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Abstract. We compare the magnetic field data obtained from
the flux-gate magnetometer (FGM) and the magnetic field
data deduced from the gyration time of electrons measured
by the electron drift instrument (EDI) onboard Cluster to de-
termine the spin-axis offset of the FGM measurements. Data
are used from orbits with their apogees in the magnetotail,
when the magnetic field magnitude was between about 20
and 500 nT. Offset determination with the EDI–FGM com-
parison method is of particular interest for these orbits, be-
cause no data from solar wind are available in such orbits to
apply the usual calibration methods using the Alfvén waves.
In this paper, we examine the effects of the different mea-
surement conditions, such as direction of the magnetic field
relative to the spin plane and field magnitude in determining
the FGM spin-axis offset, and also take into account the time-
of-flight offset of the EDI measurements. It is shown that the
method works best when the magnetic field magnitude is less
than about 128 nT and when the magnetic field is aligned
near the spin-axis direction. A remaining spin-axis offset of
about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July
and October 2003. Using multipoint multi-instrument mea-
surements by Cluster we further demonstrate the importance
of the accurate determination of the spin-axis offset when es-
timating the magnetic field gradient.

1 Introduction

Magnetic field and plasma environments of the Earth and
other bodies in the solar system have been studied in situ
since decades (Balogh, 2010). Therefore, magnetic field ex-
periments onboard of spacecraft are of primary importance.
Most commonly, flux-gate magnetometers (FGMs) are used
due to their high accuracy, measurement range, resolution,
and stability, paired with reasonable mass, power consump-
tion, level of complexity, and overall costs (Acuña, 2002).

A FGM that is able to measure the strength and direction
of the ambient magnetic field (B) with high precision, re-
quires extensive pre-flight (ground-based) and in-flight cal-
ibration (e.g.,Glassmeier et al., 2007; Auster et al., 2008).
The aim of the calibration is to determine 12 parameters
needed to convert raw measurements (Braw) into components
of a magnetic field vector (Bcal) in a usable coordinate sys-
tem (e.g.,Kepko et al., 1996). The calibration parameters
are six angles describing the orientation of the sensor axes
in, e.g., a spacecraft-fixed frame of reference (constituting
matrix M ), three gain values (elements of a diagonal matrix
G), and three zero level offset values (elements of vectorO).
Therewith, the conversion ofBraw into Bcal is given by (e.g.,
Kepko et al., 1996; Acuña, 2002; Auster et al., 2008)

Bcal = G · M · Braw− O. (1)
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2 R. Nakamura et al.: FGM–EDI calibration onboard Cluster

Despite pre-flight calibration under a variety of conditions
(magnetic fields, temperatures), in-flight calibration remains
necessary to account for slight changes of the calibration pa-
rameters during launch, instrument drifts over time while the
mission proceeds, and, most importantly, spacecraft-caused
disturbances which are beyond the scope of ground-based
tests.

Variations in ambient magnetic field strengths and temper-
atures may have a minor influence on gain levels (G) and
orientations (M ) of the sensor axes relative to the spacecraft
body. Spacecraft generated fields (e.g., due to electrical cur-
rents or magnetic materials) strongly contribute to the zero
level offsets (O), as these offsets represent the field values
measured under the absence of an external magnetic field. In-
fluence of the spacecraft on the magnetic field measurements
can be reduced either by placing the FGM sensor on a long
boom (e.g.,Dougherty et al., 2004), hence, furthest possible
away from the spacecraft’s main structure, or by implemen-
tation of a magnetic cleanliness program (e.g.,Ludlam et al.,
2008). Unfortunately, both measures tend to be extremely ex-
pensive.

Spin stabilization of the spacecraft greatly supports the in-
flight calibration process, as the presence and content of spin
tone and/or higher harmonics in the magnitude and/or spin-
axis component ofBcal is influenced by 8 of the 12 calibra-
tion parameters (see,Auster et al., 2002), namely the spin-
plane components ofO (which shall beO1 andO2), the ra-
tio of the spin-plane components ofG (i.e., G11/G22), and
five elements ofM (all but the angle defining the absolute
orientation of the two spin-plane axes within that plane).

The in-flight determination of the spin-axis component
of O (which we denote withO3) is often dependent on
the availability of prolonged solar wind observations, where
Alfvénic fluctuations are prevalent. These fluctuations are
characterized by rotations in the magnetic field while the
field strength (|B|) remains constant. Hence,O3 can be deter-
mined by minimization of variance of|Bcal| while observing
Alfvénic fluctuations, as proposed inHedgecock(1975). Im-
provements to his method are discussed inLeinweber et al.
(2008) and, more recently, inPudney et al.(2012).

If solar wind measurements are not available,O3 may be
determined with the help of complementary magnetic field
observations, for instance from an electron drift instrument
(EDI), which is the main subject of this paper. The EDI
(Paschmann et al., 1997, 2001) onboard Cluster consists of
two electron gun/detector units placed on opposite sides of
the spacecraft, similar to that flown on the Equator-S space-
craft (Paschmann et al., 1999). Amplitude-modulated elec-
tron beams are fired by the two guns in specific directions.
They perform one (or more) gyrations due to the ambient
magnetic field and are eventually collected by the detectors
after timesT1 andT2. The primary objective of the EDI is to
measure the drift of the electrons caused by electric fields or
magnetic field gradients.

