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Abstract. Hydraulic fracturing serves as a critical in-situ
stress testing technique, where the accurate determination of
rock fracture pressure and closure pressure in fracturing in-
tervals is essential for precise in-situ stress estimation. Dur-
ing hydraulic fracturing stress measurement, parameters in-
cluding injection rate, viscosity, density, and compressibil-
ity ratio of fracturing fluid significantly affect the measure-
ment accuracy of fracture and closure pressures, potentially
introducing substantial errors in in-situ stress calculations.
This study develops an MLP-KFold-based correction model
for in-situ stress measurements by establishing a hydraulic
fracturing dataset, incorporating fracturing fluid density, vis-
cosity, injection rate, and corresponding rock fracture/clo-
sure pressures. Evaluation results demonstrate that the MLP-
KFold model achieves superior performance with a coeffi-
cient of determination (R%=0.9937) on test sets, outper-
forming Random Forest (A + 1.89 %), Support Vector Re-
gression (A +4.05 %), and BiLSTM (A +5.34 %). Key error
metrics including MAE (0.518), MSE (0.646), and maximum
error (1.945 MPa) remain at minimal levels. Field applica-
tions demonstrate significant reduction in average percent-
age differences of calculated stresses under different frac-
turing fluids (og: —21.48 %, on: —29.03 %), confirming its
superior compensation effects. This research establishes a
compensation model for hydraulic fracturing pressures based
on a small-scale dataset, providing an effective technical ap-
proach for correcting field measurement data and compen-
sating in-situ stress calculation results, thereby contributing
to the accurate assessment of regional stress profile states.

1 Introduction

The stress that is stored within the undisturbed rock mass
is referred to as geo-stress or in-situ stress, which is caused
by factors such as the self-weight of the rock and geologi-
cal tectonic movements (Mcgarr and Gay, 1978; Amadei and
Stephansson, 1997). Regional in-situ stress measurement and
estimation have important applications in earthquake predic-
tion research, underground engineering construction, mining,
and oil and gas extraction. With the increasing demand for
energy and mineral resources and the continuous intensifica-
tion of mining efforts in China, shallow mineral resources are
gradually diminishing, and domestic mines are successively
entering the stage of deep resource development. The “three
highs” issues encountered in deep mining (high in-situ stress,
high temperature, and high water pressure) (Xie, 2019) will
become the focus and difficulty in the study of deep min-
ing rock mechanics (He et al., 2005). Therefore, accurately
determining the in-situ stress state of the deep development
area is a necessary approach to solving the above problems.

Observation and estimation of the in-situ stress state in the
deep crust remain a major challenge in in-situ stress mea-
surement. Scientists have proposed dozens of in-situ stress
testing methods, which can be classified into five categories
based on data sources, as described in Table 1.

The hydraulic fracturing method, a subset of borehole-
based techniques, is currently the only known approach ca-
pable of directly measuring in-situ stress. Although theoret-
ically unrestricted by depth, practical limitations — such as
borehole conditions, testing technology, and temperature/-
pressure resistance of equipment — have resulted in very few
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Table 1. In-situ stress testing methods (Wang, 2014).

No. Method Related literatures

1 Core-based method Simmons et al. (1974), Siegfried and Simmons (1978)

2 Borehole-based method Scheidegger (1962), Raleigh et al. (1976), Chandler (1993), Fairhurst (2003)
3 Geological method Angelier (1979), Hill et al. (1994), Adiyaman et al. (1998), Zoback (2007)

4 Geophysical (or seismological) method  Crampin (1985), Yale (2003), Boness and Zoback (2004)

5 Underground space-based method Hill et al. (1994), Amadei and Stephansson (1997)

successful hydraulic fracturing stress measurements world-
wide at depths exceeding 1000 m (Zhang and Stephansson,
2010; Chen et al., 2019). Consequently, precise measurement
and estimation of in-situ stress using hydraulic fracturing re-
mains a critical research challenge both domestically and in-
ternationally.

