F1
scores of the minerals. It also reveals relatively little variation
in each mineral’s abundance among the 14 samples, which
is consistent with previous observations of the Rio Blanco
tonalite. The RF-predicted mineral abundances compare well
with those measured from modal analysis via point count-
ing on BSE imagery (Buss et al., 2008) and via quantitative
XRD (Ferrier et al., 2010). Buss et al. (2008) measured av-
erage areal abundances of 19.9 % and 49.3 % for quartz and
plagioclase, respectively, comparable to the RF-predicted av-
erage abundances of 22.8± 1.0 % and 55.8± 2.3 % (± error
from mean F1 scores) on our 14 thin sections. The com-
bined abundance of hornblende and biotite (“Fe-silicates”)
measured by Buss et al. (2008) was 24 %, which is close
to the maximum RF-predicted abundance of “Fe-silicates”
among our 14 samples (25.0± 1.5 %). Using common val-
ues for molar masses (M mol−1) and densities (M L−3), the
XRD-based abundances (converted to areal abundance) from
Ferrier et al. (2010) for quartz, plagioclase, and hornblende
were 24 %, 62 %, and 14 %, respectively, while the RF-
predicted mineral maps yielded 22.8± 1.0 %, 55.8± 2.3 %,
and 10.4±0.7 %, respectively. When quartz, plagioclase, and
alkali feldspar abundances are normalized for usage with a
quartz–alkali feldspar–plagioclase–feldspathoid diagram (Le
Maitre, 2002), the RF-predicted abundances for each min-
eral demonstrated that all thin sections can be classified as
tonalite, matching the name of the lithology.

4 Discussion: accuracy of random-forest-predicted
mineral maps and sensitivity analyses

4.1 Accuracy of random-forest-predicted mineral maps

Before applying the trained RF models to the full thin sec-
tions, we manually mapped the mineralogy of a small sec-
tion for three representative samples (6-3a, 16-2a, and 1-

13a) to assess the accuracy of the model-generated mineral
maps. We refer to these manually delineated mineral maps
as “test maps”. These test maps were manually delineated
as vector polygons for all mineral classes using the elemen-
tal intensity rasters for guidance. For example, when map-
ping a grain of potassium feldspar, we determined the bound-
aries of the grain with filtered and unfiltered rasters of K
and combined intensity rasters of multiple elements. We con-
sider these maps to be “ground truth” data, which are never
perfect representations of reality (Foody, 2024) but, nonethe-
less, may serve to compare the performance of this method
to the extremely slow process of manually mapping grain
boundaries. We then rasterized the manually delineated vec-
tor maps, which resulted in the classification of every pixel
within the test maps as one of the eight minerals. The test
maps averaged over 1 million pixels in size.

We compared the same section of the predicted mineral
maps to the test maps using a frequency-weighted F1 score
(Eq. 4) to gauge the average accuracy for all mineral classes.
To calculate a frequency-weighted F1 score, the F1 score for
the ith class (F1 scorei) is weighted by the class frequency
(wi), which is the proportion of pixels of class i to the total
number of pixels in the test map. Here, N is the number of
mineral classes:

frequency-weightedF1score =
∑N

i=1
wiF1scorei . (4)

We clipped the portion of the predicted mineral map over-
lapping the test map from the full map for each of the three
thin sections with a test map. From these two rasters, we cal-
culated the frequency-weighted F1 score.

The RF-generated mineral maps in Sect. 3 exhibited high
accuracy. For the three thin sections that were mapped both
manually and by the RF-based method in Sect. 2, the mean
frequency-weighted F1 score among the three thin sections
was 0.948± 0.002, meaning that nearly 95 % of the pixels
in the RF-predicted maps agreed with those in the manually
delineated maps (Table 2). The accuracy varied among min-
erals. The four most abundant minerals (plagioclase, quartz,
hornblende, and biotite) all had mean F1 scores of 0.94 to
0.96, while apatite, the least abundant mineral, had the low-
est mean F1 score of 0.72. A closer look at the precision and
recall metrics for apatite shows that mean recall scores (0.62)
were lower than mean precision (0.91). This indicates that the
models correctly predicted apatite when attempted but that
the models often neglected to predict apatite. Because ap-
atite is rare and appears as small inclusions in our samples,
fewer training data were collected for it than for other min-
erals in each sample. This can result in class imbalances in
training data, which, for rare mineral classes (in our case, ap-
atite), can produce scenarios in which the model does not try
to predict the mineral class, as the diversity of training data
for rare classes (in our case, apatite) remains relatively low
(He and Garcia, 2009). Abundance and the mean F1 score
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Table 1. Default hyperparameter values for the Orfeo ToolBox RF machine-learning model and typical values according to Probst et al.
(2019).

Parameter name Orfeo ToolBox value Typical value(s)

Maximum number of trees in the forest 100 500–1000

Maximum depth of tree 5 N/A

Size of the randomly selected
subset of features at each tree node (Number of features)1/2 (Number of features)1/2

Minimum number of samples at each node 10 N/A

Figure 2. Areal abundance for all 14 samples of the Rio Blanco tonalite. Error bars stem from mean F1 scores for each individual mineral
from test map comparisons (see Sect. 4.1). Data from the analyses of the Rio Blanco tonalite in Buss et al. (2008) and Ferrier et al. (2010)
are included for reference.

were not always linked; for example, Fe–Ti oxides were low
in abundance (∼ 1 %) but registered a mean F1 score of 0.91.

Figure 3 shows an example of an RF-predicted mineral
map with misclassified pixels shown in red. This illustrates
a key point: the accuracy of the RF-predicted mineral maps
is not spatially uniform. Most pixels that diverge from man-
ual classification occur at grain boundaries where elemental
compositions shift abruptly in space. By contrast, in mineral
grain interiors, divergent pixels are far less common. This in-
dicates that the accuracy of RF-predicted mineralogy in grain
interiors is higher than the F1 scores in Table 2.

