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Abstract. Vegetation indices are mostly described as crop
water derivatives. The normalized difference vegetation in-
dex (NDVI) is one of the oldest remote sensing applica-
tions that is widely used to evaluate crop vigor directly and
crop water relationships indirectly. Recently, several NDVI
derivatives were exclusively used to assess crop water rela-
tionships. Four hydrological drought indices are examined in
the current research study. The water supply vegetation in-
dex (WSVI), the soil-adjusted vegetation index (SAVI), the
moisture stress index (MSI) and the normalized difference
infrared index (NDII) are implemented in the current study
as an indirect tool to map the effect of different soil salinity
levels on crop water stress in arid environments. In arid en-
vironments, such as Saudi Arabia, water resources are under
pressure, especially groundwater levels. Groundwater wells
are rapidly depleted due to the heavy abstraction of the re-
served water. Heavy abstractions of groundwater, which ex-
ceed crop water requirements in most of the cases, are pow-
ered by high evaporation rates in the designated study area
because of the long days of extremely hot summer. Landsat 8
OLI data were extensively used in the current research to ob-
tain several vegetation indices in response to soil salinity in
Wadi ad-Dawasir. Principal component analyses (PCA) and
artificial neural network (ANN) analyses are complementary
tools used to understand the regression pattern of the hydro-
logical drought indices in the designated study area.

1 Introduction

Remote sensing data are considered to be a convenient source
to perform several vegetation indices in either simple or com-
plicated band ratio combinations. Satellite images offer a
large amount of data that could be analyzed, processed and
stored to better understand several vegetation indices based
on the type of the satellite sensor used (Govaerts et al., 1999;
Pinty et al., 2009). Hypothetical backgrounds have been im-
plemented to improve and enhance the optimization of par-
ticular satellite sensors to support certain vegetation indices
(Verstraete et al., 1996; Gobron et al., 2000; Psilovikos and
Elhag, 2013).

Spectral vegetation indices are mathematical combina-
tions of different spectral bands mostly in the visible and
near-infrared regions of the electromagnetic spectrum. Vege-
tation activities can be measured comprehensively through
semi-analytical methods of spectral band ratios that have
been extensively used to detect not only seasonal variability
of the vegetation cover but also local scale spatial variability
(Broge and Mortensen, 2002; Xiao et al., 2002).

The generic principle of utilizing vegetation indices is
to improve the interpretation of the spectral data reflected
from a vegetation cover. Spectral reflectance variabilities
tend to differentiate between different vegetation character-
istics, based on crop water relationships and other surround-
ing features of soil components, and atmosphere, based on
the maximization of vegetation characteristics over the sur-
rounding environments (Moulin and Guerif, 1999; Boegh et
al., 2002). Color, roughness and water content are the main
soil components that affect soil spectral reflectance (Curran,
1983a, b; Bouman and Tuong, 2001).
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Soil parameter variation tends to draw a line on a plenary
scattergram. Nevertheless, this line, used as a reference point
and known as a “soil line” in vegetation studies, involved
both red and infrared spectral bands (Colombo et al., 2003;
Elhag, 2014a, b). The utilization of vegetation indices has
always been challenged by a major difficulty, which is the
minimization of soil component interferences and sensitiv-
ity maximization of atmospheric variations (Qi et al., 1994;
Leprieur et al., 2000). The atmospherically resistant vegeta-
tion index (ARVI), developed by Kaufman and Tanré (1992),
and the global environmental monitoring index (GEMI), de-
veloped by Pinty and Verstraete (1992), are the less sensitive
vegetation indices to atmospheric variation. Additionally, Qi
et al. (1994) reported that the GEMI is soil noise sensitive.
The higher noise sensitivity of GEMI has completely dis-
abled the index and classified it as inadequate for arid re-
gions.

Implementations of vegetation indices varied, from a local
leaf scale to a continental vegetation scale. Moreover, cer-
tain indices tend to be site and/or species specific (Clevers,
1989; Elhag, 2014a), and they cannot be applied to differ-
ent species or different leaf structures and canopy geometry
(Xiao et al., 2002). The scholarly work of Kerr and Ostro-
vsky (2003), Pettorelli et al. (2005), Huete et al. (2008) and
Elhag (2014b) reported that several vegetation indices were
used to estimate different vegetation parameters extensively,
including the leaf area index (LAI), the fractional vegetation
cover (FC), the crop water stress index (CWSI), the drought
severity index (DSI) and the water supply vegetation index
(WSVI).