The hydraulic fracturing method features a relatively sim-
ple and rapid testing process, along with straightforward data
processing and analysis. However, during testing, deforma-
tion of drill pipes and packers, as well as external factors
related to the fluid mechanics parameters of fracturing fluids
(e.g., viscosity, density, compressibility, and injection rate),
can significantly affect the measurements of rock breakdown
pressure, closure pressure, and reopening pressure in the
fracturing interval. Consequently, these influences also intro-
duce errors in subsequent calculations of the maximum and
minimum horizontal principal stresses, ultimately impairing
the accurate estimation of in-situ stress. Related scholars
have conducted in-depth research on the influence of frac-
turing fluid parameters such as flow rate, viscosity, and den-
sity on rock breakdown pressure and closure pressure. Ito
and Hayashi (1991) and Chang et al. (2013) proposed that
the tensile strength of rock increases with the injection rate.
Zhou et al. (2013) and Zhang (2018) conducted laboratory
hydraulic fracturing experiments, demonstrating that mud
media with different densities significantly affect the mea-
sured values of rock breakdown. Matsunaga et al. (1993) and
Ishida et al. (1997) confirmed in their studies on petroleum
drilling that the viscosity of fracturing fluid influences rock
breakdown. Wang et al. (2012) and Zhou et al. (2013) both
used water as the fracturing fluid to analyze the effect of fluid
compressibility on system compliance, which leads to errors
in in-situ stress measurement. Tomac and Gutierrez (2017)
employed a Bonded Particle Model (BPM) within the Dis-
crete Element Method (DEM) framework to conduct coupled
thermo-hydro-mechanical analysis, revealing that tempera-
ture gradients and fluid-rock compressibility ratios critically
govern fracture dynamics in enhanced geothermal systems:
the coupled convective-conductive thermal effects shorten
primary fractures and induce secondary microcracks, while
cold fluid infiltration reduces near-wellbore pressure accu-
mulation to delay propagation, with compressibility ratio
governing fracture velocity and dynamic viscosity modu-
lating thermal damage extent. Liu et al. (2019) optimized
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hydraulic fracturing simulation experiments using the uni-
form design method and preliminarily analyzed the influ-
ence of different fracturing fluid media on breakdown pres-
sure through regression fitting. Ma et al. (2024) utilized an
LSTM to directly predict the breakdown pressure of hori-
zontal wells in petroleum engineering, effectively establish-
ing a nonlinear relationship between logging parameters and
breakdown pressure in horizontal wells. Zou et al. (2025) in-
vestigated the influences of key parameters, including rock
temperature, in situ stress, injection rate, fluid viscosity, az-
imuth of the radial borehole, and the number of radial bore-
holes on the fracture morphology and breakdown pressure,
the breakdown pressure of radial borehole fracturing can be
reduced by 14.1 %—43.7 % compared to conventional frac-
turing, which has been demonstrated that the increases in the
vertical density of radial boreholes, injection rate, and fluid
viscosity enhance the guiding ability of radial boreholes. Liu
et al. (2024) proposed a horizontal-hole hydraulic fracturing
based in-situ stress model incorporating fluid flow rate by
conducting hydraulic fracturing fluid-solid coupling simula-
tion tests to explore the effect of different fracturing fluid
flow rates on fracture propagation and breakdown pressure
in granite, and the model calculations matched test values
with a relative error under 9 %, establishing a more precise
in-situ stress calculation model for tunnel surrounding rock.

Measurement errors in rock breakdown pressure and clo-
sure pressure can lead to significant variations in the calcu-
lated maximum and minimum horizontal principal stresses,
severely impacting the accuracy of hydraulic fracturing-
based in-situ stress estimation (Wang et al., 2017). Ac-
curately determining rock breakdown pressure and closure
pressure has long been a challenging task. Reducing the er-
rors in in-situ stress calculations caused by influencing fac-
tors such as fracturing fluid flow rate, viscosity, density, and
compressibility — and establishing corresponding error com-
pensation models — necessitates the application of machine
learning and deep learning methods. This paper constructed
a dataset based on laboratory hydraulic fracturing simula-
tion experiments. For relatively small-scale datasets, we em-
ployed a multi-layer perceptron (MLP) with K-fold cross-
validation (KFold) to develop correction models for break-
down pressure and closure pressure. This approach demon-
strates high data utilization efficiency and stable performance
evaluation, exhibiting certain advantages over other machine
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learning models. The proposed method holds significant the-
oretical and practical value for precise regional stress profile
estimation, crustal stability assessment, earthquake predic-
tion, and mine strata stability evaluation.