A combined confusion matrix for pixel-level comparisons
from every test and predicted map showed that the most com-
mon divergent classification was chlorite for biotite. This
is likely because biotite and chlorite have similar elemental
compositions and because they often share a grain bound-
ary (chlorite is a product of hydrothermal alteration of bi-
otite), which means they are more prone to disagreement
along grain boundaries. Among the major minerals, our mod-
els divergently classified potassium feldspar as plagioclase

feldspar most often, likely because many potassium feldspar
grains in the Rio Blanco tonalite contain small amounts of
Na, such as plagioclase.

Figure 4 shows close agreement between the RF-predicted
abundance and the manually mapped abundance in the test
areas, with a mean difference for a given mineral of 0.45±
0.02 % across the three test maps. So, although some pre-
dicted pixels were misaligned spatially, the RF-predicted
mineral abundances agree well with manual estimates de-
rived from the test maps.

4.2 Sensitivity of mineral maps to random forest
hyperparameters and input features

In our application of the method in Sect. 2 to the 14 sam-
ples in Sect. 3, we used a set of default values for three RF
hyperparameters: maximum tree depth, number of trees, and
minimum sample size per node. Reviews of hyperparameter
tuning on RF models have shown that the number of trees
and the minimum number of classes per node can have a

Geosci. Instrum. Method. Data Syst., 14, 193–209, 2025 https://doi.org/10.5194/gi-14-193-2025



M. M. Reed et al.: A free, open-source method for automated mapping 201

Figure 3. (a) Predicted mineral map for sample 6-3a, showing the
location of the manually delineated test map, which we used to
check accuracy. (b) Predicted mineral map for the test area. The
red areas signify where pixels in the predicted map diverge from
the manually delineated test map. This shows that most divergent
pixels are at mineral grain boundaries.

Figure 4. RF-model-predicted mineral abundance vs. manually
mapped mineral abundance in the test areas of the three samples
with test maps. The dashed line is a 1 : 1 line. Although there was
some spatial mismatch around the edge of mineral grains (e.g.,
Fig. 3), the RF-predicted modal abundances agree well with abun-
dances inferred from manual mapping in the test areas.

large effect on classification accuracy (Probst et al., 2019).
In this section, we gauge the sensitivity of our results to hy-
perparameter values and input features.

Orfeo ToolBox does not contain a facility for hyperparam-
eter tuning in QGIS, so we developed a workflow to under-
take our own hyperparameter optimization outside of QGIS
in Python. This is not a necessary step in the method, but we
have included this code in the Supplement for users who wish
to conduct their own hyperparameter optimization. We began
by converting the smoothed elemental intensity image data
in the three training areas within the manually delineated test
maps into NumPy arrays (Harris et al., 2020) using a combi-
nation of three Python libraries: rasterio (Gillies et al., 2019),

Table 2. Mean F1 scores (accuracy metric) for mineral classes
among the three test maps (Fig. 4), based on the comparison of
automated mineralogy maps with manually delineated mineralogy
maps.

Mineral Mean F1 score

All classes (frequency-weighted) 0.95
Plagioclase feldspar 0.96
Quartz 0.94
Hornblende 0.94
Biotite 0.94
Potassium feldspar 0.88
Fe–Ti oxides 0.91
Chlorite 0.79
Apatite 0.72

GeoPandas (Jordahl et al., 2020), and shapely (Gillies et al.,
2022). We then used the implementation of the RF classifier
from the machine-learning package scikit-learn (Predregosa
et al., 2011) for both hyperparameter optimization using a
randomized 5-fold cross-validation (Breiman and Spector,
1992) and derivation of feature importance using permuta-
tion testing (Breiman, 2001). Through these operations, we
seek to find optimal hyperparameters and test the importance
of input features (here, elements), respectively.

We used the scikit-learn RandomizedGridCV function to
systematically test the sensitivity of the output mineral maps
to the RF hyperparameter values. To do this, we trained 100
unique RF models across a range of maximum tree depths
(1–100), numbers of trees (10–2000), and minimum sample
sizes per node (5–25). These hyperparameters are common
between the Orfeo ToolBox and scikit-learn implementations
of the RF classifier. We used 5-fold cross-validation, in which
each randomly selected set of hyperparameters is used to
train the same model five times while sampling different por-
tions of the training data (Breiman and Spector, 1992). We
report the best-fit parameters and resultant accuracy in terms
of the frequency-weighted F1 score upon comparison to the
test maps using these optimized parameters.

Orfeo ToolBox has not yet incorporated a capacity to de-
rive feature importance scores. Feature importance in RF
classification is calculated by permutation testing, which is
the extent to which an accuracy metric declines if a sin-
gle input feature’s unused training data are randomly altered
during the training process and validation process (Breiman,
2001; Guo et al., 2011). We used the scikit-learn func-
tion permutation_importance to assess importance using the
frequency-weighted F1 score. We report the feature impor-
tance for the three samples with manually delineated test
maps and discuss their implications.

Tuning the hyperparameters in scikit-learn showed that
both a higher maximum tree depth and number of trees may
be optimal for our RF models, while the minimum sample
for splitting was more variable (Table 3). Using these opti-
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Table 3. Optimal RF hyperparameters from 5-fold cross-validation
performed using scikit-learn.

Minimum
Maximum Number sample

Sample tree depth of trees for split

1-13a 73 1685 25
6-3a 94 1371 5
16-2a 73 1581 5

mized RF hyperparameters within Orfeo ToolBox yielded a
mean frequency-weighted F1 score of 0.95 when comparing
the three samples with manually delineated test maps, which
is the same F1 score realized by using the default hyperpa-
rameters. As the two implementations of the RF classifier
are somewhat different in terms of available hyperparame-
ters, the comparison is imperfect but does provide a check to
see if the default hyperparameters could be improved upon.
That an optimized set of hyperparameters delivered very lit-
tle to no increase in accuracy is unsurprising, as RF models
are known to perform well with little to no tuning if reason-
able hyperparameter values are initially used (Maxwell et al.,
2018). Unless low F1 scores are realized during Step 4, it is
our recommendation that the default RF hyperparameters in
Orfeo ToolBox be used.