Soil salinization is a dynamic process that basically arises
when an excess of irrigational water is frequently used in the
drainage capacity of the fields (Wardlow and Egbert, 2010).
Implementations of remote sensing techniques in soil salin-
ity mapping achieved comprehensive results on the regional
scale (Montandon and Small, 2008). The brightness index
(BI), the normalized difference salinity index (NDSI) and the
salinity index (SI) are widely distinguished in soil salinity
mapping in an arid environment (Douaoui et al., 2006; Jia-
paer et al., 2011). The current research aims to evaluate the
suitability of different vegetation indices for a different level
of remotely sensed soil salinity contrasting to crop water re-
lationship in Wadi ad-Dawasir.

2 Materials and methods

2.1 Study area

The study area,the Wadi ad-Dawasir town, is located in the
plateau of Najd at 44◦43′ lat and 20◦29′ long, about 300 km
south of the capital city, Riyadh. The study area illustrated
in Fig. 1 is comprised of gravelly tableland disconnected
by insignificant sandy oases and isolated mountain bundles.
Across the Arabian Peninsula, as a whole, the tableland

Figure 1. Location of the study area (Elhag, 2016).

slopes toward the east from an elevation of 1360 m in the
west to 750 m at its easternmost limit. Wadi ad-Dawasir and
Wadi al-Rummah, which are the most important patterns of
the ancient riverbeds, remain in the study area. The Wadi
ad-Dawasir and Najran regions are the major irrigation wa-
ter abstractors from the Al-Wajid aquifer. Agriculture in the
Wadi ad-Dawasir area consists of technically highly devel-
oped farm enterprises that operate with modern pivot irri-
gation systems. The size of center pivot ranges from 30 to
60 ha, with farms managing hundreds of them with the cor-
responding number of wells. The main crop grown in winter
is wheat and occasionally potatoes, tomatoes or melons. All-
year fodder consists of alfalfa, which is cut up to 10 times a
year for food. Typical summer crops for fodder are sorghum
and Rhodes grass, which is perennial but dormant in win-
ter. The shallow alluvial aquifers could not sustain the high
groundwater abstraction rates for a long time and groundwa-
ter level declined dramatically in most areas. Meteorological
features of the area are speckled. Five elements of meteorol-
ogy are constantly recorded through a fixed weather station
located within the study area. Temperature varies from a min-
imum of 6 ◦C to a maximum of 43 ◦C. Relative humidity is
mostly stable at 24 %. Solar radiation of average sunrise du-
ration is generally 11 h day−1. Average wind speed is closer
to 13 km h−1 and may reach up to 46 km h−1 in thunderstorm
incidents. Finally, mean annual rainfall is about 37.6 mm (Al-
Zahrani and Baig, 2011).

2.2 Methodological framework

The current research work is based on assessing a regression
correlation between different vegetation indices and their
spatial corresponding soil salinity values conducted from
satellite images. The principal component analysis (PCA)
was used to envisage the impacts of soil salinity on the cur-
rent vegetation.
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2.3 Estimation of vegetation indices

2.3.1 Water supply vegetation index (WSVI)

The water supply vegetation index is calculated by

WSVI= NDVI/Ts, (1)

where Ts is the estimated brightness temperature channel or
related remote sensing imagery, and NDVI is the normal-
ized difference vegetation index. The smaller this index is,
the more severe the drought is.

2.3.2 Soil-adjusted vegetation index (SAVI)

The soil-adjusted vegetation index is calculated by

SAVI=
(NIR−R)

(NIR+R) · (1+L)
, (2)

where NIR is the near-infrared band, R is the red band and
L is the is the soil brightness correction factor, commonly
L= 0.5 (Huete, 1988).

2.3.3 Moisture stress index (MSI)

The moisture stress index is calculated by

MSI=
SWIR1

NIR
, (3)

where SWIR1 is the short-wave infrared band 1.