2 Principle of hydraulic fracturing in-situ stress testing

The classical hydraulic fracturing theory, based on the plane
strain theory of elasticity, was proposed and refined by Haim-
son (1968). This theory is based on three key assumptions:
First, rocks are considered to be homogeneous, linearly elas-
tic, and isotropic materials, which means that the mechanical
properties of rocks are the same in all directions, and there is
a linear relationship between stress and strain; second, rocks
are assumed to be porous media, and the fluid flow within
the pores follows Darcy’s Law, which states that the fluid
flow rate is directly proportional to the pressure gradient; fi-
nally, it is assumed that one of the principal axes of the in-
situ stress is parallel to the borehole axis. Based on these as-
sumptions, the fractures induced by hydraulic fracturing are
vertical and perpendicular to the direction of the minimum
horizontal principal stress, as shown in Fig. 1.

Using the stress field model and fracture criteria depicted
in Fig. 1, the fracture values of the fractured rock section are
shown below, according to the elastic theory (Timoshenko
and Goodier, 1970):

Py=30n—og+T )]
PS zo‘h (2)

Here, oy and oy, represent the maximum and minimum hor-
izontal principal stresses, respectively, P, and P represent
the fracture pressure and closure pressure, respectively, and
T represents the tensile strength of the rock. Equations (1)
and (2) indicate that the fracture values of the rock are in-
dependent of the size of the borehole and the rock’s elastic
modulus, and are mainly determined by the tensile strength
of the rock and the magnitude of the in-situ stress around the
borehole. Therefore, accurately obtaining the fracture pres-
sure, closure pressure, and tensile strength of the rock is key
to improving the accuracy of hydraulic fracturing stress mea-
surements.

3 Hydraulic fracturing dataset
3.1 Dataset construction

The fracturing fluids commonly used in hydraulic fractur-
ing mainly include water-based, oil-based, foam-based and
slurry-based types (Cuisiat and Haimson, 1992; Birdsell et
al., 2015). In order to construct a dataset for hydraulic frac-
turing simulation experiments, this paper used a hollow
cylinder test method to obtain fracture pressure and clo-
sure pressure data of granite using water-based, oil-based,
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Table 2. Experimental factors and their levels.

Factor Level Unit Parameter value

Injection 8 MPas™! 0.17;0.35;0.48; 0.55; 0.6;
rate 0.69; 3.15; 3.88; 4.25
Density 3 gem™3  0.88;1.01; 151

Viscosity 5 mPas 1;70.2; 130.6; 171.6; 284.5

and mud as fracturing fluid media. (Ito and Hayashi, 1991;
Zhang, 2018). Table 4 summarizes various experimental fac-
tors and their corresponding levels.

The constructed hydraulic fracturing dataset was used for
35 cubic specimens with different tensile strengths, and 35
hydraulic fracturing simulation experiments were conducted
based on 8-level injection rate, 2-level density, and 5-level
viscosity (as shown in Table 2). The experimental results
(fracturing pressure and closure pressure) are shown in Ta-
ble Al in the Appendix.

3.2 Correlation analysis

Dual analytical methodologies — the Pearson correlation co-
efficient and SHAP (SHapley Additive exPlanations) value
heatmaps — were systematically employed to quantify vari-
able interdependencies. The Pearson metric provides effi-
cient identification of linear correlations, enabling prelim-
inary feature screening, while SHAP decomposition eluci-
dates complex feature contributions within the model archi-
tecture, particularly nonlinear interactions (Nahler, 2020).
Figure 3 quantitatively illustrates the operational relation-
ships between extrinsic parameters (injection rate, density,
and viscosity) and critical geomechanical outputs: fracturing
pressure (Py) and closure pressure (P).

Figure 2 demonstrates that injection rate exhibits the most
significant influence on fracturing pressure (Py) and closure
pressure (Ps), with a pronounced positive correlation ob-
served, particularly for fracture pressure. In contrast, fluid
density and viscosity demonstrate comparatively weaker cor-
relations with these output parameters. Owing to the multi-
faceted influences on P, and P; — where complex interac-
tions among governing factors may involve nonlinear rela-
tionships — conventional linear regression models may prove
inadequate to accurately characterize these dependencies. To
enhance predictive accuracy, this study proposes the adoption
of neural network architectures or machine learning frame-
works to develop error-compensated predictive models. Such
approaches are anticipated to better capture the inherent non-
linear dynamics between operational variables and geome-
chanical responses, thereby optimizing pressure prediction
fidelity in hydraulic fracturing operations.
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Figure 1. Mechanical model and pressure curve diagram of hydraulic fracturing measurement.
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Figure 2. Correlation between Inputs and Outputs.
4 MLP-KFold model
4.1 MLP model 3"1 Jiz Jii }:n
. . . . Output Layer
The multilayer perceptron (MLP) model is a fully connected =)
neural network composed of multiple neurons. By adjusting P S
the weights of these neurons, the model minimizes prediction ‘ '
errors, enabling effective training and subsequent outcome ;1‘11 h ol b ~Upj b
prediction (Zhang et al., 2021). The MLP features a multi- @ 1 @ . @ @- p-1 @ P Hidden Layer
layered structure, including an input layer, one or more hid-
den layers, and an output layer, as illustrated in the network <RI
architecture diagram (Fig. 3). S By Sy
The neurons in an MLP model receive input signals, sum @ @ @ Input Layer
them with weights, and produce an output through an acti-
vation function. Building upon the perceptron model, MLP X, X Xp
increases the nesting level of neurons and introduces an ac-
tivation function between the inputs and outputs of each Figure 3. MLP Model Structure Diagram.