The drift step,d = vdTg, during the gyration timeTg (drift
velocity:vd) is a direct result from EDI measurements: small
d can be determined by triangulation, based on the two beam-
firing directions (for a detailed description see,Paschmann
et al., 1997; Quinn et al., 1999). Larged are more accurately
determined by time-of-flight observations of the two beams
(Paschmann et al., 1997; Vaith et al., 1998). These times are
different for electron release in parallel or anti-parallel direc-
tions tovd: T1,2 = Tg(1± |vd|/ |ve|), whereve is the elec-
tron velocity dependent on their (known) kinetic energy: the
sum ofT1 andT2 yields twice the gyration timeTg, their dif-
ference is proportional tod (Paschmann et al., 1999). The
use of different electron energies further allows one to distin-
guish drifts caused by electric fields or magnetic field gradi-
ents (see,Paschmann et al., 1997).

Since the gyration timeTg is inversely proportional to the
magnetic field strength|B|, EDI measurements allow for a
determination of ambient|B|:

|B| =
2πme

eTg
, (2)

whereme is the electron mass ande the elementary charge.
These values are practically not influenced by spacecraft
fields, as electrons perform most of their gyration at suffi-
cient distances from the spacecraft. Hence, they are ideally
suited as a reference for FGM measurements. Comparison of
EDI and FGM magnetic field data yields FGM zero level off-
set vectorsO and, in particular, their spin-axis components
O3, as shown byGeorgescu et al.(2006).

Their methods were developed further byLeinweber et al.
(2012) in order to obtain absolute spin-plane and spin-axis
FGM gains (i.e.,G11 andG22 with constant ratioG11/G22,
andG33), in addition toO3, with the help of EDI time-of-
flight |B| values. Note that the spacecraft spin does not sup-
port calibration of any of these three parameters, as they do
not influence the content of spin tone or higher harmonics in
Bcal.

Both studies (Georgescu et al., 2006; Leinweber et al.,
2012), however, do not take into account that the time-of-
flight measurements themselves are known to be subject to
offsets (Georgescu et al., 2012). T1 andT2 values differ sys-
tematically from the respective true values; and deviations
depend on instrument mode as we will show later.

Accurate calibration of FGM gains and zero level offsets
with EDI |B| measurements is only possible if electron time-
of-flight offsets are previously determined and corrected for.
In this paper, we show how this can be achieved by using
Cluster data from the EDI and FGM (Balogh et al., 2001)
and present the possible schemes of interinstrument calibra-
tion. We further examine the characteristics of the FGM spin-
axis offsets in the low field region and demonstrate the im-
portance of accurate calibration when determining magnetic
field gradient using multipoint Cluster measurements.
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2 Method of analysis: interinstrument calibration

Since our main interest is to determine the spin-axis offset
component, we use the flux-gate spin reference (FSR) coor-
dinates, whereZ points along the spin axis andX andY are
the spin-plane components. Here we assume that except for
some residual spin-axis offset,1BZ fgm, all the calibration
parameters have been accurately determined. Since the time-
of-flight data provide the magnitude of the magnetic field,
Bedi, from Eq. (2) we use the spin-plane components of the
FGM data to deduce the spin-axis component,BZedi:

BZedi
2
= B2

edi− BX
2
fgm − BY fgm

2. (3)

The spin-axis offset,1BZ fgm, can then be obtained from

|BZedi| = |BZ fgm + 1BZ fgm|, (4)

if the spin-axis component of the magnetic field deduced
from the EDI time-of-flight measurements and the spin-plane
component of the FGM magnetic field are obtained with suf-
ficient quality.

For determiningBedi, we have simply used all the time-
of-flight data from the two gun-detector units, GDU1 and
GDU2, without identifying the pairs of long and short time
of flight to obtain the gyration time from their average, such
as described before, based on an assumption that the usage of
large numbers of data of both times of flight is equivalent to
effectively averaging the measurement pairs. We use the high
resolution FGM data (22.4 Hz for normal mode) and match
them with the nearest neighbor to the EDI time-of-flight data.
The EDI time-of-flight data are irregularly spaced data with
a smallest interval of 16 ms, but are sparse compared to the
FGM data, since detection of the returning electron beam is
required.

In this study we use Cluster data from July to October
2003 and from July to October 2006, when the apogee of
Cluster orbit is at night side. The interspacecraft distance was
on the order of 200 km in 2003 and 10 000 km in 2006. Dur-
ing these summer seasons, when Cluster stayed in the magne-
tosphere and no solar-wind data were available, it is of partic-
ular interest to determine the FGM offset using the EDI mea-
surements since the Hedgecock method (Hedgecock, 1975)
cannot be applied. Furthermore, one of the scientific inter-
ests in the tail region is the magnetic reconnection process,
for which the magnetic field component normal to the cur-
rent sheet, corresponding to the spin-axis component, is key
in detecting the process. Hence an accurate determination of
the spin-axis component is crucial in this region.

