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Abstract. Recently, there has been an increase in use of Un-
manned Aerial Systems (UASs) as platforms for conducting
fundamental and applied research in the lower atmosphere
due to their relatively low cost and ability to collect samples
with high spatial and temporal resolution. Concurrent with
this development comes the need for accurate instrumenta-
tion and measurement methods suitable for small meteoro-
logical UASs. Moreover, the instrumentation to be integrated
into such platforms must be small and lightweight. Whereas
thermodynamic variables can be easily measured using well-
aspirated sensors onboard, it is much more challenging to
accurately measure the wind with a UAS. Several algorithms
have been developed that incorporate GPS observations as
a means of estimating the horizontal wind vector, with each
algorithm exhibiting its own particular strengths and weak-
nesses. In the present study, the performance of three such
GPS-based wind-retrieval algorithms has been investigated
and compared with wind estimates from rawinsonde and so-
dar observations. Each of the algorithms considered agreed
well with the wind measurements from sounding and sodar
data. Through the integration of UAS-retrieved profiles of
thermodynamic and kinematic parameters, one can investi-
gate the static and dynamic stability of the atmosphere and
relate them to the state of the boundary layer across a vari-
ety of times and locations, which might be difficult to access
using conventional instrumentation.

1 Introduction

Winds within the planetary boundary layer (PBL) evolve
and vary much faster than winds in the rest of the earth’s
atmosphere. In the morning, the wind speed near the sur-
face increases as the convective boundary layer (CBL) devel-
ops and mixes higher momentum air from aloft downward.
Conversely, around sunset, the surface wind speed decreases
quickly when the boundary layer decouples as a near-surface
inversion develops due to radiational cooling (Barthelmie
et al., 1996). During the night, in many places such as the
Great Plains of the United States, a low-level jet (LLJ) of-
ten develops within a few hundred meters above the ground
which persists until the morning when the CBL regrows
and momentum is again mixed towards the surface (Wexler,
1961; Bonner, 1968; Parish and Oolman, 2010). The strength
of the LLJ is often amplified by an ageostrophic component
from flow over sloping terrain (Holton, 1967; Shapiro and
Fedorovich, 2009). The process of decoupling at night typ-
ically results in low wind speeds at the surface with high
wind speeds at the top of the stable boundary layer in the
LLJ, while mixing during the daytime results in a relatively
uniform wind with height with lower wind speeds near the
surface due to frictional effects.

The flow within the PBL is important for many differ-
ent applications. Understanding the wind patterns within the
boundary layer is vital for accurate air quality and wind en-
ergy forecasts (Endlich et al., 1982; Seaman and Michelson,
2000; Emeis et al., 2007; Kondragunta et al., 2008). Study-
ing these patterns can be difficult and often requires a vari-
ety of in situ measurements from instrumented towers, which
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178 T. A. Bonin et al.: Wind retrieval algorithms for small UASs

can only monitor the lower portions of the PBL. Radars, li-
dars, sodars, wind profilers, and other remote sensing tools
are used to measure PBL variables continuously without
much human intervention, but are expensive to purchase and
each instrument has its own limitations in what variables
it can measure for particular height ranges. Additionally,
thermodynamic variables are difficult to measure accurately
with most remote sensing instruments. Hence, unmanned
aerial systems (UASs) are unique instruments for conduct-
ing boundary-layer research. These platforms are capable of
measuring both thermodynamic and flow parameters within
the PBL, while minimizing expenses and providing flexibil-
ity to the user.

Within the past decade, there has been an increasing num-
ber of UASs developed and used for atmospheric sensing
(i.e.,Holland et al., 2001; Shuqing et al., 2004; Spiess et al.,
2007; van den Kroonenberg et al., 2008; Reuder et al., 2009;
van den Kroonenberg et al., 2012; Houston et al., 2012). The
nature of the research topics investigated by UASs varies as
much as the platforms themselves. Larger more robust plat-
forms, such as the Aerosonde, are capable of carrying exten-
sive instrumentation packages and conducting long research
missions, such as investigating the eye wall of tropical cy-
clones (Lin, 2006). Most UASs that have been developed re-
cently are more focused on investigating the PBL. The mete-
orological mini unmanned aerial vehicle (M2AV), designed
by van den Kroonenberg et al.(2008), has a wingspan of
2 m and is capable of taking thermodynamic as well as high-
resolution 3-D wind measurements using a 5-hole probe. It
has been used primarily to investigate the PBL, such as mea-
suring the temperature structure-function parameter (van den
Kroonenberg et al., 2012). However, the 5-hole probe for the
M2AV is relatively expensive costing∼ C 6000 (J. Bange,
personal communication, 2009), while the total of other com-
ponents for a small UAS is∼ C 800. Dias et al. (2012)
constructed the Aerolemma, which collects thermodynamic
data, and utilized it to calculate convective turbulence scales
and the entrainment flux. Several low-cost UASs have also
been developed recently for PBL research. The Small Un-
manned Meteorological Observer (SUMO) utilizes an off-
the-shelf airframe into which meteorological sensors can be
placed, such as a temperature and humidity sensor and a
barometer, for thermodynamic profiling of the PBL (Reuder
et al., 2009).