Feature importance, as determined through permutation
testing, showed that both K and Mg were the most impor-
tant features for our scikit-learn-trained models, with mean
decreases in accuracy of 0.29 for both elements based on
frequency-weighted F1 scores derived from the training and
validation process on unused data (Fig. 5). Ti was relatively
unimportant with a very small, slightly positive value, im-
plying it could be omitted. Although Ti is present within bi-
otite and Fe–Ti oxides in our samples, Ti showed little to no
decrease in mean accuracy, as both biotite and Fe–Ti oxides
can be classified using other elements. We tested whether our
feature importance scores were pertinent to models in Orfeo
ToolBox by leaving out, in turn, K, Mg, and Ti during the
training and validation process. Excluding K decreased mean
F1 scores due to the degradation of potassium feldspar, bi-
otite, and chlorite accuracy. In contrast, omitting Mg did not
decrease F1 scores, showing that a feature importance score
does not directly translate to decreased model accuracy upon
omission (Cutler et al., 2011). Leaving out Ti had little effect
on F1 scores. If a user of our method is unsure whether an
element could be a truly important feature, omitting an im-
portant element from the training process by creating virtual
rasters without that element should yield a notable degrada-
tion in training F1 scores.

4.3 Sensitivity of mineral maps to filter sizes

In our application of this method to our samples, we applied
a circular, 7-pixel-radius mean filter to the EDS-generated el-

Figure 5. Feature importance from scikit-learn using permutation
testing for all six input elements for the three samples with test
maps. Mean accuracy decrease is the change in the F1 score due to
randomly changing feature data in the unused portion of the training
data during the validation process. In Orfeo ToolBox, training mod-
els that omitted K degraded F1 scores, while those that omitted Mg
yielded little change, indicating that the feature importance score
does not always directly map onto model accuracy and that some
experimentation with input features (elements) during the training
phase is warranted.

emental intensity rasters (Step 2 in Sect. 2), and we applied
a circular, 10-pixel-radius majority filter to the output min-
eral maps (Step 6). To quantify the sensitivity of the output
mineral maps to these “hidden” parameters, we generated a
series of RF models across a range of mean filter radii for the
elemental intensity rasters (no filter and 2, 5, 7, 10, and 20
pixels) and a range of majority filter radii (no filter and 2, 5,
7, 10, and 20 pixels). For the three thin sections with man-
ually delineated mineral maps, we calculated the frequency-
weighted F1 score of the entire thin section by comparing
each of the RF-predicted mineral maps to the manually de-
lineated test maps.

Figure 6 reveals that both the mean filter and the majority
filter affect the accuracy of the predicted mineral maps. The
largest impact on the accuracy, as measured by F1 score, was
in the application of any mean filter at all to the input elemen-
tal intensity rasters. The left panel in Fig. 6 shows that apply-
ing no mean filter to the elemental intensity rasters produced
low F1 scores (0.52–0.69) for all models and all samples, re-
gardless of the size of the majority filter. Accuracy increased
with mean filter radius up to 5 and 7 pixels, which yielded
high F1 scores at all majority filter sizes (0.91–0.96) due to
the elimination of spurious inclusions within larger mineral
grains (middle panels in Fig. 6). Beyond that size, accuracy
decreased slightly with higher mean filter radius, with lower
F1 scores at radii of 10 pixels (F1 scores of 0.90-0.95) and
20 pixels (0.87–0.89). This implies an intermediate optimal
mean filter radius of 5–7 pixels for these samples.

Accuracy was sensitive to the size of the majority filter,
particularly for models that applied no mean filter or a small
(2-pixel-radius) mean filter to the input elemental intensity
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rasters (Fig. 6). For the models that applied a mean filter of
any size, accuracy was lower at small majority filter radii (0
or 2 pixels) and large radii (20 pixels) than at intermediate
majority filter radii (5–10 pixels). At the largest radii, the RF-
predicted mineral grains begin to lose shape, becoming more
circular. Thus, accuracy was maximized at intermediate ma-
jority filter radii of 5–7 pixels, just as it was at intermediate
mean filter radii. Excluding plagioclase and quartz (which
generally do not occur as isolated grains), the three sam-
ples with test maps (6-3a, 1-13a, and 16-2a) have a median
grain area of ∼ 0.005 mm2 (n= 5188 mineral grains across
all three samples), while the 5–7-pixel radii filters have ar-
eas of ∼ 0.001 and ∼ 0.002 mm2, respectively. These opti-
mal sizes most likely result from a mix of the initial EDS
pixel resolution and data quality and the types and sizes of
minerals in the thin section (Lanari et al., 2014; Ortolano et
al., 2018), so we recommend that users experiment to find
the optimum filter sizes for their samples.

5 Discussion: advantages, utility, and limitations

5.1 Advantages of this open-source automated
mineralogy method

Situating our workflow in a free and open-source GIS envi-
ronment confers several practical benefits. Both Orfeo Tool-
Box and QGIS are frequently updated with source code
that can be examined and modified, unlike many proprietary
hardware/software systems (Keulen et al., 2020). Orfeo Tool-
Box and QGIS each have extensive documentation and user
forums monitored by the developers, which can aid in ad-
dressing user issues (Raza and Capretz, 2015). Incorporating
open-source software into scientific methods fosters trans-
parency and reproducibility as the software is widely ac-
cessible and more easily scrutinized (Ramachandran et al.,
2021). As both Orfeo ToolBox and QGIS are ongoing efforts
with active contributing communities, our no-code workflow
is tied to software that is not likely to fall into disrepair or
unavailability, unlike much open-source scientific software
(Coelho et al., 2020). Furthermore, both Orfeo ToolBox and
QGIS are available for all major operating systems, Win-
dows, macOS (Intel), and Linux, so this factor does not limit
accessibility. Orfeo ToolBox will likely continue to incor-
porate new state-of-the-art machine-learning algorithms. For
example, Orfeo ToolBox has recently been unofficially ex-
tended to utilize the Google TensorFlow library (Abadi et
al., 2016) to perform deep-learning tasks on remote sens-
ing imagery (Cresson, 2018, 2022). There are also efforts to
develop open-source scanning electron microscope systems
and attendant software, such as the NanoMi project (Malac
et al., 2022). All of this means that automated mineralogy
methods are likely to become more popular and accessible.