Since both the FGM and EDI instruments are designed
to obtain optimized field measurements in different regions
of space, the digital resolution of the measurements change.
In this study we analyzed magnetic field data with magni-
tudes less than 600 nT. For FGM, within our region of inter-
est, this corresponds to 3 different ranges, i.e., digital reso-
lutions, changing from 7.813 to 0.125 nT depending on the

field magnitude as will be discussed later. The EDI time-of-
flight measurement, however, is operated by tracking elec-
tron beams that are amplitude-modulated with a pseudonoise
(PN) code, with a certain code period,TPN, or alternatively
represented as the code repetition frequency (CRF), which is
1/TPN. The PN code consists of either a 15-chip or 127-chip
code with different code chip lengths,Tchip. The accuracy of
EDI measurements depend on theTchip, and thereforeTPN or
CRF, which is usually given in unit of kilohertz.TPN varies
between 30 µs and 2 ms for the data set used in this study.
The time resolution of EDI is defined by the shift-clock pe-
riod, which is the shift in the PN code to track small time-
of-flight variations, that varies from 1.907 to 0.119 µs de-
pending on the magnetic field; see more details inGeorgescu
et al. (2006). Further details about these parameters and the
EDI operation schemes are given byVaith et al.(1998) and
Paschmann et al.(2001). Here we call the different measure-
ment settings of the EDI “CRF mode” for convenience. As
will be discussed later in more detail, these different reso-
lutions/modes need to be taken into account when data are
calibrated.

Figure1 shows FGM and EDI magnetic field magnitude
data during a quiet interval of about 3 min from Cluster 3 for
different FGM calibration schemes. The FGM data shown in
the three left panels a–c use the orbit calibration file provided
for the Cluster Active Archive (CAA) data set (Gloag et al.,
2006), the three middle panels d–e use the daily calibration
file (Fornaçon et al., 2011) used for the Cluster Prime Param-
eter (PP) and Summary Parameter (SP) data set in the Cluster
Science Data System (CSDS), and the three right panels g–i
use the fine-tuned calibration file using the daily calibration
file as an input. Figure1a shows the magnetic field magnitude
data estimated from EDI and FGM, in which the latter data
are time-matched data to EDI using the nearest neighbor data
selected from the high-time resolution (22.4 Hz) data shown
in Fig.1b. Although the example shown here is from a period
when the numbers of the returning beams are quite evenly
distributed all the time, EDI data depend on the availability
of the returning beam and can be also sparse in time. Hence it
is essential to compare EDI data with the time-matched FGM
data. Figure1c shows 1 Hz averaged data for both FGM and
EDI. It can be seen that both data sets have a small stan-
dard deviation (about 0.1 nT) during this interval and there
exists a clear difference between FGM and EDI magnitudes
of about 0.5 nT. The same comparison has been done for data
calibrated using the daily calibration file (Fig.1d–f). The
22.4 Hz data have a slightly larger standard deviation com-
pared to the CAA data, but the difference between EDI and
FGM is smaller, about 0.14 nT. The relatively large scatter
of the 1 Hz data (Fig.1f) comes from the spin-tone, which
can be more clearly seen in the 22 Hz data (Fig.1e). Data
shown in Fig.1g–i are using the same daily calibration file,
as was used for data in Fig.1d–f, as input and then further
refined the calibration file to reduce the spin tone. This ad-
ditional procedure, however, has little effect on the average
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Fig. 1. FGM and EDI magnetic field magnitude data during a quiet interval from Cluster 3 using FGM data with

different calibration schemes: the orbit calibration, method used for CAA data set (panels a-c); daily calibration

method used for CSDS dataset (panels d-f); and refined calibration applied to daily calibration input (panels

g-i). The upper three panels (a,d, and g) show high-resolution EDI and time-matched FGM 22.4 Hz data, the

middle three panels (b,e, and h) show the 22.4 Hz FGM data, and the lower three panels (c,f, and i) show 1 Hz

averaged data for both FGM and EDI.

Table 1. Average offsets determined for different modes/ranges for Cluster 1

Parameters July 2003 August 2003 September 2003 October 2003

∆BZfgm,l [nT] 0.51 ± 0.15 0.46 ± 0.16 0.64 ± 0.17 0.57 ± 0.17

∆BZfgm,h [nT] 0.40 ± 0.99 0.41 ± 0.99 0.57 ± 1.04 1.00 ± 0.19

∆T edi,R1 [µs] 2.92 ± 5.77 1.90 ± 4.77 2.87 ± 6.42 1.92 ± 4.98

∆T edi,R2 [µs] 1.81 ± 2.42 1.60 ± 1.96 1.81 ± 1.89 1.85 ± 2.40

∆T edi,R3 [µs] 0.38 ± 1.15 1.03 ± 1.27 0.70 ± 0.89 1.20 ± 1.04

∆T edi,R4a [µs] 0.21 ± 0.25 0.15 ± 0.20 0.19 ± 0.16 0.05 ± 0.23

∆T edi,R4b [µs] 0.65 ± 0.97 0.63 ± 0.96 0.50 ± 0.97 0.48 ± 1.00

∆T edi,R5 [µs] 0.55 ± 0.42 0.55 ± 0.43 0.59 ± 0.46 0.57 ± 0.50

∆T edi,R6 [µs] 0.28 ± 0.19 0.26 ± 0.19 0.27 ± 0.19 0.26 ± 0.20

16

Fig. 1.FGM and EDI magnetic field magnitude data during a quiet interval from Cluster 3 using FGM data with different calibration schemes:
the orbit calibration, method used for CAA data set(a–c); daily calibration method used for CSDS data set(d–f); and refined calibration
applied to daily calibration input(g–i). The upper three panels(a, d, g)show high-resolution EDI and time-matched FGM 22.4 Hz data, the
middle three panels(b, e, h)show the 22.4 Hz FGM data, and the lower three panels(c, f, i) show 1 Hz averaged data for both FGM and EDI.