2.3.4 Normalized difference infrared index (NDII)

The normalized difference infrared index is calculated by

NDII=
(NIR−SWIR1)

(NIR+SWIR1)
. (4)

2.4 Estimation of soil salinity index

Soil salinity indices are principally adjusted to detect salt
mineral in soils based on the different responses of salty soils
to various spectral bands. The following equation to map soil
salinity was used following Elhag (2016).

SI= (G×R)/B, (5)

where B is the blue band, G is the green band and R is the
red band.

2.5 Regression analyses

The purpose of the regression analyses is to envisage the re-
gression potentials between the soil salinity index from one
side and the rest of the hydrological drought indices from
the other side. The principal component analyses and artifi-
cial neural network (ANN) analyses were the implemented

approaches. The PCA is used to transform a set of likely cor-
related with unlikely correlated variables. The principal com-
ponents number is less than or equal to the variables’ origi-
nal number. Following Lorenz (1956), the PCA fundamental
equations are described as follows.

First, vector W (1) has to be calculated as follows:

w(1) = arg max
‖w‖=1

{∑
i
(t1)

2
(i)

}
= arg max

‖w‖=1

{∑
i
(xi · w)

2
}
. (6)

The matrix form of the above equation gives the following:

w(1) = arg max
‖w‖=1

{
‖Xw‖2

}
= arg max

‖w‖=1

{
wT XT Xw

}
. (7)

W (1) has to be calculated as follows:

w(1) = argmax
{
wT XT Xw

wT w

}
. (8)

The resulting w(1) suggests that the first component of a data
vector, x(i), can then be expressed as a score of t1(i) = x(i) ·
w(1) in the transformed co-ordinates or as the corresponding
vector in the original variables, {x(i) ·w(1)}w(1).

The neural network regression model is written as

Y = α+
∑

h
whφh

(
αh+

∑p

i=1
wihXi

)
, (9)

where Y = E(Y |X). This neural network model has one hid-
den layer, but it is possible to have additional hidden layers.

The φ (z) function used is hyperbolic tangent activation
function. It is used for logistic activation for the hidden lay-
ers.

φ (z)= tanh(z)=
1− e−2z

1+ e−2z . (10)

Significantly, the final output should be stochastically linear,
with no prediction limitations being between 0 and 1. A sim-
ple diagram of a skip-layer neural network is illustrated in
Fig. 2. The equation for the skip-layer neural network for re-
gression is shown below.

Y = α+
∑p

i=1βiXi +
∑

h
whφh

(
αh+

∑p

i=1wihXi

)
. (11)

It should be clear that these models are highly parameter-
ized and, thus, will tend to overfit the training data. Cross-
validation is, therefore, critical to making sure that the pre-
dictive performance of the neural network model is adequate.

The determination of the adequate performance of the
ANN model is a must. Five different criteria are used: the
Pearson correlation coefficient (R), the root mean square er-
ror (RMSE), the mean absolute deviation (MAD), the nega-
tive log likelihood and the error sum of squares (SSE). Ba-
sically, RMSE is the examined parameter for comparability
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Figure 2. Artificial neural network scheme with one hidden layer
and three nodes.

reasons. RMSE can be computed as follows:

RMSE=

√
1
T0

∑T0

t=1

(
y1− ý1

)2
, (12)

where t is the time index and ŷt and yt are the simulated
and measured values. Principally, the higher value of R and
smaller values of RMSE ensure the better performance of the
model.

3 Results and discussion

The realization of the hydrological drought indices was exer-
cised after a comprehensive remote sensing data correction.
Basically, atmospheric correction and spatial enhancement
were practiced utilizing Landsat 8 OLI data acquired over the
designated study area. The four hydrological drought indices
were shown in Figs. 3 to 6. Stochastic algorithms of WSVI
and SAVI mapping (Figs. 3 and 4) showed spatial coherence
with higher drought indices’ values within the agricultural
area rather than the surrounding area (Ceccato et al., 2001;
Daughtry et al., 2004).