We expect that a broad range of geoscientists will be capa-
ble of using this GIS-based method, since many geoscience

undergraduate programs incorporate GIS into courses (Marra
et al., 2017). It requires no programming skill to obtain min-
eral maps, thereby eliminating a potential barrier for use
(Bowlick et al., 2016). Since the workflow takes place within
a GIS environment, the input elemental intensity rasters
could easily be processed in other ways besides the mean
smoothing filter that we applied here, such as edge-detection
filtering or elemental intensity ratioing. Creation of optimal
input features, so-called feature engineering, is fostered by
the many QGIS frontends that interface with SAGA GIS
and GDAL raster manipulation programs. Our method does
not require a corresponding plugin for Orfeo ToolBox/QGIS,
but much of it could be automated from the Orfeo Tool-
Box/QGIS Python API or as QGIS console commands, if de-
sired. Input parameters for image filters and hyperparameters
for the RF models can be saved as JavaScript Object Nota-
tion (JSON) files, which can be loaded in later, overcoming
some of the reproducibility issues inherent in workflows us-
ing graphical user interfaces (Brundson, 2016).

5.2 Illustration of the utility of random
forest-generated mineral maps

There are many potential uses for thin-section-scale mineral
maps once they have been generated. Converting the mineral
maps into vector form allows the calculation of derived pa-
rameters, such as the median grain area for minerals that oc-
cur as single grains (e.g., biotite), the distance between grains
of a mineral, and the types of minerals surrounding a grain
or grains in the case of abundant, connected minerals such
as plagioclase and quartz. These types of data are normally
generated by proprietary automated mineralogy systems but
could aid in geoscience disciplines beyond ore geology or
petroleum geology (Han et al., 2022). An illustrative exam-
ple is in the analysis of grain-scale properties of biotite. This
is of wide interest because the oxidation of ferrous Fe in bi-
otite drives the expansion of biotite grains, which generates
stresses in the surrounding rock that may be large enough
to fracture the rock (Fletcher et al., 2006; Goodfellow et
al., 2016; Goodfellow and Hilley, 2022). To the extent that
biotite expansion promotes the generation of regolith from
bedrock, it may even influence the kilometer-scale evolu-
tion of mountainous topography (Wahrhaftig, 1965; Xu et al.,
2022). In granitic rocks, numerical modeling has shown that
biotite abundance influences the accrual of microscale dam-
age (Shen et al., 2019) and that weathering profile develop-
ment is partially guided by biotite crystal size (Goodfellow
and Hilley, 2022). These are two properties that can be di-
rectly measured in our thin-section-scale mineral maps.

To obtain such mineral maps in some previous studies, re-
searchers have often engaged in manual or semi-automated
characterizations of sample mineral properties (Buss et al.,
2008; Ündül, 2016). These workflows are often tailored for
a single study (e.g., Goodfellow et al., 2016). Methods that
are based on generalizable workflows involving automated
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Figure 6. Accuracy of the output mineral maps (as quantified by frequency-weighted mean F1 scores) for combinations of mean filter and
majority filter sizes for the three samples with test maps. Each section is a single mean filter size. The most accurate mineral maps (i.e., those
with the highest F1 scores) were generated using a 5- or 7-pixel-radius mean filter combined with a 5- or 7-pixel-radius majority filter.

mineralogy methods, such as the one presented in this study,
could enhance comparability between studies. Since we con-
verted the predicted mineral maps into a vector (polygon)
form within QGIS, we could use built-in functions to gather
large amounts of data on grain neighbors or perform grain
size measurements. As we discuss in Sect. 5.3, classified bi-
otite “grains” may contain multiple bordering crystals of the
same mineral as our EDS input data, and the resultant clas-
sification cannot differentiate boundaries by elements alone
(Lanari et al., 2014). As biotites are relatively isolated from
each other in our thin sections, these measurements serve as
a reasonable indicator of true biotite properties. For exam-
ple, the 20 largest biotite grains in samples 1-1a and 6-3b
comprise 80 % and 94 % of the total biotite area, respectively
(Fig. 7a–b). The median grain area of these 20 biotite grains
in sample 1-1a is 0.60 mm2, several times larger than that in
sample 6-3b (0.19 mm2; Fig. 7c).

We can also use raster morphology operations on the min-
eral maps to measure distances between classified minerals.
In analog and numerical experiments that impose stress on
granitic rocks (Tapponier and Brace, 1976; Li et al., 2003;
Mahboudi et al., 2012), biotite grains can act as preferential
origination points for microfractures, but biotite can also ar-
rest propagation of microfractures arising from neighboring
grains. Thus, the distance between biotite grains may be an
important, yet rarely measured, property. In the example of
the two samples in Fig. 7, biotite grains have similar median
distances from one another but different probability distribu-
tions of distances between biotite grains, particularly in the
long tail of the distributions at larger distances (Fig. 7e). We
can also extract the composition of neighboring grains sur-
rounding biotite (Fig. 7f), which reveal that chlorite is much
more abundant near biotite relative to the rest of the thin sec-
tion. Data like these can be useful for those studying the im-

pacts of different grain–grain contacts on stress response dur-
ing rock mechanics experiments (e.g., Aligholi et al., 2019),
which have shown that some mineral interactions can have an
outsized influence on the development of fractures and fail-
ure. In sum, the data in Fig. 7 illustrate the potential power
of RF-generated mineral maps to improve quantitative in situ
investigations of biotite weathering (Behrens et al., 2021) and
form the basis for more realistic models of biotite-driven rock
damage (Shen et al., 2019).

5.3 Limitations

Our method’s greatest asset is that it can generate thin-
section-scale mineral maps without requiring the use of pro-
priety software or a background in programming. Its most
important limitation is that it is most accurate if the user
trains an RF model for every thin-section sample. Using an
RF model that was trained on one sample to predict mineral
maps for another sample can yield mineral maps that accu-
rately map minerals in some areas but inaccurately map them
in others. For example, when we applied an RF model that
was trained on sample 16-2a to sample 6-3a, apatite abun-
dance was overpredicted by a factor of 5, possibly due to 6-3a
having some highly calcic zones within plagioclase grains.
So, for the most accurate results, we recommend training
each thin section separately.