Small UASs can be relatively inexpensive and have the
ability to collect samples with high spatial and temporal res-
olution (Bonin et al., 2013). Flight plans for autonomous ve-
hicles that utilize autopilots can be customized to examine
particular meteorological phenomena and can be adapted “on
the fly” to account for evolving conditions or to focus on a
particular region of interest. For example, a flight trajectory
configured for a quick ascent rate could be used to rapidly
penetrate the daytime PBL under convective conditions when
the PBL is typically well mixed. At night, the PBL is usu-
ally statically stable and contains sharp vertical gradients in

its structure. Therefore a slower ascent rate might be more
appropriate as a means of acquiring better vertical resolu-
tion over a shallow layer. Since UASs are being increasingly
utilized for meteorological sensing, accurate instrumenta-
tion and observation methods must be developed for these
platforms.

Recently, the Advanced Radar Research Center (ARRC)
at the University of Oklahoma (OU) has developed a small
low-cost UAS, the SMARTSonde (Small Multifunction Re-
search and Teaching Sonde), for boundary-layer research
(Chilson et al., 2009). The SMARTSonde platform uses an
open source autopilot system, Paparazzi, for autonomous
flight. The Paparazzi autopilot hardware package comes with
a GPS receiver which provides real-time information on the
position of the SMARTSonde. The autopilot uses these data
along with pitch and roll estimates from infrared thermopiles
or an inertial measurement unit (IMU) in a feedback loop to
adjust the flight control surfaces accordingly to maintain a
preconfigured flight plan (Brisset et al., 2006). The airframe
used for the flights in the study is the NexSTAR EP Select,
which is an off-the-shelf radio-controlled airplane. It has a
wingspan of 1.74 m and weighs∼ 3.5 kg. It is powered by
a brushless electric motor to avoid potential contamination
of the sensors from fuel used to power a gas engine. The
typical airspeed of the NexSTAR during scientific missions
varies between 15–20 m s−1 and flights last up to 25 min.
The SMARTSonde package is described more thoroughly by
Bonin et al.(2013).

The SMARTSonde is capable of directly measuring pres-
sure, temperature, relative humidity, and trace gas concen-
trations, such as ozone. An SHT75 is positioned underneath
the wing to measure temperature accurately within 0.3 K
and relative humidity within 1.8 %. Static pressure is mea-
sured within 1.5 Pa at 1 Hz by an SCP1000 that is mounted
inside the fuselage. Thermodynamic quantities alone have
been used to examine the boundary-layer evening transition
(Bonin et al., 2013). While thermodynamic variables can be
measured during flights from onboard sensors, information
about the wind speed and direction is not as easily obtained.
Other methods of retrieving the wind information from the
UAS flight are necessary.

The three algorithms under investigation in this paper are
(i) the best curve fitting method, (ii) no-flow-sensor, and
(iii) the Paparazzi autopilot output, as discussed below. These
algorithms are used to retrieve the horizontal 2-D wind vec-
tor. The first algorithm, best curve fitting, is based loosely on
the initial wind retrieval method used by the SUMO group
(Reuder et al., 2009), who found the wind speed by dividing
the difference between the maximum and minimum ground
relative speed by two. However, instead of simply using the
maximum and minimum ground speeds around a circle, all
GPS derived heading and ground speed measurements from
around the circle are used to retrieve the wind profile. The
second method is the “no-flow-sensor”, detailed byMayer
et al. (2012). This algorithm uses a series of ground speed
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and azimuthal movement to estimate the wind. The third al-
gorithm discussed is integrated into the Paparazzi autopilot
system and provides a real-time estimate of the wind speed
and direction to the user. These algorithms are based on mea-
surements from an onboard GPS unit. Other ways to measure
the wind exist, but require different flight plans than those
used by the SMARTSonde or more expensive instruments.
For instance,Shuqing et al.(2004) estimated the wind based
on the drift of a circular flight path if the aircraft maintains
a constant roll rate. The middle of the circle would trans-
late downstream with the wind. More complex sensors for
measuring the wind have also been devised (e.g.,van den
Kroonenberg et al., 2008; Premerlani and Bizard, 2009). The
performances of these different algorithms have not been
thoroughly compared against each other or with other instru-
mentation prior to this paper.

While many of the different wind algorithms have been
developed for specific platforms, most should work across
platforms provided the proper instrumentation. Profiles of
the mean horizontal wind can be retrieved using these al-
gorithms. These can be used to complement the thermody-
namic variables to calculate boundary-layer stability param-
eters, such as the Richardson number. Additionally, exam-
ining a progressive series of high-resolution wind profiles in
the evening could be used to study the development of a LLJ.