On the contrary, MSI functioned as a deterministic drought
index, it was nearly unaffected by changing water content.
Conducted results showed two classes of stresses: stressed
and no stress. The no stress class was located within the agri-
cultural area, and the stressed area was represented along the
agricultural peripheral areas (Fig. 5), where higher values in-
dicate greater water stress and less water content. This could
be explained rationally by the presence of irrigational sprin-
kles (Hunt Jr. and Rock, 1989; Ceccato et al., 2001). NDII
is also a stochastic algorithm and was used in the current re-
search due to the higher sensitivity of the infrared band to
detect changes in water content of plant canopies (Hardisky
et al., 1983). The spatial distribution of NDII (Fig. 6) was
mapped accordingly with WSVI and SAVI indices, in which
higher NDII values meant higher water content (Jackson et
al., 2004). There are several algorithms to map soil salin-
ity based on utilization of different remote sensing data and

Figure 3. Water supply vegetation index (WSVI) thematic map over
the study area.

different ecological systems. An adequate NDSI algorithm
was carried out according to Elhag (2016) findings in arid
ecosystems. In Fig. 7, NDSI showed spatial variation, espe-
cially within the new agricultural expansion at the southwest-
ern part of the study area. The sprinkle movement drove the
salt accumulation to be located at the peripherally of the agri-
cultural areas (Lunetta et al., 2006; Konukcu et al., 2006).

Further statistical analyses were carried out to construe the
correspondences between salted soils and different horologi-
cal drought indices. The regression analysis demonstrated in
Fig. 8 showed that salinity increases with lower WSVI and
SAVI (Fig. 8a, b), which is explained by the salt accumula-
tion in soils in parts per million (ppm). Under salinity stress
conditions, there is not enough available water in soils for
proper vegetation growth (Lunetta et al., 2006; Yang et al.,
2011).

Generally, MSI values (Fig. 8c) are high in the study area
because of the excess irrigation regime adopted to over-
come the high evaporation rates (Elhag and Bahrawi, 2014;
Elhag, 2016). Excess irrigation regimes in poor-drain soils
lead to waterlogging problems and salts accumulation (El-
hag, 2016).

Due to NDII’s higher sensitivity to water, NDII values in-
crease with higher NDSI values. Salts accumulation caused
by excessive irrigation is the driving force behind the propor-
tional increment of NDII values in conjunction with NDSI
values as demonstrated in Fig. 8d (Jackson et al., 2004; Shi
et al., 2015).

Figure 9 demonstrated the principal component analysis
along with the Factor Analysis. Moreover, eigenvalue de-
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Figure 4. Soil-adjusted vegetation index (SAVI) thematic map over
the study area.

Figure 5. Moisture stress index (MSI) thematic map over the study
area.

composition was also demonstrated. WSVI and SAVI were
grouped together. Additionally, NDII and MSI were individ-
ually plotted against the former indices.

Similar results conducted from the scatterplot matrix and
the accompanying correlation matrix are shown in Fig. 10
and Table 1. A high correlation is distinguished between
WSVI and SAVI, while a negative correlation is noted be-
tween WSVI and SAVI from one side and MSI and NDII
from the other side.

Figure 6. Normalized difference infrared index (NDII) thematic
map over the study area.

Figure 7. Normalized difference salinity index (NDSI) thematic
map over the study area.

In Table 2, NDSI regression analysis shows that NDII
is the proper fit based on different regression parameters
(Rodgers and Nicewander, 1988). The spearman’s correla-
tion demonstrated in Table 3 supports the PCA results. Hy-
drological drought indices were classified into two cate-
gories: MSI and NDII in one category and WSVI and SAVI
in the other one. The elements of each category are positively
correlated. MSI and NDII were significantly correlated, and
WSVI and SAVI were highly correlated. Moreover, any other

www.geosci-instrum-method-data-syst.net/6/149/2017/ Geosci. Instrum. Method. Data Syst., 6, 149–158, 2017
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Figure 8. Regression analyses of NDSI (ppm) against horological drought indices.

Figure 9. Principal component analysis.

Table 1. Correlation matrix.

NDII MSI SAVI WSVI

NDII 1 0.7182080406 −0.708975719 −0.703572559
MSI 1 −0.888156103 −0.88249756
SAVI 1 0.9977255509
WSVI 1

combinations of the four hydrological drought indices were
not correlated.