FGM–EDI difference as can be seen in the numbers obtained
for the high-resolution data (Fig.1d, g) and for the 1 Hz
data (Fig.1f, i). Note that for following discussions on offset
calibration procedure we use the daily calibration file, pre-
pared since the Cluster launch by the Technical University of
Braunschweig Cluster Co-I team. That is, we use the same
data set as shown in Fig.1d–f. It should be therefore noted
that when we write “spin-axis offset” in this paper, we are
not speaking about an offset from the raw data as given in
the Eq. (1), but about a remaining offset correction from an
already in-flight calibrated data set.

Figure 2a shows the number of EDI time-of-flight data
points from Cluster 1 in August 2003, when corresponding
FGM data were available, binned by the magnitude of the
field, Bfgm. The size of the bins is 16 nT. The number of
points are grouped by different CRF modes. Note that these
different CRF modes generally correspond to data from dif-
ferent field magnitude regions, which are marked as R1–R6
next to the legend. More details of the meaning of these
different magnitude regions, R1–R6, and the EDI measure-
ment resolution are explained later (Fig.3). It can be seen
in the histogram that for smaller field regions, in particular,
the EDI observations have been made with several different
CRF modes. Figure2b shows the differences between the
|BZedi| and|BZ fgm|. The bin averages (dotted line) and medi-
ans (solid line) are also depicted in the figure. When bothBZ

values are positive, it corresponds to the spin-axis offset. It
can be seen that the values are widely scattered, particularly
with increasing magnitude of the field. Also, instead of see-
ing a constant offset value of FGM, the difference is increas-

ing with magnetic field magnitude but not monotonically. As
will be discussed below, these variable differences can be due
to (i) the effects of different magnetic field angles relative to
the spin axis, (ii) the different CRF modes of the instruments
and different offsets, and (iii) the effects from variable cali-
bration parameters other than the offsets considered here. In
the following we mainly examine the first two effects when
obtaining the spin-axis offset of FGM and further discuss the
possible effect due to (iii) based on the obtained offsets.

Since we are interested in the spin-axis offset, it is impor-
tant to use measurements with sufficient magnitude of the
spin-axis direction. As mentioned before, a meaningful com-
parison of the two spin-axis components using Eq. (4) can
only be performed when both have the same (positive, for
majority of the data used in this study) sign even when the
possible offset values are subtracted, because Eq. (3) does
not provide the sign of the magnetic field along the spin
axis. The unknown sign of theBZedi will lead to miscalcula-
tion when the spin-axis offset effect changes the sign of the
spin-axis component. This corresponds to cases when the ex-
pected spin-axis offset becomes significant compared to the
spin-axis component of the magnetic field. Considering that
we use an already calibrated data set as an input, a typical
offset value is expected to be small, i.e., less than a couple
of nanoteslas. For the Cluster data we are examining in this
paper, such offset can be more than 10 % of the field mag-
nitude. Hence we need to take into account only data when
|cosb| ≡ |BZ fgm/Bfgm| is sufficiently large so that the off-
set subtraction will not make any difference in the change
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Fig. 2. (a) Number of points for all available Cluster 1 EDI data in August, 2003, binned by the magnitude of

the field Bfgm. The size of the bins is 16 nT. The number of points are grouped for different CRF modes (see

details in text). (b) Differences between |BZedi| and |BZfgm| for the same data set. The solid line shows the

median and the dotted line shows the average of the data within each bin. Here every 20th points from the entire

dataset shown in panel a are plotted.

17

Fig. 2. (a)Number of points for all available Cluster 1 EDI data in August 2003, binned by the magnitude of the fieldBfgm. The size of the
bins is 16 nT. The number of points are grouped for different CRF modes (see details in text).(b) Differences between|BZedi| and|BZ fgm|

for the same data set. The solid line shows the median and the dotted line shows the average of the data within each bin. Here every 20th
point from the entire data set shown in(a) is plotted.

of sign. As we will show later,|cosb| ≥ 0.4 would typically
work for the analysis.

In this study we consider a time-of-flight offset of EDI,
1Tedi, which is expected to have different values for different
CRF modes. For simplicity we assume the same offset value
for the time-of-flight measurements from GDU1 and GDU2.
That is, when calculating the magnetic field from EDI mea-
surement, we use

Bedi =
2πme

e(Tedi+ 1Tedi)
, (5)

to determine both1Tedi and1BZ fgm from the data, instead
of Eq. (2).

