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Abstract. Ground-based microwave measurements per-
formed at water vapor and oxygen absorption line frequen-
cies are widely used for remote sensing of tropospheric wa-
ter vapor density and temperature profiles, respectively. Re-
cent work has shown that Bayesian optimal estimation can
be used for improving accuracy of radiometer retrieved wa-
ter vapor and temperature profiles. This paper focuses on
using Bayesian optimal estimation along with time series
of independent frequency measurements at K- and V-bands.
The measurements are used along with statistically signif-
icant but short background data sets to retrieve and sense
temporal variations and gradients in water vapor and tem-
perature profiles. To study this capability, the Indian Institute
of Tropical Meteorology (IITM) deployed a microwave ra-
diometer at Mahabubnagar, Telangana, during August 2011
as part of the Integrated Ground Campaign during the Cloud
Aerosol Interaction and Precipitation Enhancement Experi-
ment (CAIPEEX-IGOC). In this study, temperature profiles
for the first time have been estimated using short but statis-
tically significant background information so as to improve
the accuracy of the retrieved profiles as well as to be able to
detect gradients. Estimated water vapor and temperature pro-
files are compared with those taken from the reanalysis data
updated by the Earth System Research Laboratory, National
Oceanic and Atmospheric Administration (NOAA), to deter-
mine the range of possible errors. Similarly, root mean square
errors are evaluated for a month for water vapor and temper-
ature profiles to estimate the accuracy of the retrievals. It is
found that water vapor and temperature profiles can be es-

timated with an acceptable accuracy by using a background
information data set compiled over a period of 1 month.

1 Introduction

Water vapor along with temperature affects various atmo-
spheric processes, particularly cloud formation, initiation of
convective storms (Trenberth et al., 2005) and tropical cy-
clones (Needs, 2009; Ali, 2009). Therefore, accurate infor-
mation about their spatial and temporal distribution as well
as variation in the lower troposphere is essential for the ini-
tialization of numerical weather prediction models, which in
turn improves the forecast of various weather events (NRC,
2009).

Various instruments are used to measure water vapor and
temperature profiles in the lower troposphere, i.e., radioson-
des, Raman lidar and microwave radiometer. Radiosondes
are by far the main source of water vapor and temperature
profiles information for numerical weather prediction. The
measured profiles have a vertical resolution of approximately
10 m in the lowest 3 km of troposphere but are launched
once or twice a day at most sites around the world (Wang
et al., 2008). Therefore, they cannot be used to detect the
temporal variations and gradients in the atmospheric hu-
midity and temperature profiles at regular intervals of time
and space. Raman lidars (Goldsmith et al., 1998) and dif-
ferential absorption lidars (DIAL) (Spuler et al., 2015) are
also used during clear sky conditions for sensing humid-
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16 S. Panda et al.: Time series analysis of ground-based microwave measurements

ity profiles with a vertical resolution comparable to that
of a radiosonde from ground to an altitude of 3 km. Since
lidars are quite expensive, they cannot be deployed in a
dense network to provide information on spatial distribu-
tion and variation on water vapor and temperature. In ad-
dition to these instruments, microwave radiometers, both
ground-based and airborne, operating in the 20–60 and 166–
190 GHz ranges are used for the retrieval of water vapor,
temperature and liquid water profiles. Ground-based mi-
crowave radiometers have been designed, fabricated and used
to sense water vapor and temperature profiles from ground
to 10 km altitude (Iturbide-Sanchez et al., 2007; Solheim,
et al., 1998). Satellite-based instruments like Advanced Mi-
crowave Sounding Units (AMSU-A and B) on board NOAA-
15 (Susskind et al., 2011; Rosenkranz, 2001) as well as
Sondeur Atmospherique du Profil d’Humidité Intertropicale
par Radiometrie (SAPHIR) Microwave Analysis and De-
tection of Rain and Atmospheric Systems (MADRAS) on
board the Megha-Tropiques (Rao, et al., 2013) have been
used to retrieve humidity and temperature profiles in addition
to a range of other parameters. The AMSU-A and B chan-
nels operate close to the 22.235, 60 and 183 GHz absorption
lines as well as at the 89 GHz window frequency. In addi-
tion to these instruments a mini-satellite flower constellation
of millimeter-wave radiometers for atmospheric observations
known as FLORAD operates at frequencies close to the 89,
118 and 183 GHz to estimate water vapor, temperature, cloud
liquid content and precipitation rate (Marzano, et al., 2009).
Both the ground-based and airborne microwave radiometers
have a fine temporal resolution ranging from a few millisec-
ond to a few minutes depending on the integration time of the
measurement channel. However, radiometers have a variable
vertical resolution and accuracy depending on the thermody-
namic property being retrieved.

