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Abstract. Recently, Mu et al. (2013) compiled an open ac-

cess database of a remotely sensed global drought severity in-

dex (DSI) based on MODIS (Moderate Resolution Imaging

Spectroradiometer) satellite measurements covering a con-

tinuous period of 12 years. The highest spatial resolution

is 0.05◦× 0.05◦ in the geographic band between 60◦ S and

80◦ N latitudes (more than 4.9 million locations over land).

Here we present a global trend analysis of these satellite-

based DSI time series in order to identify geographic loca-

tions where either positive or negative trends are statistically

significant. Our main result is that 17.34 % of land areas ex-

hibit significant trends of drying or wetting, and these sites

constitute geographically connected regions. Since a DSI

value conveys local characterization at a given site, we ar-

gue that usual field significance tests cannot provide more

information about the observations than the presented anal-

ysis. The relatively short period of 12 years hinders linking

the trends to global climate change; however, we think that

the observations might be related to slow (decadal) modes of

natural climate variability or anthropogenic impacts.

1 Introduction

Severe droughts or floods are threatening events for both

ecosystems and human society. There are several in-

dices used widely for drought assessment integrating large

amounts of data (precipitation, snowpack, stream flow, etc.).

The best known index is probably the Palmer drought sever-

ity index (PDSI) (Palmer, 1968; Alley, 1984) determined by

monthly water supply (precipitation), water outputs (evapo-

ration and runoff), and preceding soil water status. New vari-

ants of the original approach have emerged in order to over-

come some limitations of the Palmer model (Alley, 1984;

Keyantas and Dracup, 2002), such as the self-calibrating

PDSI by Wells et al. (2004) or PDSI incorporating im-

proved formulations for potential evapotranspiration (Heim

Jr., 2002). Remote sensing data from the Moderate Reso-

lution Imaging Spectroradiometer (MODIS) combined with

NCEP (National Centers for Environmental Prediction) re-

analysis meteorological records and statistical procedures to-

gether have supported the development of an evaporative

drought index (EDI) by Yao et al. (2010, 2014) at 4 km spa-

tial and 1 month temporal resolutions. Nevertheless, the de-

velopment and improvement of drought indices are incom-

plete tasks and numerous challenges remain for the future

(Vicente-Serrano et al., 2011; Trenberth et al., 2014).

To the best of our knowledge, the most comprehensive and

longest PDSI trend analysis has been provided by Dai et al.

(2004). A monthly PDSI data set from 1870 to 2002 has

been derived using historical precipitation and temperature

data for global land areas on a grid of 2.5◦× 2.5◦. An em-

pirical orthogonal function (EOF) analysis resulted in a lin-

ear trend in the twentieth century, with drying over northern

and southern Africa, the Middle East, Mongolia, and eastern

Australia, and moistening over the United States, Argentina,

and parts of Eurasia (Dai et al., 2004). A follow-up study

by Dai (2011) compared the original and three other vari-

ants of PDSI records, but the main conclusion remained the

same: warming in the second half of the last century is re-

sponsible for much of the drying trend over several land ar-

eas (Dai, 2013). Increased heating itself from global climate
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change may not cause droughts but it is expected that when

droughts occur they are likely to set in quicker and be more

intense (Trenberth et al., 2014). However, similarly to the

open questions on an optimal definition of a drought index,

debates on the trends are also not entirely closed (Sheffield et

al., 2012; Damberg and AghaKouchak, 2013; Spinoni et al.,

2013; Trenberth et al., 2014).

Here we report on a global trend analysis of the remotely

sensed DSI time series constructed by Mu et al. (2013). Spe-

cial attention is paid to testing the statistical significance of

local linear trends by data shuffling (see Sect. 2). The main

result is that 17.34 % of the land area exhibits significant

trends of either signs (12.03 % drying and 5.31 % wetting)

and most of these locations form large, geographically con-

nected areas. We emphasize that the usual field significance

tests (Benjamini and Hochberg, 1995; Douglas et al., 2000;

Ventura et al., 2004; Wilks, 2006; Renard et al., 2008) cannot

give more reliable estimates, because a DSI value as defined

provides a fully local characterization, and the same numeri-

cal value can be related to very different local circumstances.