Significance of the EDI and FGM offsets varies for dif-
ferent field magnitudes as is shown in Fig.3. The four solid
curves in Fig.3a show the effective spin-axis offset value
caused by an EDI time-of-flight offset,1Tedi = 0.5 µs, that
will appear when the EDI and FGM measurements are com-
pared, such as in Fig.2. They are plotted for different angles
of the magnetic field, cosb. Here, the effective EDI mag-
netic field measurement resolution based on the digital res-
olution of the EDI measurements discussed byGeorgescu
et al. (2006) is also given as a dashed curve for the differ-
ent magnetic field regions, R1–R6, as indicated at the bottom
of Fig. 3b. The borders of R0–R6 are shown with the verti-
cal dotted line, which corresponds to 16, 32, 64, 128, 164,
and 326 nT. The horizontal brown line indicates the 0.5 nT
level, as a typical number for the spin-axis offset of FGM. In
a similar way, we plotted the effective time-of-flight offsets
caused by a FGM spin-axis offset of1BZ fgm = 0.5 nT. The

dashed lines indicate the same EDI digital resolution of the
time-of-flight measurement as given in Fig.3a. The horizon-
tal brown line shows 0.5 µs as a typical number for the time-
of-flight offset of EDI. It can be immediately seen that the
time-of-flight offset will have no effect in the small field re-
gion regardless of the angle to the magnetic field (brown line
located above the curves in Fig.3). Therefore, these curves
show that the different angle of the fields as well as the time-
of-flight offset can easily cause the large scatter of points in
Fig.2b. One can also conclude that for determining the offset
in BZ in a given field magnitude, it would be most effective
to use data from large cosb, since the relative importance of
the EDI time-of-flight offset would be smallest. Furthermore,
in the low-field region, a time-of-flight offset of about 0.5 µs
will have only negligible effect in the spin-axis component
of the magnetic field, which is a value below the instrument
resolution. In the high-field region, however, a 0.5 nT spin-
axis offset is a negligible value in the time-of-flight data and
comparable to the resolution of the EDI measurement. It is
also important to note that when we determine1Tedi, it is
most efficient to use data with low cosb, i.e., when the field
direction is mainly along the spin-plane direction. Vice versa,
1BZ fgm should be determined for large cosb as mentioned
before. Due to these variable effects over the field magnitude,
we need to consider different approaches for different mag-
netic field magnitudes depending on the importance of the
offset. In Sect. 3 we demonstrate an example of a calibration
in which all the different offsets are obtained using a large
number of points and for different magnetic field magnitude
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Fig. 3. (a) The effective spin-axis offset value caused by an EDI
time-of-flight offset,1Tedi= 0.5 µs, that will appear when the EDI
and FGM measurements are compared, plotted for selected angles
of the magnetic field, cosb. The dashed lines show the resolution
of the EDI magnetic field measurement. The horizontal brown line
shows 0.5 nT level, which represents a typical number for the spin-
axis offset of FGM.(b) The effective time-of-flight offsets caused
by a FGM spin-axis offset,1BZ fgm = 0.5 nT, plotted for selected
values of cosb. The dashed lines indicate the EDI digital resolution
of the time-of-flight measurement. The horizontal brown line shows
the 0.5 µs level, which represents a typical number for the time-of-
flight offset of EDI. The vertical dotted lines indicate the border
of different EDI measurement settings, R0–R6. See text for further
details.

regions. We also specifically use data from the low-field re-
gion to examine the possibility for estimating an offset with
a small number of samples.

3 Example of interinstrument calibration

Figure 4a shows the number of EDI measurements from
Cluster 1 in August 2003 in the same format as in Fig.2a, but
only for cosb >0.7. As discussed before, this condition angle
allows one to select data when the relative importance of the
BZ offset is higher than the possible time-of flight offset, and
additionally to fulfill the condition of the same positive sign
of FGM and EDI in spin-axis components. As discussed be-
fore, EDI is operated with different CRF modes in different
magnetic field regions. For this field angle, data were avail-
able only between the regions R2 and R6 (see Fig.3 for def-
inition of the regions). The FGM range changes at 256 nT,
which is a value within R5. Depending on the importance of
the offset, we determined1Tedi or 1BZ fgm in the following
way.

– Low-field region (R1–R3), when the effect of1BZ fgm
is important:1BZ fgm is first determined for cosb >

0.7. 1Tedi is then determined using data obtained for
R1–R3 separately.

– Mid-field region (R4), when both effects from EDI
time of offset and FGM offset in spin-axis component
are comparable:1Tedi is determined using1BZ fgm
determined for R2–R3. Since there are two different
CRF modes used for EDI measurements in this region,
we calculated the time-of-flight offsets for each CRF
mode separately.

– Mid-field region (R5), when both effects are compa-
rable and FGM range changes within the same EDI
CRF mode: same method as R4 is used for data with
Bfgm < 256 nT. Determine1BZ fgm for cosb > 0.7 us-
ing 1Tedi determined for R5 data withBfgm < 256 nT.

– High-field region (R6), when the effect of1Tedi is im-
portant: determine1Tedi taking into account the FGM
offset determined for R5. Since the effect of spin-axis
offset is not important regardless of cosb all data are
used.

Figure4b shows the FGM and EDI differences of original
calibrated data as shown in Fig.2 except for cosb > 0.7. The
bin averages and median are shown as solid lines, although
the difference between the two are hardly recognizable in this
plot.