Humidity and temperature profiles have been retrieved
from microwave radiometer measurements by Westwater
(Westwater, 1993) using various retrieval techniques while
Scheve (Scheve et al., 1999) used the minimum variance
estimation technique. Sahoo (Sahoo et al., 2015b) used the
Bayesian optimal estimation technique while focusing on
sensing the gradients and temporal changes associated with
water vapor profiles retrieved by using K-band radiometer
measurements and an optimized background data sets.

The novel feature of the work discussed in this paper is the
estimation of water vapor density and temperature profiles
within certain limits of accuracy while detecting temporal
variations and gradients in the profiles. The profiles are es-
timated by inverting K- and V-band measurements using the
Bayesian algorithm along with a background data set com-
piled over a period of 1 month. The background data set com-
piled for a period of 1 month is specific to the time period of
radiometer measurements and conforms to the weather con-
ditions during that period. This method results in a significant
improvement of accuracy over the normal method of using
a large data set collected for a long period of time (usually

3–4 years). However, the improved results discussed in this
paper are specific for a location and the method needs be
adapted for a particular region.

The Bayesian optimally estimated profiles are then com-
pared with profiles estimated using the neural network (NN)
method as well as profiles taken from the reanalysis data
from Earth System Research Laboratory, National Oceanic
and Atmospheric Administration (NOAA). Here, the reanal-
ysis data are considered as truth and the error in this study is
the difference between the radiometer retrieved profiles (us-
ing both neural network and Bayesian optimal estimation)
and those from the reanalysis data.

2 Instruments deployment

Indian Institute of Tropical Meteorology (IITM) had de-
ployed a microwave radiometer in Mahabubnagar (16◦44′ N,
77◦59′ E), Telangana, for the whole month of August 2011
as part of the Integrated Ground Campaign during the Cloud
Aerosol Interaction and Precipitation Enhancement Experi-
ment (CAIPEEX-IGOC) (Leena et al., 2015). This is a fre-
quency agile radiometer and operated at 8 frequencies in the
range 22–30 GHz and 14 frequencies from 51.0 to 58.0 GHz
in V-band, at elevation angles of 15, 90 and 165◦. The resolu-
tion of the instrument varies from 0.1 to 1 K depending on in-
tegration time, i.e., 0.01 to 2.5 s (Radiometrics Corporation,
2008). The accuracy of the brightness temperature measure-
ments is approximately 0.2 K and the bandwidth of the chan-
nels is 300 MHz. This instrument also has a single channel
infrared radiometer in addition to surface pressure, humid-
ity and temperature sensors. The multichannel microwave ra-
diometer is calibrated by injecting noise from a noise diode to
remove the system gain fluctuations. Two sided tipping curve
calibration method has been used to determine the bright-
ness temperatures from the measured voltages for water va-
por channels and the cold (liquid nitrogen) and hot load cal-
ibration (internal black body at ambient temperature) is used
to calibrate the temperature channels measurements.