The relatively short period of 12 years hinders linking the

trends to global climate change; however, we think that the

observations might reveal a slow (decadal) mode of natural

climate variability. Correlations with other atmospheric and

oceanic variables are found at various (statistically insignif-

icant) levels; therefore, at the moment we cannot prove any

causal relationship or propose a solid explanation of the ob-

servations.

2 Data and methods

In order to better exploit the strengths of continuous satel-

lite observations, Mu et al. (2013) recently developed a re-

motely sensed global drought severity index (DSI) and com-

piled an open access database spanning 12 years, between

2000 and 2011, at a temporal resolution of 8 days. The high-

est spatial resolution is around 5 km (0.05◦× 0.05◦) with an

almost global coverage. The definition of DSI incorporates

the normalized difference vegetation index (MOD13 NDVI

product), together with the evapotranspiration and potential

evapotranspiration ratio data (MOD16 ET /PET product).

The NDVI vegetation index measures the fraction of pho-

tosynthetically active radiation absorbed by plant canopies,

basically the amount of vegetation present on the ground

(Zhou et al., 2001; Huete et al., 2002; Fensholt and Proud,

2012). By design, the dimensionless NDVI is a transforma-

tion of the near-infrared/red spectral reflectance ratio, and it

varies between−1.0 and+1.0. Relatively large negative val-

ues occur when the red reflectance exceeds the near-infrared

one corresponding to water surfaces, values around zero are

characteristic for barren areas, while positive values span

from grasslands to midlatitude forests and to tropical jungles.

Terrestrial evapotranspiration (ET) is the sum of evapora-

tion and plant transpiration from land surface to the atmo-

sphere. The computation algorithm of MOD16 ET is based

on the theory of the Penman–Monteith energy balance by us-

ing remote sensing inputs of the leaf area index, land cover,

albedo, and enhanced vegetation index, as well as meteoro-

logical parameter values of radiation, air temperature, pres-

sure, and humidity (Mu et al., 2007, 2011). Over a suffi-

ciently long time period, ET is less than or equal to precip-

itation for most vegetated geographic locations, apart from

sites where the irrigation or subsurface water supply may

shift the balance. Tropical forests have the highest ET val-

ues, dry areas and areas with short growing seasons exhibit

low ET, while values for temperate and boreal forests lie be-

tween the two extremes. Potential evapotranspiration (PET)

is the amount of water that would be evaporated and tran-

spired in case of hypothetically infinite water availability, in-

corporating the energy available for evaporation and the abil-

ity of the lower atmosphere to transport evaporated moisture

away from the land surface. ET and PET are expressed in

terms of depth of water (mm) for a given time period (day,

week, month, etc.); thus, the ratio ET /PET has a value of 1.0

where evapotranspiration fully satisfies potential conditions,

and declines toward zero where the surface dries.

A given DSI value is obtained by standardization of the

sum of previously and separately standardized NDVI index

and ET /PET ratio (Mu et al., 2013):

Z =
NDVI−〈NDVI〉

σNDVI

+
ET/PET−〈ET/PET〉

σET /PET

, (1)

DSI=
Z−〈Z〉

σZ
. (2)

Temporal mean values 〈∗〉 and standard deviations σ∗ are de-

termined over the available time period for each grid point

separately. It is an important detail that DSI is derived us-

ing ET /PET without NDVI during the classified dormant

season, because of greater noise in the non-growing season

NDVI signal (Mu et al., 2013). Permanently non-vegetated

locations such as deserts, high mountains, extended lakes, or

large cities cannot provide useful input for DSI data; there-

fore, such grid points are filtered out by a quality assessment

procedure (Fensholt and Proud, 2012). Note that zero DSI

values are not equivalent with missing data, the standardiza-

tion procedure defined by Eqs. (1) and (2) shifts local mean

values to this level by definition. There are two essential as-

pects to also emphasize at this point: (i) standardization en-

hances small fluctuations or seasonal changes with the nor-

malization by the local standard deviations σ∗, and (ii) stan-

dardization does not remove any trend existing in the time

series; furthermore, it does not change the statistical signifi-

cance of trends in any sense.