The average profile in Fig.4b shows some jumps coincid-
ing with CRF-mode change and more monotonic increase in
the high-field region within the same CRF mode as expected
in the curve shown in Fig.3a. Figure4c shows the results
of the calibration procedure for August 2003. The points are
the differences between the offset-corrected FGM and EDI
data. The lines again show the bin average and the median
of the differences of the offset-corrected FGM and EDI data.
Here again the differences between the two lines are hardly
seen. It can be seen that the bin average (or median) runs at
almost the zero level except for some fluctuations of≤ 0.1 nT
in the higher field region. The nearly zero level of the bin’s
average (or median) profile suggests that the spin-axis com-
ponent difference between EDI and FGM was well explained
due to the spin-axis offset of FGM and time-of-flight offset
of EDI.

Table 1 provides the monthly average results of the dif-
ferent offsets between July and October 2003 for Cluster 1:
1BZ fgm for low field range (< 256 nT) and high field range
(> 256 nT) and1Tedi for different CRF modes, correspond-
ing to R1–R6 (as given in the legend in Fig.4a). Although
we used all the available data without selecting, for exam-
ple, quiet time data, it can be seen that1BZ fgm determined
from the low field region (R2–R3), which corresponds to
B ∼ 32–128 nT, stays at about 0.4–0.6 nT with a relatively
small standard deviation. The standard deviation is quite
large for the FGM offset at the high-field region (R5), while
the values stay at a similar value to the low-field region
within 0.1 nT during the four months.1Tedi, however, is sta-
bly obtained only in the field region larger than about 128 nT
(R4–R6), while the time-of-flight offsets could be poorly
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Fig. 4. (a) Number of points for Cluster 1 EDI data in August 2003 binned by the magnitude of the fieldBfgm as in Fig. 2 except for
cosb > 0.7. Difference between spin-axis component EDI and FGM fields for cosb > 0.7 (b) for the original calibrated data and(c) for the
offset-corrected data. Bin average and median for the original and offset-corrected data are shown in each panel. Note that both curves are
nearly identical and therefore their differences can hardly be seen. As in Fig. 2, every 20th point from the corresponding data sets given in
panel(a) is plotted. Dashed lines indicate−0.5, 0.0, and 0.5 nT levels.

determined with a large standard deviation only in the low-
field region. This behavior can be understood with the char-
acteristics of resolution of the EDI measurements (Fig.3),
i.e., finerB resolution of EDI for the smaller field region,
and smaller (larger) effect of1Tedi in a smaller (larger) field
region relative to the effect of1BZ fgm. Except for the poorly
determined1Tedi (R1–R3), the values shown in Table 1 were
used to calculate the points in Fig.4c.

We have performed the same procedure for every orbit
in August 2003 for Cluster 1 and the results are shown in
Fig. 5. 1BZ fgm for the low field (< 256 nT) and high field
(> 256 nT) and their corresponding numbers of points are
shown in Fig.5a and b, respectively. As described before,
low-field data points are from EDI CRF modes for R2 and
R3 (see Fig.4b), while high-field data points are from EDI
CRF modes for R5.1Tedi for each orbit in R2, R5, and R6
and the corresponding numbers of data points are shown in
Fig. 5c and d. Note that measurements in low field regions
did not take place in every orbit in this month and therefore

Table 1.Average offsets determined for different modes/ranges for
Cluster 1.

Parameters July August September October
2003 2003 2003 2003

1BZ fgm,l [nT] 0.51± 0.15 0.46± 0.16 0.64± 0.17 0.57± 0.17
1BZ fgm,h [nT] 0.40± 0.99 0.41± 0.99 0.57± 1.04 1.00± 0.19
1T edi,R1 [µs] 2.92± 5.77 1.90± 4.77 2.87± 6.42 1.92± 4.98
1T edi,R2 [µs] 1.81± 2.42 1.60± 1.96 1.81± 1.89 1.85± 2.40
1T edi,R3 [µs] 0.38± 1.15 1.03± 1.27 0.70± 0.89 1.20± 1.04
1T edi,R4a [µs] 0.21± 0.25 0.15± 0.20 0.19± 0.16 0.05± 0.23
1T edi,R4b [µs] 0.65± 0.97 0.63± 0.96 0.50± 0.97 0.48± 1.00
1T edi,R5 [µs] 0.55± 0.42 0.55± 0.43 0.59± 0.46 0.57± 0.50
1T edi,R6 [µs] 0.28± 0.19 0.26± 0.19 0.27± 0.19 0.26± 0.20

values using those data points can only be seen every second
or fourth orbit. It can be seen that1BZ fgm obtained from the
low-field region is relatively stable compared to that obtained
from the high-field region. As for1Tedi, the values of R6 are
most stable among the three offsets.1Tedi is larger for R2
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Fig. 5. (a) 1BZ fgm determined for every orbit in the low field
(< 256 nT) and high field (> 256 nT) and(b) the corresponding
numbers of data points from Cluster 1 in August 2003.(c) 1Tedi
for each orbit in R2, R5, and R6 and(d) corresponding numbers of
data points.

compared to R5 and R6; yet the effect from1BZ fgm can still
be expected to dominate in R2 for these values (see Fig.3).