2 Wind retrieval algorithms

The primary use of the three algorithms is to obtain a vertical
profile of the mean horizontal wind. Since all of the methods
involve temporal and spatial averaging, they are not useful
for determining small fluctuations in the components of the
wind over short timescales. However, wind shear in the PBL
can be quantified. Each of these methods simply requires in-
stantaneous speed and ground track direction provided by an
onboard GPS as input. The retrieval algorithms are based on
the fact that the atmospheric wind vector is the sum of the
ground speed and airspeed vectors, all of which are defined
in the earth’s coordinate system. This contrasts to the cal-
culation of the wind from many full-sized aircraft and some
small- and mid-sized UAS (e.g.,van den Kroonenberg et al.,
2008; Martin et al., 2011), which have the payload capacity
to carry pressure probes to accurately determine the airflow
around the aircraft (e.g.,Williams and Marcotte, 2000). With
this additional information, the airspeed is measured directly
from the pressure probe in reference to the aircraft, so a co-
ordinate transformation of the airspeed is needed to calculate
the wind speed.

Since only the information from a GPS is used as input,
airspeed is not known and needs to be treated as a constant.
Therefore, the throttle is maintained at a certain value and an-
gle of attack needs to be assumed to be roughly constant over
the integration time of the wind calculation for airspeed to re-
main invariable. In the future, a pitot tube could be installed
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Fig. 1. Diagram showing the components affecting ground-relative
movement of the UAS platform used in Eq. (1). The ground-relative
velocity is the summation of the airspeed and plane relative wind
vectors.

to improve wind speed estimates by having measurements of
the true airspeed.

2.1 Best curve fitting

One method of retrieving information about the wind from a
SMARTSonde flight is by fitting a curve to the UAS’s ground
relative speed provided by the onboard GPS unit, which is
called the best curve fitting method (BCF). This method is
similar to the wind algorithm used byReuder et al.(2009).
The magnitude of the ground-relative speed,S, can be ex-
pressed as

S2
= (a + v cos(ψ − θ + 180))2 + (v sin(ψ − θ + 180))2 , (1)

whereψ is the airplane heading with north being 0◦, θ is the
wind direction using standard meteorological convention,a

is the airspeed of the aircraft, andv is the wind speed. A
diagram showing the components of Eq. (1) is provided in
Fig. 1. For this method,a can be treated as a constant if the
aircraft is flying with a constant throttle and pitch. Although
it must be noted that the true airspeed will vary slightly as the
angle of attack changes dynamically, a mean airspeed over a
circle flown by the UAS exists based on the mean angle of
attack.

The values ofS and the ground track angle are known
since they are recorded every second from the GPS. It is im-
portant to note that ground track angle is different from the
heading,ψ , as the difference between them is the sideslip
angle,β, as shown in Fig.1. However, it is possible to back
out the true heading of the aircraft from the ground track an-
gle, since the ground track vector is the summation of the air-
speed and wind vectors. Based on vector math and trigonom-
etry from Fig.1, β can be expressed as

β = tan−1
(

v sin(ψ − θ + 180)

v cos(ψ − θ + 180) + a

)
, (2)
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Fig. 2. A trace of a flight path on 17 November 2011. The shad-
ing indicates the SMARTSonde’s ground relative speed (m s−1).
On this day, the wind direction was northerly, becoming more east-
erly with height. The winds affect on the aircraft’s speed can be
seen, as the aircraft moved faster with a tailwind and slower with a
headwind.

where the numerator is the crosswind and the denominator is
the summation of the airspeed and the headwind.ψ is found
by taking the difference between the ground track angle and
β. This relationship between the ground track withψ can
be used in the iterative process of determining the horizontal
wind through the polynomial curve fitting.

With this information, a polynomial curve fitting can be
performed to determine the values ofa, v, andθ . While the
fitting may be done as frequently as desired, it may not pro-
vide an accurate estimate of the wind speed and direction if
the analyzed dataset is windowed too narrowly. Ideally, the
dataset would contain a large number of data points over a
wide range ofψ . Generally, the fitting is performed each time
the aircraft completes a circle, providing the entire range of
ψ that is needed for a representative fit of Eq. (1) to the data.

To illustrate the application of the curve fitting method,
SMARTSonde data from a helical ascent are depicted in
Fig. 2. On this particular day, the prevailing winds were
northerly. When the aircraft travels north, the headwind de-
creases the ground-relative speed. Conversely, the ground-
relative speed of the SMARTSonde increases when flying
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18

Fig. 3.Example fitting of the equation in the BCF. This corresponds
to the circle between 207 and 218 m a.g.l. The curve indicates the
best fit of Eq. (1) and the circles represent the data from the GPS
unit. Airspeed (a) is marked by the solid line, wind speed (v) is
noted by the arrows, and wind direction (θ ) is shown by the dash-
dotted line.

southward. Each circle in the flight can be individually ex-
amined using the BCF. Equation (1) is fitted to the instanta-
neous ground-relative velocities. A sample fitting of the data
from one particular circle is shown in Fig.3. By applying
this fitting, the wind speedv and wind directionθ for the av-
erage height of the aircraft during the circle is retrieved. This
fitting is applied to every circle during the SMARTSonde’s
ascent so that a wind profile of the PBL can be constructed,
as shown in Fig.4.