In this work, DSI records at 4 914 440 geographic loca-

tions are evaluated in order to identify linear trends. Each in-

dividual record consists of 552 points covering 12 years from

1 January 2000 to 31 December 2011. The basic time step is
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Figure 1. Example DSI records of significant negative trends in

Argentina along latitude 30.025◦ S: 64.225◦W (black), 64.025◦W

(red), and 63.775◦W (blue). Solid lines indicate fitted linear trends.

8 days, apart from the necessary cuts at the end of each year.

Example time series and linear trends are shown in Fig. 1

for three nearby locations (at the same latitude) in Argentina,

where significant negative trends are identified (see below).

Note that the time series exhibit apparently weak seasonal

and annual variations, in spite of the fact that the climate

of the province of Córdoba is humid subtropical with four

marked seasons. This is mostly because the ET /PET term

in DSI (see Eq. 1) has a feeble seasonal variability in many

places (Lafleur et al., 2005); moreover, NDVI is incorporated

only during the classified snow-free growing seasons as no-

ticed before.

Statistical significance of slopes of linear fits is verified

by the standard permutation test (Manly, 2007). Since most

of the DSI signals exhibit marked persistence on timescales

of weeks or even months (see Fig. 1), the basic unit of data

shuffling was one whole calendar year. We cut a given record

into 12 pieces and built a test set from randomly shuffled

and glued years. The mean slope and standard deviation (σ )

were determined, and we accepted a fitted slope of a mea-

sured record to be significant when its distance from zero

was larger than 2σ of its own test set. Figure 2 illustrates

that a test set size of 100 samples provides essentially the

same statistics as 100 000 random samples; however, for the

sake of minimizing errors we fixed the test set size as 1000

samples. Obviously, the larger the sample size the closer the

histogram of obtained slopes to a pure Gaussian shape (not

shown here); however, the mean and variance do not show

detectable sensitivity to the size of the test sets (Fig. 2).

3 Results and discussion

Condensation of the multitude of information into a single

number such as DSI has the drawback that a given numeri-

cal value does not carry any explicit meaning. Two zeros at

two distant grid points convey the message only that the sit-

uations at both sites are compatible with the local 12-year

mean state of the very sites considering the functional status

of the ecosystems. Nonzero DSI values of distant locations
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Figure 2. Significance analysis of fitted slopes by using test

sets of randomly shuffled whole year DSI records. The ensemble

means and standard deviations are plotted for 10 sites along lat-

itude 30.025◦ S, evenly spaced by 0.05◦ westward starting from

63.775◦W. Test set sizes are 100 (black circles), 1000 (red squares),

10 000 (orange diamonds), and 100 000 (blue stars). Maroon crosses

indicate fitted slopes (year−1) for the original measured time series.

Figure 3. Histogram of all fitted slopes (blue) over the continents,

where DSI data are available (4 914 440 locations). Its is clearly not

a Gaussian shape (note the logarithmic vertical scale), the global

mean value is −0.00875± 0.04971 year−1. Orange bars denote the

histogram of mean slopes computed for 1000 randomly shuffled

test sets for each geographic location. Red bars indicate significant

slopes at 2σ or higher level.

cannot be compared numerically, their magnitudes can only

be interpreted in a statistical sense with respect to the partic-

ular records. Nevertheless, standardization is a useful tool to

compare various signals of very different measures facilitat-

ing trend analyses or revealing cross-correlations. For exam-

ple, in a semiarid region where the ET /PET ratio is low, a

weak absolute trend might correspond to a significant change

in wetness demonstrated clearly by a slope given in units of

the local standard deviation.
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192 P. I. Orvos et al.: Global trends of drought severity index

Figure 4. Geographic distribution of sites where DSI trends are significant at 2σ or higher levels. Linear trend slopes in units of year−1

are color coded. Blue rectangles denote areas where significant DSI trends are ET /PET dominated (based on a comparison with the map

of Fig. 2a in Fensholt and Proud, 2012). Orange rectangles identify regions where NDVI trends are significant (see Fig. 2a in Fensholt and

Proud, 2012), but DSI trends are missing or very weak.