The spin-axis direction, which is approximately theZ

direction in geocentric solar ecliptic (GSE) coordinates, is
closely aligned to the normal component of the current sheet
in the magnetotail, where the apogee is located for Cluster
between July and October. This normal component drops to
zero when magnetic reconnection occurs, which is an im-
portant science target in magnetospheric missions such as
Cluster as well as for the upcoming Magnetospheric Mul-
tiscale (MMS) mission. Therefore, to detect the process ac-
curately, it is required that the spin-axis offset be corrected.
It is therefore desirable that the calibration will take place
close to such target intervals, that is, in a relatively small
field region when the disturbance of the field is small. Be-
low we use Cluster data for a short interval, i.e., several min-
utes, in a small field region, such as the example shown in
Fig. 1, to examine the effect of the spin-axis component off-
set in the difference between FGM and EDI magnetic fields.
We searched for quiet and constant field intervals using data
between July and October 2003 in small field region (R2),
corresponding to the magnetic field between about 30 and
60 nT. A quiet field’s short time interval is defined as an
interval with standard deviation less than 0.1 nT. We chose
a time period of 7 min. We obtained 579 such intervals for
C1 during the four months. Figure6a and b show the mag-
nitude difference,1B ≡ Bedi− Bfgm, and difference in the
spin-axis components,1BZ ≡ |BZedi|− |BZ fgm|, plotted vs.
the field angle, cosb. On average, the magnitude difference
is small when the magnetic field is nearly aligned to the spin
plane (small|cosb|) within an error of about 0.1 nT and jus-
tifies our assumption that the main discrepancy between the
two data sets are attributed to the spin-axis offset. When the
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Fig. 6. (a) Average magnitude difference,1B ≡ Bedi− Bfgm,
and (b) average difference in the spin-axis components,1BZ ≡

|BZedi| − |BZ fgm|, plotted vs. the field angle, cosb, obtained us-
ing quiet, low field (30–60 nT), short time interval (7 min) data sets
in July–October 2003. The vertical bars in(b) show the standard
deviation.

|cosb| is small,|cosb| < 0.1, it is not possible to obtain the
correct sign of1BZ. In such cases the comparison between
the spin-axis components will contain large errors. That is,
we may obtain the sums of the two measurements instead of
differences, meaning that the1BZ will rather become twice
the average of the spin-axis component value (2B cosb). If
we assume, for example, that such errors happen in about
half of the cases we can expect an average to be estimated as
B cosb. For the field magnitude in this data set, i.e.,B = 30–
60 nT, a “wrongly” estimated1BZ of ≤ 3–6 nT can be ex-
pected for cosb ≤ 0.1, which was in fact the case as shown
in Fig. 6b. However, the spin-axis offsets are more stable for
a larger cosb, i.e., cosb ≥ 0.4, indicating the importance of
preselection of the angle of the field when determining the
spin-axis offset.

The essential advantage of multipoint measurements such
as with Cluster is the ability to determine spatial gradi-
ents. We finally examine the possible effect of the offset
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Fig. 7. Average magnetic field differences between C1 and C3 for
Bedi (black cross) andBfgm (red cross), and a model magnetic
field (green cross) during quiet time intervals (standard deviation
of Bedi < 0.07 nT for 5 min interval) plotted vs. cosb for data from
(a) July to October in 2003, when the interspacecraft distance was
about 200 km, and from(c) July to October in 2006, when the inter-
spacecraft distance was about 10 000 km. The location of the space-
craft in GSM (geocentric solar magnetospheric) coordinates during
these two sets of intervals are shown in(b) and(d), respectively.

calibration by comparing the magnetic field gradients (dif-
ferences between two spacecraft) forBedi, Bfgm, and an em-
pirical magnetic field, i.e., combined IGRF and Tsyganenko
89, Kp= 2, as shown in Fig.7. Here we select again quiet
time intervals, when standard deviation ofBedi < 0.07 nT for
5 min intervals and when data from both Cluster 1 and 3
are available. Cluster data are used from an interval between
July and October in 2003, when the interspacecraft distance
was about 200 km, and between July and October in 2006,
when the interspacecraft distance was about 10 000 km. Fig-
ure7a shows the spacecraft differences,1Bedi,C1−C3 (black),
1Bfgm,C1−C3 (red), and model (green), plotted again over
cosb (of Cluster 1) observed at locations shown in Fig.7c
for the events in 2003.

The model provides a reference value of the magnetic field
profile and is constructed based on fitting a number of pre-
vious satellite data. Therefore we can expect that the model
represents some averages of different randomly distributed
“offsets” among the different previous measurements pro-
viding an empirical value of the field. The1Bedi,C1−C3 and
model generally agree well. This suggests that1Bedi,C1−C3
provides closer values to an empirical value of the magnetic
field. 1Bfgm,C1−C3 shows a smaller difference in the small
cosb region, which corresponds to the magnetic field direc-
tion where the spin-axis component does not play a role, sug-
gesting that the spin-plane components are well calibrated.
The differences, however, become larger for larger cosb in-
dicating that the effect of the spin-axis offset is apparent and
causing these larger differences. Figure7b and d show the re-
sults of the same analysis performed for the data in 2006 for
comparison. In contrast to 2003, the gradients obtained from

the two measurements show similar values, while the model
values deviate from these two. The interspacecraft distance
of 200 km is small enough that the effect of the offset cali-
bration exceeds the magnetic field gradient, while such off-
set determination plays no difference for the interspacecraft
distance of 10 000 km. Hence, depending on the interest of
the gradient scales it will become essential to perform spe-
cial offset calibrations when determining the gradient of the
magnetic field.