layer, thereby enhancing the learning capabilities of the MLP
model. The output formula of a neuron is shown in Eq. (3),
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where o represents the activation function.

y=o0 (Za)ix,‘ + b) 3)
i=1

And from the hidden layer to the output layer: suppose there
are p neurons in the output layer, and the weight matrix from
the hidden layer to the output layer is W». Then the output of
the output layer is shown in Eq. (4), where k =1, 2, ..., p.
By continuously iterating and updating the weights and bi-
ases, the model can effectively fit the data and make accurate
predictions.

n
Ye=0 (Z Woijh +b2k) “4)

j=1
4.2 Model Structure of MLP-KFold

The MLP-KFold model combines a Multilayer Perceptron
(MLP) with K-Fold Cross-validation (KFold) as a method for
model training and evaluation. The MLP-KFold is built us-
ing the Sequential model, which is composed of multiple net-
work layers stacked in sequence. The data flows through each
layer in order from front to back for processing. As shown in
Fig. 4, the MLP model is primarily a feedforward neural net-
work composed of an input layer, hidden layers, a Dropout
layer, and an output layer. The input layer has a dimension
of 6, corresponding to the number of features in the dataset
(as listed in Table 2). The three hidden layers consist of 96,
48, and 24 neurons, respectively, all using the ReLU activa-
tion function and L2 regularization to prevent overfitting. A
Dropout layer is added after the first and second hidden lay-
ers to further mitigate the risk of overfitting. The output layer
contains 2 neurons, corresponding to the two prediction tar-
gets: fracturing pressure (Ps) and closure pressure (Py).

To maximize the utility of the small-scale dataset and en-
hance evaluation reliability, the K-Fold model adopts 10-
fold cross-validation (KFold), therefore, it is suitable for the
smaller scale dataset in this paper. The data is randomly split
into 10 subsets — 9 for training and 1 for testing — and this
process repeats 10 times, cycling through each subset as the
test set. This ensures every data point contributes to valida-
tion, leading to a more robust and stable performance assess-
ment.

4.3 Parameter Setting

The core and training parameters of the MLP-KFold model
are systematically configured prior to model implementation.
The core parameters include: input dimension, output units,
maximum number of neurons, and dropout. The training pa-
rameters include: number of epochs, learning rate, batch size,
and validation ratio, as detailed in Table 3. Following param-
eter initialization, the model was trained using the prepared
training dataset through iterative optimization processes.

https://doi.org/10.5194/gi-14-211-2025

Table 3. Parameter Setting Table.

Parameter Value
Core input dimension 6
parameters  output units 2

maximum number of 96

neurons

dropout 0.05
Training epochs 100-150
parameters  learning rate Adam optimizer,

0.001
batch size 1
validation ratio 0.1

5 Discussion
5.1 The prediction performance of MLP KFold

Following the model architecture and parameter configura-
tion detailed in Sect. 3, the machine learning model was
trained using the specified training dataset (refer to Table 4).
The training process enables the model to learn inherent
patterns and characteristic features within the data, thereby
establishing predictive capabilities for subsequent correc-
tion and forecasting applications. Post-training visualization
analysis revealed the comparative performance between ac-
tual and predicted values for both fracture pressure and clo-
sure pressure, as illustrated in Fig. 5. In this graphical repre-
sentation, blue bars denote measured pressure values while
red bars indicate model-predicted values, demonstrating the
algorithm’s predictive accuracy through visual comparison
of these dual pressure parameters.