The histogram of all fitted slopes for standardized DSI

records is shown in Fig. 3 (blue bars), note the logarithmic

vertical scale. The shape is clearly not Gaussian with a mean

value of−0.00875 and standard deviation of 0.04971 year−1.

Statistically significant local slopes are obtained for 852 373

sites (17.34 %) at 2σ level, the numbers for 2.5σ and 3σ

limits are 269 900 (5.49 %) and 16 321 (0.33 %), respec-

tively. Negative (drying) trends (12.03 %) have a mean slope

of −0.05466± 0.04535 year−1, while significant positive

slopes (5.31 %) are around 0.02892± 0.04685 year−1. Spa-

tial correlations certainly bias these numerical values; how-

ever, we argue that a proper interpretation of DSI must be

entirely based on local information, so field significance tests

(Benjamini and Hochberg, 1995; Douglas et al., 2000; Ven-

tura et al., 2004; Wilks, 2006; Renard et al., 2008) cannot be

applied here for quantitatively incomparable records.

The main result of the present analysis is illustrated in

Fig. 4. Note that reddish and blueish colouration indicates

sites of significant DSI trends, and the zero level is not white

(the latter is used to identify missing locations). There are

several geographically connected areas exhibiting “drying”

(South America, middle Asia or sub-equatorial Africa) or

“wetting” (middle and northern Africa, Indian Peninsula or

eastern Spain) tendencies.

As for an interpretation of the observed trends, a further

complication arises from the composite aspect of DSI de-

fined by Eq. (1). NDVI and ET /PET are far from being in-

dependent characteristics; however, they are not strictly cou-

pled. Therefore, a given trend can be the result of a dominat-

ing tendency of changes in one of the two terms or in both

of them. Peculiar situations can occur when the two partial

trends cancel each other out, and this is not a purely theoret-

ical possibility. Fortunately, Fensholt and Proud (2012) per-

formed a linear trend analysis of monthly MODIS NDVI data

over the period 2000–2010. They found significant slopes for

11.8 % of the pixels (the same spatial resolution as for DSI)

on a global scale: 5.4 % characterized by positive trends and

6.3 % with negative trends. The comparison of Fig. 4 and

Fig. 2a of Fensholt and Proud (2012) reveals a high level

of correspondence; however, DSI is definitely a more sen-

sitive indicator of negative trends. The most important dif-

ference already mentioned is that Fensholt and Proud (2012)

evaluated NDVI data in the growing seasons, while DSI pro-

vides continuous records by means of ET /PET ratio. For

this reason, the areas indicated by blue rectangles in Fig. 4

can be considered as exhibiting ET /PET dominated trends.

The majority of such grid points indicating statistically sig-

nificant negative DSI tendencies are located in the middle

of the Eurasian continent, in Southeast Asia, in the north-

ern part of South America, and in the eastern part of middle

Africa. Three smaller regions denoted by orange rectangles

in Fig. 4 (northern Mexico, South Africa, and northern Aus-

tralia) show significant NDVI trends; however, DSI records

do not obey similar (or exhibit much weaker) tendencies.

These are candidate areas where NDVI and ET /PET terms

cancel each other out, but further local studies are necessary

to get a clear interpretation.

In order to demonstrate the power of high resolution map-

ping, we illustrate enlargements of South America (Figs. 5,

6) and India (Fig. 7). In both cases, we show examples where

significant trends at isolated locations have a plausible expla-

nation, and they are not observational errors.

In Fig. 6, an area at the border of Uruguay and Brazil is

depicted (Rivera Department), where the satellite picture of

the yellow rectangle clearly indicates intense agricultural ac-

tivity (see the straight cuts between forested area and crop
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Figure 5. Enlargement view of South America at the highest spa-

tial resolution of 0.05◦× 0.05◦. Trends in units of year−1 are color

coded.