The aircraft does not need to fly in a circle to utilize the
BCF. The fitting could work with most patterns as long as the
airplane changes heading throughout the flight. However, the
algorithm is able to provide the most frequent and accurate
updates of a wind estimate when a circular flight path is used.

2.2 No-flow-sensor method

By using Nelder–Mead optimization (Nelder and Mead,
1965), the wind speed and direction can be retrieved through
an alternative method. This method was originally proposed
by Mayer et al.(2012) as the “no-flow-sensor”. Similar to the
BCF, this algorithm utilizes an optimization scheme that re-
lies only on the ground-relative velocity from the GPS unit.
The airspeeda is defined as

a =
1

n

n∑
i=1

||S(i) − W ||, (3)

wheren is the number of the GPS measurements that are
used in the optimization,S consists of the ground-relative
velocity vector given by the GPS, andW is the wind vec-
tor. All of the quantities are relative to the earth’s coordinate
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Fig. 4. Derived wind profile by using the BCF on the flight shown
in Fig. 2.

system. Assuming perfect measurements and a constant air-
speed and wind speed,S − W − a should be equal to zero.
Since measurements are not perfect and the true wind fluctu-
ates due to turbulence,S − W − a does not necessarily equal
zero; however, sincea andS are known values,W can be
solved. To accomplish this, a standard deviation quantity,σ ,
is defined by

σ =
1

n

n∑
i=1

(||S(i) − W || − a)2, (4)

which is minimized using a Nelder–Mead optimization
scheme.

For the wind retrievals in this study, 151 GPS-derived val-
ues are used in the optimization scheme. This number of
ground-relative velocities is based on experimentation with
different sample sizes. Since the GPS measurements are sam-
pled at 5 Hz, this corresponds to around 30 s of flight time.
Using a lower number of points,n, the wind data become
noisy. With a larger sample size, small changes in the wind
vector with height are not resolved. To date, theu and v
components of the wind have been reliably calculated for
SMARTSonde flights using this method. However, due to the
fact that thew component is typically smaller than the noise
in the GPS data, the vertical wind has not been resolved using
this method.

Utilizing the no-flow-sensor, the wind speed can be esti-
mated whenever the aircraft is maintaining a constant air-
speed. The aircraft could be following any flight pattern,
along a straight path or with many turns. The frequency of
independent estimates of the wind speed is a function of
the number of points used in the optimization scheme. This
quantity may vary depending on the platform and the accu-
racy of the GPS receiver.

2.3 Paparazzi wind algorithm

The Paparazzi autopilot program used by the SMARTSonde
for autonomous flight provides an estimate of the wind speed
and direction at the flight level. These values are reported ev-
ery ten seconds. However, the wind algorithm in use with the
autopilot software is not well documented. It uses some form
of the no-flow-sensor methodology discussed above, but the
number of points,n, that are used in the optimization are not
reported. Paparazzi provides the only real-time estimate of
the wind speed, as the other algorithms are used to process
the data after the flights are complete. Typically, the estimate
of the wind speed from the Paparazzi are erratic for∼ 30 s
after the aircraft begins autonomous flight, while the other al-
gorithms worked well during this time interval. A relatively
accurate first guess would minimize the computing time and
iterations needed to solve for the wind vector.

3 Algorithm performance and comparison

3.1 Comparison with rawinsonde

The three wind algorithms have been used to derive wind
measurements for profiles of the PBL for comparison with
a nearby rawinsonde and Mesonet station. The rawinsonde
wind profiles used for comparison were from Norman, Ok-
lahoma (OUN). Rawinsonde wind measurements are speci-
fied to be accurate to within 1 m s−1 for eachu andv com-
ponent. The upper-air station is located less than a kilome-
ter away from where the SMARTSonde flights for this study
were conducted. The ground near the rawinsonde site is rel-
atively flat, so terrain effects are minimal. Therefore, the
rawinsonde observations are expected to be representative
of the SMARTSonde observations. While the times of the
radiosonde launches did not exactly match the times of the
SMARTSonde profiles, the profiles compared were always
within 2 h of each other.

The Oklahoma Mesonet consists of 110 stations through-
out the state that measure air temperature, humidity, baro-
metric pressure, wind speed and direction, rainfall, solar ra-
diation, and soil temperatures (Brock et al., 1995; McPherson
et al., 2007). The National Weather Center (NWC) Mesonet
was used for additional comparison. The Mesonet station is
maintained by the Oklahoma Climatological Survey (OCS);
data are archived for public use with one minute resolution.
The main advantage of using the NWC Mesonet observation
is that the wind data, which is measured at 10 m a.g.l. (above
ground level), at the moment of the SMARTSonde’s takeoff
can be used for comparison. This shows if the 10 m wind
changes significantly between the rawinsonde observation
time and the time of the SMARTSonde flight. Wind speed
and direction measurements from the NWC Mesonet station
are accurate within 0.3 m−1 and 3◦, respectively.
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Fig. 5: Four examples of typical wind profiles using the different algorithms compared against the

NWC Mesonet observation at 10 m (NWC, black square) and the rawinsonde (OUN, solid black line

with asterisks). NFS is the no-flow-sensor (red line), PPRZ is the paparazzi output (green line), BCF

is the best curve fitting method (blue line).