4 Discussion

Based on a simple comparison between the magnetic field of
FGM and the magnetic field deduced from the time of flight
of the EDI measurements, we have shown that the remaining
spin-axis offset of FGM data can be well determined from the
calibrated data set by selecting the appropriate interval, by
taking into account the measurement conditions such as the
angle of the magnetic field relative to the spin-plane, mag-
netic field magnitude, and by also considering the effect of
the time-of-flight offset of the EDI measurement. While the
effect of the time-of-flight offset was unimportant in deter-
mining the spin-axis offset in the low field region, it was the
major source of the discrepancy between the two data sets in
the large field region. Once the effects of these two offsets
are taken into account, the difference between the two mea-
surements are reduced to be well below the 0.1 nT level. Note
that there is a tendency of somewhat larger fluctuations su-
perposed with a negative trend for the larger field region (R6)
in Fig. 4. This might suggest that some additional FGM gain
correction needs to be considered. The current offset correc-
tion does not take into account any gain correction. If there
is a gain error, it should appear as a linear trend if all the
other calibration parameters are perfectly determined. Such
gain error curve, however, is difficult to differentiate from the
EDI time-of-flight profile particularly for a low-resolution
measurement. Therefore each EDI range may show a differ-
ent resultant curve and may not appear a continuous line in
Fig. 4c even if there is a gain error. In the low field region,
we cannot see any systematic trend, for example. If we take
the∼ −0.1 nT deviation in the R6 region (covering an about
200 nT-wide region), as an observed number, it will corre-
spond to a linear gain correction of 0.0005. Such change in
the gain may likely happen due to the change in the tem-
perature. Indeed if we use the ground-calibration result from
one of the Cluster ground sensors, i.e., 0.00004 K−1 (Othmer
et al., 2000), this corresponds to a gain drift for a temperature
change of about 12◦, which would not be an unrealistic vari-
ation within an orbit. For an accurate determination of the
gain from these comparisons, however, only a statistical ap-
proach is possible because in this high-field region. EDI can
measure the field only at a resolution of about 1 nT, while
the effects expected from gain errors would be less than at a
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0.1 nT scale, which is also below the FGM resolution in this
range and therefore fluctuations are unavoidable.

While we demonstrate that the simple comparison is over-
all working, particularly for the spin-axis determination in
low field regions, once we are interested to determine also
other parameters, such as time-of-flight offsets throughout
the EDI CRF modes or FGM offsets and gain factors for high
field ranges, further investigations would be necessary. For
example, our simplified approach of pre-selecting the data
set based on specific conditions in angle and magnitude of
the field, as discussed in Sect. 3, limits the number of use-
ful data. Instead one may consider to use all the data from
different field magnitudes (and therefore with different EDI
CRF modes) and try to determine the EDI and FGM offsets
at once by applying appropriate weighting factors that de-
pend on the contribution of the EDI and FGM offsets in the
measurement, and by minimizing the differences between the
two measurements. Furthermore determining the EDI time-
of-flight offset for the two GDUs, separately, may be also
important particularly for mid- and high-field regions.

In this study we only used the time-of-flight data of the
EDI measurements to compare with the FGM measurements.
Another useful approach is to use the direction of the EDI
electron beam,uedi, which should be perpendicular to the
ambient magnetic field, and use the condition ofuedi·(Bfgm+

Ofgm) = 0, to determine the offset of the FGM measurement,
Ofgm. A combination of these two methods will further im-
prove the accuracy of the offset determination.

5 Conclusions

We have shown that the concept of determining the spin-
axis offset of a flux-gate magnetometer (FGM) using abso-
lute field magnitude data determined from the electron gyra-
tion time data of the electron drift instrument (EDI) works
best when the magnetic field magnitude is small; i.e., less
than about 128 nT corresponding to the EDI modes for the
low field, so that the EDI time-of-flight offset is negligible,
and when the spin-axis component becomes the major com-
ponent (cosb > 0.7). A remaining spin-axis offset of about
0.4 ∼ 0.6 nT was observed for Cluster 1 between July and
October 2003, which is important for studies using the mag-
netic field component normal to the current sheet in the cen-
tral plasma sheet such as magnetotail reconnection or thin-
current sheet dynamics or particle trajectories near the center
of the current sheet.

When the effect of time-of-flight offset from EDI is taken
into account, it is shown that data from higher fields can be
also used for calibration. It is shown that additional determi-
nation of the gain factor of the FGM instrument would most
likely also also possible.

The EDI–FGM comparison method is of particular inter-
est for the observations, when no solar-wind data are avail-
able for calibration. It will play an essential role for accu-

rate determination of the small normal component (and its
reversals) in the current sheet required for studying magnetic
reconnection, which is the main objective of NASA’s Mag-
netospheric Multiscale (MMS) mission.
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