As evidenced in Table 4, the MLP-KFold model demon-
strates exceptional predictive accuracy, achieving a mean R?
coefficient of determination of 0.9937 — a value remarkably
close to the ideal unity. The error metrics further substan-
tiate this performance, with the Mean Absolute Percentage
Error (MAPE) and Mean Squared Error (MSE) registering
at minimal values of 4.115 % and 0.6457 respectively. No-
tably, the maximum observed prediction error remains con-
strained to 1.9449 MPa, confirming tight error distribution
boundaries. These collective findings indicate that the pro-
posed model successfully accounts for 99.37 % of total data
variance, achieving near-perfect goodness-of-fit. The mini-
mal divergence between predicted values and empirical ob-
servations validates the model’s robust generalization capa-
bilities across the experimental dataset.

Geosci. Instrum. Method. Data Syst., 14, 211-224, 2025
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Figure 4. MLP-KFold Model Structure Diagram.
Table 4. Performance indices of the MLP-KFold model.
Outputs R? MSE RMSE MAE MAPE Max Error
Fracturing pressure  0.9910 1.1918 1.0917 0.7758 5.19% 3.0725
Closure pressure 0.9964 0.0995 0.3155 0.2597 3.04% 0.8173

5.2 Multi-model comparative analysis

Based on the satisfactory fitting performance achieved by
the MLP-KFold model, a systematic comparison study is
subsequently conducted to evaluate its predictive efficacy
against alternative machine learning architectures, including
Random Forest (ensemble-based decision tree model), Sup-
port Vector Regression (SVR, kernel method), and Bidirec-
tional Long Short-Term Memory (BiLSTM, deep sequen-
tial learning framework). This benchmarking framework em-
ploys identical training datasets and preprocessing protocols
to ensure fair performance assessment. Quantitative metrics
such as mean squared error (MSE) and coefficient of determi-
nation (R?) will be comparatively analyzed across all mod-
els, while their generalization capabilities and computational
efficiency will be critically examined. The cross-model com-
parison aims to (1) validate the robustness of MLP-KFold in
handling geomechanical pressure prediction tasks, (2) iden-
tify algorithm-specific advantages under controlled experi-
mental conditions, and (3) establish methodological guide-
lines for optimal model selection in fracture pressure charac-
terization studies. Table 5 shows performance indices of the
multi-model.

Geosci. Instrum. Method. Data Syst., 14, 211-224, 2025

The radar chart of error indices is plotted using Z-score
normalization to provide a more intuitive visualization of the
performance of different models across various error indices,
facilitating model comparison and evaluation. Since five er-
ror coefficients from Table 5 needed to be compared simul-
taneously, Z-score standardization is applied to effectively
mitigate the influence of scale differences and outliers in the
radar chart.

In the context of small-scale datasets, Fig. 6 shows that se-
lecting an appropriate model is critical, as limited data inher-
ently increases the risk of model overfitting and reduces gen-
eralization capability. MLP-KFold demonstrates robust per-
formance when applied to small-scale hydraulic fracturing
simulation datasets, and its effectiveness can be attributed to
the following aspects:

1. Cross-validation mechanism: The K-fold cross-
validation integrated in MLP-KFold enables full
utilization of limited data, thereby enhancing model
generalization and mitigating overfitting risks. By
iteratively partitioning the dataset into training and
validation subsets, this approach ensures reliable

https://doi.org/10.5194/gi-14-211-2025
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Figure 5. Comparative performance between actual and predicted values for both fracture pressure and closure pressure.

Table 5. Performance indices table of the multi-model. The bold font represents MLP KFold.

Model Outputs R2 MSE RMSE MAE MAPE  Max Error

MLP-KFold Fracturing pressure ~ 0.9910  1.0695 0.7976 0.5378 5.19 % 3.0725

Closure pressure 0.9964 0.0995 0.3155 0.2597 3.04 % 0.8173

Random Forest  Fracturing pressure  0.9643  4.7345 2.1759 1.3670 6.48 % 8.3760

Closure pressure 0.9855 0.4058 0.6370 0.3495 4.62 % 2.6518

SVR Fracturing pressure  0.9427  7.6026 2.7573  1.5770 8.54 % 13.1444

Closure pressure 0.9642 1.0007 1.0003 0.7034 6.85 % 3.4494

BiLSTM Fracturing pressure  0.9658  3.0339 1.7418 1.4123 1478 % 3.2565

Closure pressure 09154 0.3963 0.6295 0.4900 6.18 % 1.3806
performance evaluation while maximizing data ex- learning architectures. This characteristic makes MLP
ploitation. particularly suitable for small-scale datasets where in-

tricate pattern learning is constrained by data scarcity.
2. Simplified model architecture: As a relatively sim-

ple neural network structure, the Multilayer Percep- 3. Regularization integration: MLP-KFold systematically

tron (MLP) inherently requires fewer data samples to
achieve stable convergence compared to complex deep

https://doi.org/10.5194/gi-14-211-2025

incorporates regularization techniques, including L2
regularization and Dropout, to further suppress overfit-
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Figure 6. Comparison chart of evaluation indices of the multi-model.