Table 1: Root mean squared errors (RMSE) for algorithms compared to rawinsonde observations for

all flights within 1 hour of rawinsonde launch time at heights above 300 m AGL

Algorithm Wind Speed Wind Direction u-comp v-comp |V |

(m s−1) (degrees) (m s−1) (m s−1) (m s−1)

BCF 1.10 15.10 1.13 1.20 1.65

No-flow-sensor 1.24 14.83 1.07 1.33 1.71

Paparazzi 1.35 15.90 1.31 1.43 1.94
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Fig. 5.Four examples of typical wind profiles using the different algorithms compared against the NWC Mesonet observation at 10 m (NWC,
black square) and the rawinsonde (OUN, solid black line with asterisks). NFS is the no-flow-sensor (red line), PPRZ is the paparazzi output
(green line), BCF is the best curve fitting method (blue line).

The great majority of the 60 helical ascent flights con-
ducted for this study occurred during periods when the
synoptic-scale forcing was weak, absent of nearby frontal
zones that could quickly change the PBL wind profile. Thus,
conditions during the balloon launch should be similar to
conditions during SMARTSonde flights, provided the two
times are within a few hours of each other. Hence, it is rea-
sonable to make direct comparisons between rawinsonde and
SMARTSonde observations.

Shown in Fig.5 are four typical wind profiles calculated
using the three methods mentioned above. They are com-
pared with observations from the Norman sounding (OUN)
and the NWC Mesonet station. Note that the rawinsonde data
are for the official launch time, 00:00 UTC, for all of the
cases shown. However, the sondes are usually observed being
launched earlier, at 23:00 UTC. Figure5a depicts an event on
12 February 2010 when there was a noticeable wind direction
shift from southerly to westerly between 300–500 m a.g.l.
Based on the 925 mb map and soundings (not shown), this

wind shift was associated with an elevated mixed layer mov-
ing over the cooler air near the surface. All of the wind data
produced using the SMARTSonde’s algorithms agreed well
with the rawinsonde observation. Another wind shift can also
be seen in Fig.5b. On this day, the winds were much lighter
than the previous case, but both the rawinsonde and the wind
algorithms still captured the low-level wind shear. In Fig.5c,
a noticeable feature was the weaker winds that were ob-
served below 100 m a.g.l. This demonstrates that the algo-
rithms are capable of retrieving weaker winds closer to the
ground when the SMARTSonde begins a helical ascent at
a low altitude. In the final example shown in Fig.5d, once
again weaker winds are observed near the surface. This flight
took place∼ 30 min prior to the rawinsonde launch. Below
200 m a.g.l., the SMARTSonde and rawinsonde observations
differ in wind direction. However, the SMARTSonde’s low-
est observation from all three algorithms closely matches the
wind direction at the NWC Mesonet at the takeoff time.
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The four example plots comparing algorithm output
against the sounding, as well as the many other compar-
isons not shown here, generally illustrate good agreement
between the rawinsonde observations and the different wind
algorithms. Differences in wind profiles from the UAS and
rawinsonde can be attributed to unreliable rawinsonde data
below 300 m as well as evolution of the PBL wind profile
during the evening transition period between rawinsonde and
UAS observations. To better determine the accuracy of the
algorithms, error statistics were calculated from all of the
flights that took place within an hour of a rawinsonde being
launched.

Table 1 provides the root mean squared errors (RMSE)
between the rawinsonde wind data and UAS retrievals us-
ing 22 rawinsonde and UAS profiles. Since rawinsonde wind
observations under 300 m a.g.l. are typically unreliable, data
below this height were not used in the computation of er-
ror statistics in Table1. The last column,|V |, is the mag-
nitude of the vectorized RMSE for the wind, utilizing the
vector addition of theu andv error components. Based on
these numbers, both the no-flow-sensor and BCF provide
measurements more similar to the rawinsonde than the Pa-
parazzi algorithm in nearly every category. While the BCF
has a lower error for the wind speed, the estimate of the wind
direction from the no-flow-sensor has a lower RMSE. Both
could be used to measure the 2-D wind vector with nearly
identical errors. The RMSE for each of the wind components
is slightly larger than the error for the rawinsonde system,
which is 1 m s−1 for u andv. This is not surprising consid-
ering that the rawinsonde observations have error themselves
and the winds may change slightly between the measurement
times.