30 S
o

55 W
o

Figure 6. Enlargement of an area at the border of Uruguay and

Brazil, where local trends indicate “wetting” (left). The satellite

picture (http://maps.google.com) clearly indicates intensive agricul-

tural/forestry activity in the region (right).

fields). Both Fig. 4 and the NDVI analysis of Fensholt and

Proud (2012) distinguish the very spot with a significant pos-

itive trend inside an extended area of decreasing vegetation

greenness signal (Fig. 5). Essentially the same observation is

formulated by Barbosa et al. (2015), who studied spatial pat-

terns of standardized difference vegetation index (SDVI) and

standardized precipitation index (SPI) for the interval 1998–

2012 in South America. (Monthly SDVI is equivalent with

the first term in Eq. (1), precipitation data are treated analo-

gously.) The map in Fig. 6a of Barbosa et al. (2015) is con-

sistent with Fig. 5; moreover, regions of definitely decreasing

Figure 7. Enlargement view of the Indian Peninsula at the highest

spatial resolution of 0.05◦× 0.05◦. Trends in units of year−1 are

color coded. Yellow circle locate the Indira Sagar Reservoir, approx.

22.17◦ N, 76.65◦ E (see the inset).

rainfall trends largely overlap with the red areas in Fig. 5. The

main conclusion of Barbosa et al. (2015) is that in 46 % of

the study area, significant decreasing or increasing greenness

tendencies cannot be linked to changes in rainfall over time,

indicating human impacts or the influence of other climatic

factors, such as temperature.

A similarly large area, where DSI trends have the opposite

sign is mapped in Fig. 7. Note that the tendencies here are

also NDVI dominated (see Fig. 4b); however, the number of

pixels with statistically significant slopes is definitely larger

than in Fensholt and Proud (2012). The same greening pro-

cess is identified by de Jong et al. (2011) for a longer period

of 1981–2006 in the Global Inventory Modeling and Map-

ping Studies (GIMMS) NDVI data set (Bai et al., 2008). The

yellow circle in Fig. 7 (see also the Inset) identifies the pix-

els around the Indira Sagar Reservoir, which is constructed

as the key project of a large multipurpose river basin devel-

opment on the Narmada River. Full-scale energy production

started in 2005, just in the middle of the observed period. It

is most likely that the gradual filling up of the reservoir re-

sulted in a decreasing vegetated area and thus the DSI signal

reflects a decreasing trend where degrading NDVI contribu-

tion in Eq. (1) is the main factor.

The fact that positive DSI trends are significant in a

much larger area than NDVI greening in India indicates that

ET /PET contribution can be equally important. Since the

Indian Peninsula is a “water-limited” area considering long-

www.geosci-instrum-method-data-syst.net/4/189/2015/ Geosci. Instrum. Method. Data Syst., 4, 189–196, 2015
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Figure 8. (a) Locations of two weather stations embedded in an apparently wetting region in eastern Spain: Tortosa (40.82◦ N, 0.48◦ E) and

Zaragoza (41.65◦ N, 1.00◦W). (b) Daily mean temperature, (c) daily precipitation (note the logarithmic vertical scale), and (d) daily relative

humidity for the two stations (black: Tortosa, red: Zaragoza). Data from Klein Tank et al. (2002).

term evaporation (McVicar et al., 2012), precipitation ten-

dencies might play a key role in interpreting DSI shifts.

Kothyari and Singh (1996) studied long-term time series

of summer monsoon rainfall and identified decadal depar-

tures above and below the long time average alternatively

for three consecutive decades. Singh and Sontakke (2002)

reported on an increase in extreme rainfall events over north-

west India during the summer monsoon and a decline of

the number of rainy days along east coastal stations in the

past decades, resulting in a westward shift in rainfall activi-

ties. Similarly, Murumkar and Arya (2014) demonstrated by

means of wavelet analysis that prominent annual rainfall pe-

riods exist ranging from 2 to 8 years at all the studied sta-

tions after the 1960s. Large-scale spatial and temporal cor-

relations between the trends of rainfall and temperature are

found by Subash and Sikka (2013), without a direct relation-

ship between increasing rainfall and increasing maximum

temperature of monthly or seasonal patterns over meteoro-

logical subdivisions of India. As for the particular area, even

glaciers can be listed as candidate explanatory factors, since

they influence runoff into lowland rivers and recharge river-

fed aquifers (Bolch et al., 2012).