A second limitation is that this method tends to be less ac-
curate at identifying low-abundance minerals. Unlike some
proprietary automated mineralogy software systems, our
method does not use predefined EDS spectra to identify min-
erals. Instead, our method trains RF models on the samples
themselves, which means that each mineral of interest must
be abundant enough to properly train the RF model. The rel-
atively low F1 scores of the lower-abundance minerals in our
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Figure 7. Example of quantities that can be obtained from mineral maps generated by the automated method in this study. (a–b) Colors
highlight biotite grains identified in the RF-generated mineral maps in thin sections 1-1a (blue) and 6-3b (orange). (c–f) Biotite properties
extracted from predicted maps for the 20 largest biotite grains in each sample. These data could help inform numerical models of microcrack
generation and allow quantitative comparisons between different samples or lithologies (e.g., Shen et al., 2019). (c) Boxplot of biotite grain
area (mm2) for the 20 largest biotite grains for both samples. (d) Boxplot of number of grains surrounding the 20 largest biotite grains.
(e) Normalized frequency distribution of distances between biotite pixels (not including those inside a biotite grain). (f) Composition of
neighbors as a fraction of perimeter.

samples (Table 2) suggest that the minimum abundance re-
quired to train an RF model is larger for minerals with small
grain size (e.g., in the case of apatite) and a lack of composi-
tional distinction (e.g., in the case of chlorite). Minerals must
be resolvable by the EDS data, so collecting EDS data with
a field-emission-gun SEM at higher resolution (∼ 0.1 µm)
could improve mineral classification in rocks with finer grain
size distributions (Han et al., 2022).

A final limitation is that mineral grains that border mineral
grains of the same mineral appear to the RF model as regions
of the same mineral and hence can be classified as a single
mineral grain, rather than two grains. This is a common issue
shared with other automated mineralogy methods (Lanari et
al., 2014; Hrtska et al., 2019), and it can affect inferred prob-
ability distributions of mineral grain size of those minerals if
not properly accounted for.

6 Conclusions

The main contribution of this study is a new automated
method for obtaining mineral maps from EDS scans of rock
thin sections. This method is implemented within a free and
open-source GIS application, uses free and open-source plu-
gins for RF image classification, and requires no program-
ming. To demonstrate the utility of this method, we trained
RF models on EDS scans of 14 thin-section samples of a
well-studied plutonic igneous rock. The resulting model-
predicted mineral maps compare well with manually delin-

eated mineralogy maps, with 95 % of pixels on the mineral
maps predicted correctly. With regard to the most abundant
minerals in the Rio Blanco tonalite, plagioclase feldspar and
quartz, the models attained 96 % and 94 % accuracy, respec-
tively.

We utilized scikit-learn’s implementation of the RF classi-
fier to search for optimal RF hyperparameters and to test in-
put feature (element) importance. We saw no increase in ac-
curacy using optimal hyperparameters found in scikit-learn
when used within Orfeo ToolBox, so we recommend using
the default hyperparameters. We did see that an important in-
put feature, K, did lower accuracy when not included in Or-
feo ToolBox-based models, so some level of experimentation
with input features during the training step is warranted. We
also tested to see if our pre- and post-processing steps had a
large influence on accuracy by using different sizes of mean
and majority filters. An absence of filtering and excessively
large filters led to lower accuracy, while filters in the range of
5–10 pixels for both mean and majority filters led to higher
accuracy.

Situating the workflow within a free and open-source GIS
environment confers distinct advantages. Open-source envi-
ronments extend benefits such as source code availability, ex-
tensive documentation, and accessibility. Moreover, as the
workflow is within a GIS environment, the application is
likely to be familiar to a range of geoscientists. Also, all the
available tools (e.g., different types of image filters) within
the GIS allow easy input feature experimentation. The min-
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eral maps from our method proved highly accurate when
compared to manually delineated maps, and estimates of
mineral abundance compared well to previous estimates from
the literature for our sample lithology. Many of the mea-
sured quantities produced by proprietary automated miner-
alogy systems are obtainable once predicted mineral maps
are converted to vector datasets. These measurements, such
as median grain size and amount of grain neighbors, can be
useful to researchers studying microscale damage processes
that arise through rock weathering or rock mechanics ex-
periments. We hope that this method will be useful for re-
searchers who wish to obtain rapid, automated mineralogy
maps of thin sections.

Code and data availability. The Supplement containing the code
for analysis and visualizations is available through a Zenodo repos-
itory (https://doi.org/10.5281/zenodo.10912627; Reed et al., 2024).
The Supplement also contains data (smoothed elemental intensity
rasters, training polygons, and test maps) for the three thin sections
with manually delineated test maps.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gi-14-193-2025-supplement.
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P., Baker, T., and Gutzmer, J: Uncertainties in quan-
titative mineralogical studies using scanning electron
microscope-based image analysis, Miner. Eng., 167, 106836,
https://doi.org/10.1016/j.mineng.2021.106836, 2021.

Breiman, L: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Breiman, L. and Spector, P: Submodel selection and evaluation
in regression: The X-random case, Int. Stat. Rev., 291–319,
https://doi.org/10.2307/1403680, 1992.

Brocard, G., Willebring, J. K., and Scatena, F. N: Shap-
ing of topography by topographically-controlled vegetation
in tropical montane rainforest, PLoS One, 18, e0281835,
https://doi.org/10.1371/journal.pone.0281835, 2023.

Brunsdon, C: Quantitative methods I: Reproducible research
and quantitative geography, Prog. Hum. Geogr., 40, 687–696,
https://doi.org/10.1177/0309132515599625, 2016.

Bürgmann, R. and Dresen, G: Rheology of the lower crust and
upper mantle: Evidence from rock mechanics, geodesy, and
field observations, Annu. Rev. Earth Planet. Sci., 36, 531–567,
https://doi.org/10.1146/annurev.earth.36.031207.124326, 2008.