ting tendencies. These mechanisms impose constraints
on weight optimization and randomly deactivate neu-
rons during training, effectively reducing model com-
plexity and enhancing robustness to noise in limited
data scenarios.

This combination of methodological advantages positions
MLP-KFold as a computationally efficient and statistically
reliable framework for analyzing small-scale experimental
datasets in hydraulic fracturing simulations.

Geosci. Instrum. Method. Data Syst., 14, 211-224, 2025
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5.3 Model Generalization Capability

While the MLP-KFold model demonstrated remarkable per-
formance on the test set with a coefficient of determination
(R*=0.9937), it is acknowledged that the diversity of rock
types, formation conditions, and construction parameters in
real-world applications could pose challenges to the model’s
generalization capability. To further validate the model’s ro-
bustness and adaptability across different geological envi-
ronments and construction scenarios, the following aspects
should be discussed.

https://doi.org/10.5194/gi-14-211-2025
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Table 6. Comparison table of hydraulic fracturing in-situ stress measurement results.

Depth (m) Fracturing parameters (MPa) ‘ Stress Value (MPa)

Py(m)  Ps(m) ITm Pp(w) Ps(w) Ty | on(m) on(m) op(w) op(w) Oy
145.2-146.7  22.33 8.62 10.59 1321 7.34 7.59 12.93 8.62 12.8 734 37.92
149.8-151.3 16.77 8.75 4.26 14.1 7.86 4.26 12.53 8.75 12.57 7.86  39.08
157.0-158.5  21.55 12.6 6.21 13.17 8.82 6.21 21.24 12.6 14.6 8.82 4095
163.4-1649  14.67 10.6 7.78  11.84 7.12 7.78 18.58 10.6  12.29 7.12  42.62
172.3-173.8 304 123 1423  12.03 6.13  14.23 19.24 12.3 10.62 6.13 4493
182.0-183.5 2949 12.67 16.25 9.71 5.84 16.25 23.22  12.67 10.37 5.84 4745
200.6-202.1 2945 1292 1549 1295 854 1549 | 23.18 1292 14.73 8.54 5238
214.6-216.1  30.76  14.81 16.19 9.3 720 16.19 | 28.15 14.81 12.33 7.20 5591
220.5-222.0  30.27 18.37 10.8  11.08 791 10.8 33.89 1837  13.25 791 5745
235.1-236.6  29.51 20.68 10.92  14.08 9.37 1092 | 31.58 20.68 16.88 937 61.24
242.8-2443  28.63 1692 11.89 12.12 8.68 11.89 | 3206 1692 15.06 8.68 63.24
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1. Cross-Validation with diverse datasets: by merging
cross-validation with datasets spanning various geolog-
ical settings and construction conditions with field tri-
als in multiple locations, we can comprehensively as-
sess the model’s performance in real-world applica-
tions. This integrated method not only identifies poten-
tial weaknesses or biases in the model but also provides
empirical data from different geological environments,
thereby enabling targeted adjustments to improve gen-
eralization.

2. Incorporation of additional features: to further bolster
the model’s adaptability, we advocate for the incorpo-
ration of additional features that encapsulate the vari-
ability in geological and construction parameters. These
features may encompass rock anisotropy, formation
fluid properties, and dynamic construction variables,
among others. In parallel, establishing a framework for
continuous model updating based on new data and feed-
back from field applications ensures the model evolves
with emerging geological and construction challenges,
maintaining its accuracy and relevance.

In summary, these strategies aim to enhance the model’s gen-
eralization capability and reliability across a broad spectrum
of practical applications. Future efforts will concentrate on
expanding the dataset, conducting extensive field trials, and
refining the model to address the intricacies of real-world hy-
draulic fracturing operations.