A satisfactory interpretation of DSI trends certainly re-

quires several explanatory variables, since the index itself is

a rather complex quantity. Figure 8 illustrates example time

series of standard atmospheric parameters (daily mean tem-

perature, precipitation and relative humidity) for two weather

stations in eastern Spain (Tortosa and Zaragoza) seemingly

embedded in a rather large wetting region (data from Klein

Tank et al., 2002). There is no sign of any trends in the time

series during the study period, even when we check the previ-

ous decades (not plotted here) (Vicente-Serrano, 2007). This

semiarid region is water-limited too (McVicar et al., 2012);

therefore, precipitation trends should be correlated with DSI

shifts, especially in Tortosa.

The relatively short period of 12 years is not enough to

connect the results with global climate change. We think

that the observed significant DSI trends over extended ge-

ographic areas might be related to a decadal mode of the nat-

ural climate variability or extended anthropogenic impacts,

or a combination thereof. Apart from time-span limitations,

recent studies on drought trends (Sheffield et al., 2012; Dai,

2011, 2013) lead to somewhat controversial conclusions, as

noticed by Trenberth et al. (2014). One major issue in deter-

mining reliable long-term trends in drought due to climate

change is to separate the effects of natural variability, es-

pecially El Niño–Southern Oscillation (ENSO) (Trenberth

et al., 2014). During El Niño events, the main rainfall sys-

tems in the tropics move eastward over the tropical Pacific

Ocean leaving weakened monsoons behind (Panda and Ku-

mar, 2014; Barreiro et al., 2014). In the La Niña phase, dry

areas are more common in places where it is wet during El

Niño events. Indeed, as Miralles et al. (2014) pointed out in a

recent study, ENSO dominated the multi-decadal variability

of terrestrial evaporation at the global scale. Their main con-

clusion is that the recent decadal decline in global average

continental evaporation is not the consequence of a persis-

tent reorganization of the terrestrial water cycle, rather it is

an indication of transitions to El Niño conditions (Miralles et

al., 2014).

4 Conclusions

The objective of the present work was to perform a global

linear trend analysis of the remotely sensed drought severity

index (DSI) compiled by Mu et al. (2013). The methodol-

ogy was very similar to other studies on vegetation indices
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(NDVI or SDVI) (de Jong et al., 2011; Fensholt and Proud,

2012; Barbosa et al., 2015) with the main difference that our

significance test is based on the direct permutation method.

Detailed comparisons mostly with the results of Fensholt and

Proud (2012) indicate that DSI performs somewhat better

in detecting significant negative trends. This can be a con-

sequence of the definition of DSI, where the ET /PET ra-

tio provides a continuous contribution to the signal, while

NDVI participates only in the growing season. On the other

hand, this definition complicates the interpretation of ob-

served trends, because the two terms are not functionally re-

lated; therefore, the separation of contributions is not trivial.

We have illustrated the power of high resolution mapping by

zooming in on restricted regions and providing reasonable

explanations of why local trends can have opposite signs to

the surrounding extended area.

Work is in progress in three directions in order to find a

better explanation of the observed trends. Firstly, it is a plau-

sible goal to repeat the analysis separately for the two terms

(standardized NDVI and ET /PET ratio) to identify precisely

the role of these factors. Secondly, it is reasonable to com-

pare DSI with the many existing drought indices. This is a

demanding task, mostly because the validation of the var-

ious time series certainly requires direct comparisons with

field observations. Thirdly, decadal trends over extended ge-

ographic areas call for an explanation related to global cli-

mate change, especially when the subject has such societal

implication as a drought severity index. This is a highly non-

trivial problem too, because the separation of natural climate

variability from unambiguous climate shifts is hindered by

the length and reliability of available data (Trenberth et al.,

2014). Nevertheless cross-correlation analyses with relevant

atmospheric variables are necessary to begin the procedure.

Candidate indices are El Niño–Southern Oscillation, North-

ern Annular Mode/North Atlantic Oscillation, Southern An-

nular Mode, sea surface temperature (SST) anomalies, sea

ice cover (SIC), Atlantic Multidecadal Variability, etc.
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