Buss, H. L., Sak, P. B., Webb, S. M., and Brantley, S.
L.: Weathering of the Rio Blanco quartz diorite, Luquillo
Mountains, Puerto Rico: Coupling oxidation, dissolution,

Geosci. Instrum. Method. Data Syst., 14, 193–209, 2025 https://doi.org/10.5194/gi-14-193-2025

https://doi.org/10.5281/zenodo.10912627
https://doi.org/10.5194/gi-14-193-2025-supplement
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1007/s10064-018-1305-7
https://doi.org/10.1016/j.gca.2021.06.003
https://doi.org/10.1016/j.cageo.2018.12.009
https://doi.org/10.1016/j.sedgeo.2013.12.002
https://doi.org/10.1016/j.mineng.2021.106836
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2307/1403680
https://doi.org/10.1371/journal.pone.0281835
https://doi.org/10.1177/0309132515599625
https://doi.org/10.1146/annurev.earth.36.031207.124326


M. M. Reed et al.: A free, open-source method for automated mapping 207

and fracturing, Geochim. Cosmochim. Acta, 72, 4488–4507,
https://doi.org/10.1016/j.gca.2008.06.020, 2008.

Callahan, R. P., Riebe, C. S., Sklar, L. S., Pasquet, S., Fer-
rier, K. L., Hahm, W. J., Grana, D., Flinchum, B., Hayes,
J., and Holbrook, W. S.: Forest vulnerability to drought con-
trolled by bedrock composition, Nat. Geosci., 15, 714–719,
https://doi.org/10.1038/s41561-022-01012-2, 2022.

Callister, W. D. and Rethwisch, D. G.: Callister’s Materials Science
and Engineering, Global Edition, 10th Edition, John Wiley &
Sons, ISBN 978-1-119-45520-2, 2019.

Chinchor, N. and Sundheim, B. M: MUC-5 evaluation
metrics, in: Proceedings of the Fifth Message Under-
standing Conference (MUC-5), 25–27 August 1993,
https://doi.org/10.3115/1072017.1072026, 1993.

Coelho, J., Valente, M. T., Milen, L., and Silva, L. L.: Is this GitHub
project maintained? Measuring the level of maintenance activ-
ity of open-source projects, Inf. Software Technol., 122, 106274,
https://doi.org/10.1016/j.infsof.2020.106274, 2020.

Comas, X., Wright, W., Hynek, S. A., Fletcher, R. C., and Brant-
ley, S. L.: Understanding fracture distribution and its relation
to knickpoint evolution in the Rio Icacos watershed (Luquillo
Critical Zone Observatory, Puerto Rico) using landscape-scale
hydrogeophysics, Earth Surf. Process. Landf., 44, 877–885,
https://doi.org/10.1002/esp.4540, 2019.

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz,
L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Auto-
mated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model
Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015,
2015.

Cresson, R.: A framework for remote sensing images processing us-
ing deep learning techniques, IEEE Geosci. Remote Sens. Lett.,
16, 25–29, https://doi.org/10.1109/lgrs.2018.2867949, 2018.

Cresson, R.: SR4RS: A tool for super resolution of re-
mote sensing images, J. Open Res. Softw., 10, 1,
https://doi.org/10.5334/jors.369, 2022.

Cutler, A., Cutler, D. R., and Stevens, J. R.: Random forests,
in: Ensemble machine learning: Methods and applications,
edited by: Zhang, C. and Ma, Y., Springer, 157–175 pp.,
https://doi.org/10.1007/978-1-4419-9326-7_5, 2012.

Dong, H., Peacor, D. R., and Murphy, S. F.: TEM study of progres-
sive alteration of igneous biotite to kaolinite throughout a weath-
ered soil profile, Geochim. Cosmochim. Acta, 62, 1881–1887,
https://doi.org/10.1016/s0016-7037(98)00096-9, 1998.

Elghali, A., Benzaazoua, M., Bouzahzah, H., Bussière, B.,
and Villarraga-Gómez, H.: Determination of the avail-
able acid-generating potential of waste rock, part I:
Mineralogical approach, Appl. Geochem., 99, 31–41,
https://doi.org/10.1016/j.apgeochem.2018.12.010, 2018

Fandrich, R., Gu, Y., Burrows, D., and Moeller, K.: Modern SEM-
based mineral liberation analysis, Int. J. Miner. Process., 84,
310–320, https://doi.org/10.1016/j.minpro.2006.07.018, 2007.

Ferrier, K. L., Kirchner, J. W., Riebe, C. S., and Finkel,
R. C.: Mineral-specific chemical weathering rates
over millennial timescales: Measurements at Rio
Icacos, Puerto Rico, Chem. Geol., 277, 101–114,
https://doi.org/10.1016/j.chemgeo.2010.07.013, 2010.

Fletcher, R. C., Buss, H. L., and Brantley, S. L.: A spheroidal
weathering model coupling porewater chemistry to soil thick-

nesses during steady-state denudation, Earth Planet. Sci. Lett.,
244, 444–457, https://doi.org/10.1016/j.epsl.2006.01.055, 2006.

GDAL/OGR contributors: GDAL/OGR Geospatial
Data Abstraction Software Library, Zenodo [code],
https://doi.org/10.5281.zenodo.5884351, 2023.

Gillies, S., Baston, D., Amici, A., Seppi, J., Sare, R., Schut, V., and
Stewart, A.: Rasterio: geospatial raster I/O for Python program-
mers, GitHub [code], https://github.com/rasterio/rasterio (last ac-
cess: 4 May 2024), 2019.

Gillies, S., van der Wel, C., van den Bossche, J., Taves, M.,
Arnott, J., and Ward, B. C.: Shapely: Manipulation and analy-
sis of geometric objects in the Cartesian plane, Zenodo [code],
https://doi.org/10.5281/zenodo.5597138, 2023.

Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N.
W., Scott, J. H. J., and Joy, D. C.: Scanning Electron Mi-
croscopy and X-ray Microanalysis, 4th Edition, Springer,
https://doi.org/10.1007/978-1-4939-6676-9, 2018.

Gonzalez, C. G. and Woods, R. E.: Digital Image Processing,
4th Edition, Pearson, https://imageprocessingplace.com/DIP-4E/
dip4e_main_page.htm (last access: 22 August 2025), 2018.