Overall, the three algorithms themselves were in good
agreement with each other. No algorithm appeared to per-
form drastically better than any other when compared against
the rawinsonde, but each algorithm has its own advantages.
The BCF provides the faster independent updates when
the aircraft is flying in a circular pattern compared to the
no-flow-sensor. Conversely, the no-flow-sensor method still
works well when the aircraft is flying in a straight line, while
the BCF does not work well in that condition.

3.2 Comparison with sodar

A ScintecXFAS sodar operates on the roof of the NWC and
offers yet another wind dataset for comparison. The sodar
provides 10 m vertical resolution estimates of the wind vector
averaged over a 15 min time span. The lowest range gate is
30 m above the instrument and retrievals can provide data up
to 400 m under ideal conditions, although the typical range
is 200 m. The maximum height range varies drastically de-
pending on atmospheric conditions and noise levels of the
environment. Wind speed and direction measurements are
specified to be accurate within 0.3 m s−1 and 1.5◦. However,
measurement quality is sensitive to the signal-to-noise ratio.

Table 1. Root mean squared errors (RMSE) for algorithms com-
pared to rawinsonde observations for all flights within 1 h of rawin-
sonde launch time at heights above 300 m a.g.l.

Algorithm Wind Wind u-comp v-comp |V |

speed direction (m s−1) (m s−1) (m s−1)
(m s−1) (degrees)

BCF 1.10 15.10 1.13 1.20 1.65
No-flow-sensor 1.24 14.83 1.07 1.33 1.71
Paparazzi 1.35 15.90 1.31 1.43 1.94

Given its continuous data stream and its spatial resolution
near the ground, wind measurements from the NWC sodar
are well suited for validating wind retrievals from SMART-
Sonde flights.

A series of flights were conducted on the mornings of
31 October and 17 November 2011 during the morning tran-
sition of the boundary layer. The data from several of the
flights and the sodar are shown in Fig.6. On the morning of
31 October, a weak LLJ was observed by the SMARTSonde
with a peak wind speed around 150 m a.g.l. Below this, there
was an area of strong wind shear. Although the sodar did
not retrieve a wind estimate much above 150 m a.g.l., the
winds below this height agreed very well with those derived
from the SMARTSonde flight. Concurrently, there was good
agreement between both the sodar and SMARTSonde wind
observations during the morning of 17 November. The wind
speed increased rapidly with height from 100 to 200 m a.g.l.,
as shown with measurements from both instruments. Al-
though there are some differences in the observed wind di-
rection between the two profiles, both tended to show the
wind shifting from northerly to more easterly with height.
Due to technical problems with the sodar, there have only
been limited opportunities for comparisons between the in-
struments so far; however, observations visually have shown
good agreement.

4 Example application

4.1 Calculating the Richardson number

Since the SMARTSonde is capable of measuring both the
wind and thermodynamic variables, it is possible to cal-
culate the gradient Richardson number (Ri). The gradient
Richardson number is defined as

Ri =

g
θ
∂θ
∂z(

∂u
∂z

)2
+

(
∂v
∂z

)2
, (5)

whereg is gravity,θ is potential temperature,∂θ
∂z

is the verti-

cal potential temperature gradient,∂u
∂z

is the vertical gradient

of the zonal wind, and∂v
∂z

is the vertical gradient of the merid-
ional wind.Ri is a measure of the dynamic instability and can
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Fig. 6: Comparisons of wind profiles from a Scintec sodar (black) with derived wind speeds and

directions from SMARTSonde flights. Algorithm acronyms in the legend are same as in Fig. 5. Data

from a) and b) were taken on 31 October 2011 at 10:15 local time (LT) while data from c) and d)

were taken on 17 November 2011 at 8:36 LT.
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Fig. 6. Comparisons of wind profiles from aScintecsodar (black) with derived wind speeds and directions from SMARTSonde flights.
Algorithm acronyms in the legend are same as in Fig.5. Data from(a) and(b) were taken on 31 October 2011 at 10:15 LT, while data from
(c) and(d) were taken on 17 November 2011 at 08:36 LT.

be used to indicate the formation of turbulence. WhenRi is
less than a critical Richardson number, the flow is viewed
as being dynamically unstable, allowing turbulence to de-
velop or persist. IfRi is greater than the critical Richardson
number, then the flow is dynamically stable and turbulence
is expected to decay. In literature, the value of the critical
Richardson number varies from 0.2–1 or higher (Galperin
et al., 2007), but the value is usually taken as 0.25 according
to The Glossary of Meteorology of the American Meteoro-
logical Society.

Vertical profiles ofRi can be calculated through finite dif-
ferencing ofθ , u, andv with height. Although the SMART-
Sonde provides observations with high spatial resolution,
the wind observations can be noisy with height. To reduce
this effect on the calculation of the approximated gradient
Richardson number, especially over short height intervals
when1z becomes small (i.e., less than 10 m), sets of three
consecutive wind observations are averaged together, effec-
tively creating one usable measurement for each set. After

this averaging,Ri can be calculated between each measure-
ment. Consequently the vertical resolution ofRi varies based
on ascent rate, with lower resolution measurements when the
aircraft is ascending quicker.