6 Engineering application

The MSZK and ZPZK boreholes are serving as adjacent
boreholes for in-situ stress testing within a hydraulic inves-
tigation and design project, both boreholes were designed
to a depth of 275 m, with hydraulic fracturing in-situ stress
measurements conducted following standardized operational
procedures (Zhang, 2018). A total of 11 fracturing intervals

https://doi.org/10.5194/gi-14-211-2025

were implemented within the depth range of 145.2-244.3 m
across both boreholes, with key fracturing parameters and
results summarized in Table 7. The MSZK maintained favor-
able wellbore conditions, enabling the use of clean water as
fracturing fluid. In contrast, the ZPZK required drilling mud
(density: 1.5 gcm™3, viscosity: 235 mPas) for wall stabiliza-
tion due to severe borehole collapse. A comparative analy-
sis of hydraulic fracturing stress measurement outcomes be-
tween MSZK and ZPZK under distinct fracturing fluid con-
ditions is presented in Table 6, demonstrating significant dif-
ferences in in-situ stress measurement outcomes attributable
to fluid medium variations.

Here, Py(m): ZPZK fracturing pressure by mud; Pg(m):
ZPZK closure pressure by mud; 7: rock tensile strength;
Py(w): MSZK fracturing pressure by water; Ps(w): MSZK
closure pressure by water; o(m): ZPZK maximum horizon-
tal principal stress; on(m): ZPZK minimum horizontal prin-
cipal stress; og(w): MSZK maximum horizontal principal
stress; op(w): MSZK minimum horizontal principal stress;
oy: vertical principal stress (the overburden rock unit weight
was assigned as 26.5 kN m ™).

Figure 7 demonstrates the comparative curves of max-
imum and minimum horizontal principal stresses between
ZK7ZP(mud) and MSZK(water). The analysis reveals sig-
nificantly higher in-situ stress calculation results for ZKZP
compared to MSZK. The average percentage differences
reach 39.32 % for maximum horizontal principal stress and
39.61 % for minimum horizontal principal stress within
equivalent depth intervals. Considering the close proximity
of these two boreholes (only 50 m apart) and their compa-
rable geological conditions with identical lithological char-
acteristics in surrounding strata, this substantial discrepancy
strongly suggests that the drilling mud medium in bore-
holes exerts considerable influence on measurement out-
comes such as rock breakdown values. To address this sys-
tematic bias, the MLP-KFold model was subsequently em-
ployed to calibrate critical output parameters (fracture pres-

Geosci. Instrum. Method. Data Syst., 14, 211-224, 2025
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Figure 7. Comparative curves of maximum and minimum horizontal principal stresses between ZKZP(mud) and MSZK(water).

Table 7. Comparison table of hydraulic fracturing in-situ stress measurement results after compensation.

Depth(m) Fracturing Parameters MPa ‘ Stress Value (MPa)

Py(m_c) Ps(m_c) Im Pp(w) Ps(w) Ty | op(m_c) op(m_c) oH(W) op(w) oy
145.2-146.7 14.1 6.81 10.59 13.21 7.34 7.59 13.92 6.81 12.8 7.34 3792
149.8-151.3 12.23 7.52 4.26 14.1 7.86 4.26 14.59 7.52 1257 7.86  39.08
157.0-158.5 17.18 7.86 621  13.17 8.82 6.21 12.61 7.86 14.6 8.82  40.95
163.4-164.9 15.38 5.79 778 11.84 7.12 7.78 9.77 579 1229 7.12  42.62
172.3-173.8 18.82 747 1423  12.03 6.13  14.23 17.82 747  10.62 6.13 4493
182.0-183.5 18.63 5.76  16.25 9.71 5.84 16.25 14.9 5.76  10.37 5.84 4745
200.6-202.1 20.81 697 1549 1295 8.54 1549 15.59 697 1473 8.54 52.38
214.6-216.1 20.44 6.73 16.19 9.3 720 16.19 15.94 6.73 12.33 720 5591
220.5-222.0 20.87 8.55 10.8  11.08 791 10.8 15.58 8.55 13.25 791 5745
235.1-236.6 22.97 9.29 1092  14.08 9.37 10.92 15.82 929  16.88 9.37 61.24
242.8-244.3 20.7 7.82 11.89 12.12 8.68 11.89 14.65 7.82 15.06 8.68 63.24

sure and closure pressure values). The refined in-situ stress
calculation results after correction are presented in Table 7.