Goodfellow, B. W. and Hilley, G. E.: Climatic and litho-
logical controls on the structure and thickness of granitic
weathering zones, Earth Planet. Sci. Lett., 600, 117890,
https://doi.org/10.1016/j.epsl.2022.117890, 2022.

Goodfellow, B. W., Hilley, G. E., Webb, S. M., Sklar, L. S., Moon,
S., and Olson, C. A.: The chemical, mechanical, and hydrological
evolution of weathering granitoid, J. Geophys. Res.-Earth Surf.,
121, 1410–1435, https://doi.org/10.1002/2016jf003822, 2016.

Gottlieb, P., Wilkie, G., Sutherland, D., Ho-Tun, E., Suthers, S., Per-
era, K., Jenkins, B., Spencer, S., Butcher, A., and Rayner, J.: Us-
ing quantitative electron microscopy for process mineralogy ap-
plications, JOM, 52, 24–25, https://doi.org/10.1007/s11837-000-
0126-9, 2000.

Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M.,
and Cresson, R.: Orfeo ToolBox: Open source processing of re-
mote sensing images, Open Geospatial Data, Softw. Stand, 2, 1–
8, https://doi.org/10.1186/s40965-017-0031-6, 2017.

Gu, Y.: Automated scanning electron microscope based mineral
liberation analysis, J. Miner. Mat. Character. Eng., 2, 33–41,
https://doi.org/10.4236/jmmce.2003.2100333-41, 2003.

Guo, L., Chehata, N., Mallet, C., and Boukir, S.: Rele-
vance of airborne lidar and multispectral image data
for urban scene classification using Random Forests,
ISPRS J. Photogramm. Remote Sens., 66, 56–66,
https://doi.org/10.1016/j.isprsjprs.2010.08.007, 2011.

Han, S., L?hr, S. C., Abbott, A. N., Baldermann, A., Farkaš, J.,
McMahon, W., Miliken, K., Rafiei, M., Wheeler, C., and Owen,
M.: Earth system science applications of next-generation SEM-
EDS automated mineral mapping, Front. Earth Sci., 10, 956912,
https://doi.org/10.3389/feart.2022.956912, 2022.

Harlov, D. E., Hansen, E. C., and Bigler, C.: Petrologic evidence for
K-feldspar metasomatism in granulite facies rocks, Chem. Geol.,
151, 373–386, https://doi.org/10.1016/s0009-2541(98)00090-4,
1998.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., and Cournapeau, D.: Array programming with
NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

https://doi.org/10.5194/gi-14-193-2025 Geosci. Instrum. Method. Data Syst., 14, 193–209, 2025

https://doi.org/10.1016/j.gca.2008.06.020
https://doi.org/10.1038/s41561-022-01012-2
https://doi.org/10.3115/1072017.1072026
https://doi.org/10.1016/j.infsof.2020.106274
https://doi.org/10.1002/esp.4540
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1109/lgrs.2018.2867949
https://doi.org/10.5334/jors.369
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1016/s0016-7037(98)00096-9
https://doi.org/10.1016/j.apgeochem.2018.12.010
https://doi.org/10.1016/j.minpro.2006.07.018
https://doi.org/10.1016/j.chemgeo.2010.07.013
https://doi.org/10.1016/j.epsl.2006.01.055
https://doi.org/10.5281.zenodo.5884351
https://github.com/rasterio/rasterio
https://doi.org/10.5281/zenodo.5597138
https://doi.org/10.1007/978-1-4939-6676-9
https://imageprocessingplace.com/DIP-4E/dip4e_main_page.htm
https://imageprocessingplace.com/DIP-4E/dip4e_main_page.htm
https://doi.org/10.1016/j.epsl.2022.117890
https://doi.org/10.1002/2016jf003822
https://doi.org/10.1007/s11837-000-0126-9
https://doi.org/10.1007/s11837-000-0126-9
https://doi.org/10.1186/s40965-017-0031-6
https://doi.org/10.4236/jmmce.2003.2100333-41
https://doi.org/10.1016/j.isprsjprs.2010.08.007
https://doi.org/10.3389/feart.2022.956912
https://doi.org/10.1016/s0009-2541(98)00090-4
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2


208 M. M. Reed et al.: A free, open-source method for automated mapping

Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M.,
McCoy, T. J., and Yang, H.: Mineral evolution, Am. Mineral., 93,
1693–1720, https://doi.org/10.2138/am.2008.2955, 2008.

He, H. and Garcia, E. A. Learning from imbalanced
data, IEEE T. Knowl. Data Eng., 21, 1263–1284,
https://doi.org/10.1109/TKDE.2008.239, 2009.

Hilton, R. G. and West, A. J.: Mountains, erosion and
the carbon cycle, Nat. Rev. Earth Environ., 1, 284–299,
https://doi.org/10.1038/s43017-020-0058-6, 2020.

Hrstka, T., Gottlieb, P., Skala, R., Breiter, K., and Motl, D.: Au-
tomated mineralogy and petrology-applications of TESCAN
Integrated Mineral Analyzer (TIMA), J. Geosci., 63, 47–63,
https://doi.org/10.3190/jgeosci.250, 2018.

Hupp, B. N. and Donovan, J. J.: Quantitative mineralogy for
facies definition in the Marcellus Shale (Appalachian Basin,
USA) using XRD-XRF integration, Sediment. Geol., 371, 16–
31, https://doi.org/10.1016/j.sedgeo.2018.04.007

Jordahl, K., Van den Bossche, J., Wasserman, J., McBride, J.,
Gerard, J., Fleischmann, M., Tratner, J., Perry, M., Snow, A.,
Bartos, M., Wilson, J., Wasser, L., Farmer, C., Cochran, M.,
Hjelle, G., Culbertson., L., Badaracco, A., Journois, M., and
Greenhall, A.: geopandas/geopandas: v0.12.1, Zenodo [code],
https://doi.org/10.5281/zenodo.7262879, 2022.