4.2 Observations from 6 March 2011

Four consecutive flights were conducted on the morning for
6 March 2011 to observe the early morning transition of
the PBL. Sunrise (06:53 LT – local time) occurred approx-
imately 30 min before the first flight. Thereafter, each flight
took place approximately 30 min apart to allow the boundary
layer to develop and change substantially between each pro-
file. During the first two flights, the SMARTSonde ascended
at a slow rate in order to sample the near-surface thermody-
namic structure with high vertical resolution. The SMART-
Sonde ascended at a faster rate to penetrate the developing
boundary layer during the last flights.

As the morning progressed, the depth of the convective
boundary layer increased, as indicated by the increasing
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Fig. 7: SMARTSonde observations of the morning of 6 March 2011 from four sequential flights

after sunrise. Provided is a) potential temperature, b) specific humidity, c) wind profile using the

BCF method, and d) computed Richardson number. Local times for each flight is provided in the

legend. Sunrise occurred at 6:53 LT.
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Fig. 7. SMARTSonde observations of the morning of 6 March 2011 from four sequential flights after sunrise. Provided is(a) potential
temperature,(b) specific humidity,(c) wind profile using the BCF method, and(d) computed Richardson number. Local times for each flight
is provided in the legend. Sunrise occurred at 06:53 LT.

height of the inversion shown in Fig.7a. For the first 90 min
after sunrise, the depth of the convective boundary layer in-
creased at a slow pace, growing to be only slightly less than
100 m deep by 08:25 LT, as evidenced by the inversion. Af-
terwards, however, the rate of growth of the PBL drastically
increased and reached a depth of about 200 m by 08:59 LT.
This initial slow growth of the PBL followed by quick growth
agrees well with past studies (White et al., 2002; Fisch et al.,
2004). The depth of the PBL can be tracked by the moisture
profiles in Fig.7b, as the depth of the well-mixed moisture
increases throughout the morning. In successive flights, the
layer of air above the PBL in the entrainment zone cooled
in time due to a negative heat flux as cool air from the sur-
face is mixed upward and warmer air is mixed toward the
surface, which agrees with results fromYoung et al.(2000)
andSullivan et al.(1998). Although it is difficult to draw def-
inite conclusions from surface and upper air maps, there may
be some weak cold, dry air advection occurring above the
surface modifying the thermodynamic profile.

The wind profiles derived from the best-curve fitting
method are shown in Fig.7c. Wind profiles from the first
three flights showed good agreement with each other. They
each indicated a weak LLJ with a wind maximum of
∼ 8 m s−1 at 150 m a.g.l. with the wind speed decreasing
above that height. By the last flight at 08:59 LT, the LLJ fea-
ture had disappeared. At this time, the wind speeds below
200 m a.g.l. had decreased to∼ 4 m s−1 and were roughly
constant with height above 50 m a.g.l. The decrease in wind
speeds in this layer corresponds to the increase in the PBL
depth during the same time interval between the third and
fourth flights. Without a significant change in the synoptic-
scale wind field, it can be assumed that the increase in the
mixing depth is responsible for mixing down momentum
from the LLJ. This is supported by the fact that the 10 m
wind speed at the NWC Mesonet site increased by∼ 2 m s−1

between 07:30–09:00 LT (not shown). If wind speeds were
measured down to ground level with the SMARTSonde or
another instrument, it would be possible to calculate the mo-
mentum fluxes using a modified integration approach from
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Deardorff et al.(1980) explained byBonin et al.(2013) from
consecutive wind profiles close in time.

By combining both the wind and thermodynamic profiles,
profiles ofRi have been calculated and are shown in Fig.7d.
Assuming the errors associated with both potential tempera-
ture and wind are normally distributed, 10 000 realizations of
Ri were calculated using random values ofθ , u, andv consis-
tent with the mean and standard deviations for those values.
The resulting mean value ofRi taken from the realizations is
used as the reported value for the gradient Richardson num-
ber, while the error bars are based on the standard deviation
of the 5–95 % confidence interval of the realizations. Real-
izations for which the wind shear is below 0.01 s−1 were re-
moved. Otherwise, estimates ofRi would become unrealis-
tically large. This is particularly noticeable during the last
flight at 150 m where the wind shear is almost nonexistent.
For this case, the denominator in Eq. (5), approaches zero
andRi becomes very large.

During the first three flights,Ri below 120 m a.g.l. was
mostly determined to be at or below 0.25. This value is pri-
marily attributed to the strong shear associated with the bot-
tom of the LLJ, before the momentum mixed downward. De-
spite the strong static stability, turbulence may be produced at
these heights due to the strong shear. During all of the flights,
there was an increase inRi at 150 m. This is likely due to the
strong static stability and weak wind shear during the first
three flights, and very weak wind shear with static stability
during the fourth flight. This example shows the usefulness
of having profiles of both thermodynamic and dynamic quan-
tities of the PBL within∼ 30 min of each other.