The ANN analysis was carried out under one hidden layer,
three nodes, and hyperbolic tangent activation function con-
ditions. These conditions were carefully exercised to prevent
the algorithm from overfitting; the ANN analysis is demon-
strated in Table 4. NDII expressed the highest RMSE, which
indicates that NDSI and NDII are statistically the best fit
(Jiang, 2013). SAVI is at the second best fit, followed by
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Table 2. Regression analysis.

NDII MSI SAVI WSVI

Root square error 0.798566127 0.254999657 0.246131379 0.243463225
Root square error adjusted 0.797205088 0.249965871 0.241037672 0.23835149
Root mean square error 31.88199207 0.384262574 0.202130562 0.000447112
Mean of response 124.5466667 0.733333333 0.286361262 0.000611978
Observations (Sum wgts) 150 150 150 150

Figure 10. Scatterplot correlation matrix.

WSVI. MSI failed to fit NDSI values comprehensively, like
the former hydrological drought indices (Jones and Marshall,
1992; Jiapaer et al., 2011).

4 Conclusions

The findings of the current research emphasize the im-
portance of the hydrological drought indices to envisage
the adverse effects of salts accumulation in poorly drained
soils similar to the study area under investigation. The
soils of Wadi ad-Dawasir are poorly drained and still under
heavy pressure of heavy irrigation schemes to overcome the
high evaporation rates. Therefore, the implemented irrigation
schemes should be adjusted for better natural resources man-
agement. Remote Sensing techniques were satisfactorily im-
plemented and interpreted in terms of soil salinity mapping

in consort with hydrological drought indices. The normalized
difference infrared index was statistically proven to be the
profound normalized difference salinity index, followed by
soil-adjusted vegetation index and water supply vegetation
index, respectively. The principal component analyses and
artificial neural network analyses are complementary tools
used to understand the regression patterns of the hydrologi-
cal drought indices in the designated study area. Further work
needs to be considered towards the restrictiveness of the dras-
tic effect of salts accumulation within the study area.

Data availability. The data used in this paper are free. The open
access online data are available at the earth explorer website.
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Table 3. Spearman’s correlation.

Variable By variable Correlation Count Lower 95 % Upper 95 % Significance probability

MSI NDII 0.7182 150 0.6305 0.7878 *
SAVI NDII −0.7090 150 −0.7805 −0.6191 NS
SAVI MSI −0.8882 150 −0.9178 −0.8487 NS
WSVI NDII −0.7036 150 −0.7763 −0.6124 NS
WSVI MSI −0.8825 150 −0.9136 −0.8412 NS
WSVI SAVI 0.9977 150 0.9969 0.9984 **

Note that * is significant, ** is highly significant and NS is non-significant.

Table 4. Neural network analysis.

Training measures Validation measures

NDII

RSquare 0.7574526 0.6698156

31 
 

Table 4. Neural Network Analysis.  545 
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N
D

II
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 -LogLikelihood -47.865170 -25.28115 

SSE 2.2478847 1.0649203 

Sum Freq 100 50 

 

   

W
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V
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RSquare 0.7533827 0.6619429 
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Mean Abs Dev 0.0001876 0.0001451 
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SSE 1.08E-05 5.20E-06 
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 546 

 547 

 548 

RMSE 0.0999530 0.0972931
Mean Abs Dev 0.0571881 0.0436599
-LogLikelihood −88.411680 −45.554430
SSE 0.9990600 0.4732975
Sum Freq 100 50

MSI

RSquare 0.3032101 0.0893892
RMSE 0.2388872 0.1869959
Mean Abs Dev 0.1203075 0.0628425
-LogLikelihood −1.2825260 −12.886510
SSE 5.7067096 1.7483727
Sum Freq 100 50

SAVI

RSquare 0.7565419 0.6698155
RMSE 0.1499295 0.1459397
Mean Abs Dev 0.0857822 0.0654899
-LogLikelihood −47.865170 −25.28115
SSE 2.2478847 1.0649203
Sum Freq 100 50

WSVI

RSquare 0.7533827 0.6619429
RMSE 0.0003280 0.0003226
Mean Abs Dev 0.0001876 0.0001451
-LogLikelihood −660.35100 −331.01460
SSE 1.08E-05 5.20E-06
Sum Freq 100 50

RSquare= root square error and RMSE= root mean square error.
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