Keulen, N., Malkki, S. N., and Graham, S.: Automated quantita-
tive mineralogy applied to metamorphic rocks, Minerals, 10, 47,
https://doi.org/10.3390/min10010047, 2020.

Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E.,
Grosch, E. G., and Schwartz, S.: XMapTools: A MATLAB©-
based program for electron microprobe X-ray image process-
ing and geothermobarometry, Comput. Geosci., 62, 227–240,
https://doi.org/10.1016/j.cageo.2013.08.010, 2014.

Le Maitre, R. W.: Classification and nomenclature, in: Igneous
rocks: a classification and glossary of terms: recommenda-
tions of the International Union of Geological Sciences Sub-
commission on the Systematics of Igneous Rocks, edited by:
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M.
J., Bonin, B., and Bateman, P., Cambridge University Press,
https://doi.org/10.1017/CBO9780511535581, 2002.

Li, C., Wang, D., and Kong, L.: Application of machine
learning techniques in mineral classification for scan-
ning electron microscopy-energy dispersive X-ray spec-
troscopy (SEM-EDS) images, J. Pet. Sci. Eng., 200, 108178,
https://doi.org/10.1016/j.petrol.2020.108178, 2021.

Li, L., Lee, P. K. K., Tsui, Y., Tham, L. G., and Tang, C.
A.: Failure process of granite, Int. J. Geomech., 3, 84–98,
https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(84), 2003.

Mahabadi, O. K., Randall, N. X., Zong, Z., and Gras-
selli, G.: A novel approach for micro-scale characteri-
zation and modeling of geomaterials incorporating actual
material heterogeneity, Geophys. Res. Lett., 39, L01303,
https://doi.org/10.1029/2011gl050411, 2012.

Malac, M., Calzada, J. A. M., Salomons, M., Homeniuk, D., Price,
P., Cloutier, M., Hayashida, M., Vick, D., Chen, S., Yakubu, S.,
Wen, D., Leeson, M., Kamal, M., Pitters, J. Kim, J., Wang, X.,
Adkin-Kaya, O., and Egerton, R.: NanoMi: An open source elec-
tron microscope hardware and software platform, Micron, 163,
103362, https://doi.org/10.1016/j.micron.2022.103362, 2022.

Marra, W. A., van de Grint, L., Alberti, K., and Karssen-
berg, D.: Using GIS in an Earth Sciences field course

for quantitative exploration, data management and dig-
ital mapping, J. Geogr. Higher Educ., 41, 213–229,
https://doi.org/10.1080/03098265.2017.1291587, 2017.

Maxwell, A. E., Warner, T. A., and Fang, F.: Implementa-
tion of machine-learning classification in remote sensing:
An applied review, Int. J. Remote Sens., 39, 2784–2817,
https://doi.org/10.1080/01431161.2018.1433343, 2018.

McInerney, D. and Kempeneers, P.: Virtual Rasters and Raster Cal-
culations. in: Open Source Geospatial Tools: Applications in
Earth Observation, Earth Systems Data and Models, Springer,
https://doi.org/10.1007/978-3-319-01824-9_11, 2015.

Murphy, S. F., Brantley, S. L., Blum, A. E., White, A. F.,
and Dong, H.: Chemical weathering in a tropical watershed,
Luquillo Mountains, Puerto Rico: II. Rate and mechanism of
biotite weathering, Geochim. Cosmochim. Acta, 62, 227–243,
https://doi.org/10.1016/s0016-7037(97)00336-0, 1998.

Newbury, D. E. and Ritchie, N. W.: Elemental mapping of mi-
crostructures by scanning electron microscopy-energy dispersive
X-ray spectrometry (SEM-EDS): extraordinary advances with
the silicon drift detector (SDD), J. Anal. At. Spectrom., 28, 973–
988, https://doi.org/10.1039/c3ja50026h, 2013.

Nikonow, W. and Rammlmair, D.: Automated mineralogy based
on micro-energy-dispersive X-ray fluorescence microscopy (µ-
EDXRF) applied to plutonic rock thin sections in comparison
to a mineral liberation analyzer, Geosci. Instrum. Method. Data
Syst., 6, 429–437, https://doi.org/10.5194/gi-6-429-2017, 2017.

Nikonow, W., Rammlmair, D., Meima, J. A., and Schodlok, M.
C.: Advanced mineral characterization and petrographic analysis
by µ-EDXRF, LIBS, HSI and hyperspectral data merging, Min-
eral. Petrol., 113, 417–431, https://doi.org/10.1007/s00710-019-
00657-z, 2019.

Orlando, J., Comas, X., Hynek, S. A., Buss, H. L., and Brant-
ley, S. L.: Architecture of the deep critical zone in the
Río Icacos watershed (Luquillo Critical Zone Observatory,
Puerto Rico) inferred from drilling and ground penetrating
radar (GPR), Earth Surf. Processes Landforms, 41, 1826–1840,
https://doi.org/10.1002/esp.3948, 2016.

Ortolano, G., Zappalà, L., and Mazzoleni, P.: X-Ray Map
Analyser: A new ArcGIS® based tool for the quanti-
tative statistical data handling of X-ray maps (Geo-and
material-science applications), Comput. Geosci., 72, 49–64,
https://doi.org/10.1016/j.cageo.2014.07.006, 2014.

Ortolano, G., Visalli, R., Godard, G., and Cirrincione, R.: Quantita-
tive X-ray Map Analyser (Q-XRMA): A new GIS-based statisti-
cal approach to Mineral Image Analysis, Comput. Geosci., 115,
56–65, https://doi.org/10.1016/j.cageo.2018.03.001, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G.,
Pretenhoffer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.:
Scikit-learn: Machine learning in Python, J. Mach. Learn. Res.,
12, 2825–2830, https://doi.org/10.48550/arxiv.1201.0490, 2011.

Perkins, D.: Mineralogy, Open Educational Resources, University
of North Dakota, https://doi.org/10.31356/oers025, 2020.

Pirrie, D. and Rollinson, G. K.: Unlocking the applications
of automated mineral analysis, Geol. Today, 27, 226–235,
https://doi.org/10.1111/j.1365-2451.2011.00818.x, 2011.
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