5 Conclusions

Overall, the three algorithms that were tested with the
SMARTSonde platform provided accurate results when com-
pared with proximity rawinsonde and sodar observations.
While the no-flow-sensor and BCF performed similarly, both
seemed to provide more accurate estimates than the output
from the Paparazzi autopilot software. Either algorithm could
be used to measure the winds within 1.25 m s−1 and 16◦ of
rawinsonde observations. However, the fitting method pro-
vides the fastest independent observations when the aircraft
is flying in small circles, which was the case for the flights
provided in this study. The no-flow-sensor is the preferred al-
gorithm to use when a limited number of turns are executed,
since this algorithm does not require a change in heading for
accurate retrievals.

These methods are used to accurately retrieve the 2-D
wind vector from a low-cost UAS platform utilizing only data
from an onboard GPS. Additional sensors, such as an IMU or
probes with various dynamic and static pressure holes, could
be incorporated onto the SMARTSonde or other UASs for
faster and more accurate measurements. However, these sen-
sors would significantly increase the cost of the platform.

It has been demonstrated that the wind estimates obtained
can be combined with the thermodynamic profiles measured
during the SMARTSonde flights to calculate the Richardson
number with 50 m vertical resolution within the PBL. Ad-
ditionally, the ability to make sequential wind and thermo-
dynamic profiles with a vertical resolution of∼ 10 m allows
for closer examination of other interesting processes, such
as the development of a LLJ in the evening or quantifying
low-level wind shear in a pre-storm environment. UASs are
unique platforms capable of taking high-resolution thermo-
dynamic and dynamic measurements, and can be used to ex-
amine many atmospheric processes in a new way.

Acknowledgements.We thank our colleagues who have helped
with the collection of the data, including all of those who have
assisted in the development of the SMARTSonde. We are especially
grateful to Wayne Shalamunec for piloting the SMARTSonde and
putting many hours into the project, and to the Central Oklahoma
Radio Control Society for allowing use of their airfield for flights.
We would like to thank Alan Shapiro for his helpful comments.
We are grateful for the anonymous reviewers’ comments, which
have improved the quality of this article. Funding to support the
development of SMARTSonde has been provided by the University
of Oklahoma (OU) Advanced Radar Research Center (ARRC) and
through a grant provided by the National Oceanic Atmospheric
Administration (NOAA) National Severe Storms Laboratory
(NSSL).

Edited by: A. Benedetto

References

Barthelmie, R., Grisogono, B., and Pryon, S.: Observations and sim-
ulations of diurnal cycles of near-surface wind speeds over land
and sea, J. Geophys. Res., 101, 21327–21337, 1996.

Bonin, T., Chilson, P. B., Zielke, B., and Fedorovich, E.: Observa-
tions of early evening boundary-layer transitions using a small
unmanned aerial system, Bound.-Lay. Meteorol., 146, 119–132,
2013.

Bonner, W. D.: Climatology of the Low Level Jet, Mon. Weather
Rev., 96, 833–850, 1968.

Brisset, P., Drouin, A., Gorraz, M., Huard, P.-S., and Tyler, J.:
The Paparazzi solution,http://www.recherche.enac.fr/paparazzi/
papers2006/mav06paparazzi.pdf (last access: 18 Decem-
ber 2012), 2006.

Brock, F. V., Crawford, K. C., Elliott, R. L., Cuperus, G. W., Stadler,
S. J., Johnson, H. L., and Eilts, M. D.: The Oklahoma Mesonet:
A Technical Overview, J. Atmos. Ocean. Tech., 12, 5–19, 1995.

Chilson, P. B., Gleason, A., Zielke, B., Nai, F., Yeary, M.,
Klein, P. M., and Shalamunec, W.: SMARTSonde: A Small
UAS platform to support radar research, in: 34th Confer-
ence on Radar Meteorology, Extended abstract 12B.6, avail-
able at:http://ams.confex.com/ams/34Radar/techprogram/paper
156396.htm, American Meteorological Society, Boston, Mass.,
2009.

Geosci. Instrum. Method. Data Syst., 2, 177–187, 2013 www.geosci-instrum-method-data-syst.net/2/177/2013/

http://www.recherche.enac.fr/paparazzi/papers_2006/mav06_paparazzi.pdf
http://www.recherche.enac.fr/paparazzi/papers_2006/mav06_paparazzi.pdf
http://ams.confex.com/ams/34Radar/techprogram/paper_156396.htm
http://ams.confex.com/ams/34Radar/techprogram/paper_156396.htm


T. A. Bonin et al.: Wind retrieval algorithms for small UASs 187

Deardorff, J., Willis, G., and Stockton, B.: Laboratory Studies of
the Entrainment Zone of a Convectively Mixed Layer, J. Fluid
Mech., 100, 41–64, 1980.
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