Here, (m_c) represents the pressure value of mud as the
fracturing fluid after the MLP-KFold correction. The com-
parative curves of maximum and minimum horizontal prin-
cipal stresses between the calibrated ZKZP and MSZK are
presented in Fig. 8. As illustrated in Fig. 9, the discrepancy
in calculated in-situ stress values between the two boreholes
shows a marked reduction after model calibration. Within
equivalent depth intervals, the maximum horizontal princi-
pal stress difference decreases to 17.84 %, while the min-
imum horizontal principal stress difference demonstrates a
more pronounced improvement, achieving a remarkable de-
crease to 10.58 %.

Geosci. Instrum. Method. Data Syst., 14, 211-224, 2025

7 Conclusions

This paper presents a rock mechanics measurement result
correction model based on MLP KFold, developed from a
dataset constructed via hydraulic fracturing simulation ex-
periments. The model demonstrates superior performance in
addressing measurement deviations of hydraulic fracturing-
induced fracture and closure pressures, enhancing the accu-
racy of in-situ stress calculations. By combining MLP with
K-Fold cross-validation, this study offers a data-efficient so-
lution for in-situ stress measurement correction and optimiz-
ing regional stress profile assessments. The key findings are
as follows:

1. The MLP KFold model shows outstanding predictive
ability on small-scale datasets, achieving an R’ of

https://doi.org/10.5194/gi-14-211-2025
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Figure 8. The comparative curves of maximum and minimum horizontal principal stresses between the calibrated ZKZP and MSZK.

0.9937, surpassing benchmark models by A+1.89 %—
+5.34 %, and its low error metrics (MAE=0.518,
MSE =0.646, and maximum error = 1.945 MPa) con-
firm its predictive accuracy and robustness with limited
experimental data.

2. The model significantly reduces average discrepancies
in principal stress calculations under varying fracturing
fluid conditions (og: —21.48 %; oh: —29.03 %), effec-
tively addressing errors from fracturing fluid property
differences. This validates its engineering applicability
and effectiveness in hydraulic fracturing stress measure-
ments under complex field conditions.
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Appendix A

Table A1. Optimal design table of values for the hydraulic fracturing simulation experiments.

Y. Liu et al.: The correction method of in-situ stress testing based on MLP-KFold

No. Influencing factors Experimental results
Density  Viscosity Injection  Tensile | Fracturing  Closure

Rate  strength pressure  pressure

1 1.01 1 0.69 14.42 18.7 2.14
2 1.01 1 1.2 12.92 18.0 2.54
3 1.01 1 1.2 9.48 22.0 6.26
4 1.01 1 0.69 8.3 29.0 10.35
5 1.01 1 0.69 7.6 29.0 10.7
6 1.01 1 0.69 6.38 28.0 10.81
7 1.01 1 0.55 4.5 32.1 13.8
8 1.01 1 0.69 2.8 31.0 14.1
9 1.01 1 0.69 3.06 31.5 14.22
10 1.01 1 4.25 16.3 24.1 39
11 1.01 1 3.88 18.4 27.0 4.3
12 1.01 1 3.15 18.8 30.0 5.6
13 1.01 1 4.25 16.6 28.2 5.8
14 1.01 1 3.88 6.6 25.0 9.2
15 1.01 1 3.88 15 36.0 10.5
16 1.01 1 3.88 11.82 34.0 11.09
17 1.01 1 3.15 18.2 48.0 14.9
18 1.01 1 4.25 8 38.0 15
19 1.01 1 3.88 132 44.0 154
20 1.01 1 0.48 9.4 8.22 0
21 1.01 1 0.48 9.76 10.95 1.19
22 1.01 1 0.48 7.65 8.84 1.19
23 1.01 70.2 0.6 8.99 10.17 1.18
24 1.01 70.2 0.6 5.85 7.03 1.18
25 1.01 70.2 0.6 8.33 9.5 1.18
26 0.88 130.6 0.55 11.88 13.07 1.19
27 0.88 130.6 0.55 12.6 13.78 1.18
28 0.88 130.6 0.55 9.98 11.22 1.19
29 1.51 171.6 0.17 9.57 12.74 1.87
30 1.51 171.6 0.17 9.07 12.25 1.88
31 1.51 171.6 0.17 10.37 13.54 1.87
32 1.51 284.5 0.35 9.64 12.83 1.89
33 1.51 284.5 0.35 12.31 15.47 1.89
34 1.51 284.5 0.35 9.83 12.99 1.89
35 1.51 284.5 0.35 12.27 15.44 1.89
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