Radiometer measurements during the field campaign were
performed throughout day and night under varying atmo-
spheric conditions which included clear and cloudy skies.
The time series of calibrated brightness temperatures for
22.23, 25.0, 51.243 and 53.36 GHz are shown in Fig. 1. It can
be observed that brightness temperatures at 22.23 GHz are
comparatively higher than those at 25 GHz. This is because
22.23 GHz is the water vapor resonance frequency and is
more sensitive to water vapor in the atmosphere than 25 GHz,
which is significantly far away from the water vapor reso-
nance frequency. Similarly, measurements at 53.36 GHz are
higher than those at 51.243 GHz because of the proximity
of 53.36 GHz to the oxygen complex. Thus, measurement
frequencies are sensitive to water vapor and temperature to
a varying extent as explained in Sect. 3.1. This can also be
confirmed by analyzing the weighting functions correspond-
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Figure 1.Time series of brightness temperature at 22.23, 25.0, 51.243 and 53.36 GHz. 
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Figure 1. Time series of brightness temperature at 22.23, 25.0,
51.243 and 53.36 GHz.

ing to water vapor and temperature frequencies shown in
Fig. 2. Figure 2a shows that weighting function values for
22.234 GHz are higher than those at 25.00 GHz at altitudes
above 2 km while weighting function values at 25 GHz have
slightly higher values than those at 22.234 GHz below 2 km.
This is because the measurements at 22.234 GHz are compar-
atively more sensitive to changes in water vapor at altitudes
above 2.5 km while those at 25.00 GHz are more sensitive
to changes in water vapor below that altitude. However, the
weighting function values at 22.234 GHz for altitude range
2.5–8 km are significantly higher than those at 25.00 GHz so
that brightness temperatures at 22.234 GHz are still higher
than those at 25.00 GHz.

The temperature measurement frequencies shown in
Fig. 2b are most sensitive to temperature variations from 0
to 4 km altitude. The 53.36 GHz weighting function (repre-
sented by green line in Fig. 2b) is higher than 51.248 GHz
weighting function (represented by blue line in Fig. 2b) at all
altitudes.

To complement the radiometer measurements, Vaisala
RS92-SGP radiosondes were launched everyday at
12:00 UTC. These radiosondes were launched from the
radiometer deployment location to provide vertical profiles
(with temporal resolution of two seconds) of relative humid-
ity, temperature, dew point temperature, pressure and wind.
These radiosondes data have been used as the source of
a-priori information as well as the source of background data
set during this study and analysis, as explained in Sect. 3.2.
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Figure 2. (a) Weighting functions for measurement frequencies
used for water vapor profile retrieval. (b) Weighting functions for
measurement frequencies used for temperature profile retrieval.

3 Theoretical background

3.1 Remote sensing of water vapor and temperature
profile

Remote sensing of water vapor and temperature is based on
the measurement of microwave radiation emitted by water
vapor and oxygen molecules. The emission and absorption of
microwave radiation due to water vapor and oxygen in each
tropospheric layer causes the change in microwave radiation
that reaches the ground. This variation in radiation is due to
the concentration of water vapor in the atmosphere and the
temperature at various altitudes. Therefore, this microwave
radiation reaching the ground is source of information about
the humidity distribution and temperature variation in the at-
mosphere at different heights.

Measurement of this radiation at the weak water vapor ab-
sorption line (centered at 22.235 GHz) is used for the sensing
of water vapor profile variation. This is based on humidity
absorption line pressure broadening. This broadening is due
to motion of the water molecules and their collisions with
other water vapor molecules. Thus change in pressure has
a significant impact on the width of the absorption lines as
well as the absorption values. Therefore, a decrease in the at-
mospheric pressure (at high altitudes) results in reduction of
the line width and increase of the water vapor absorption line
strength, which is most prominent at 22.235 GHz (the center
of the absorption line). Therefore, the closer the proximity
of the measurement frequency is to the weak water vapor
resonance frequency, the higher the sensitivity to water va-
por at high altitudes. As the pressure increases the absorption
line widens, resulting in reduced sensitivity of resonance fre-
quency measurements to water vapor at high altitudes. How-
ever, frequencies farther away from the center frequency are
more sensitive to water vapor changes close to ground level.
This is again proven by the weighting functions values at
various frequencies. Weighting functions closest to the wa-
ter vapor resonance frequencies are almost twice more sen-
sitive to water vapor at 8 km than the weighting function far-
ther away from the resonance frequency. Frequencies further
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18 S. Panda et al.: Time series analysis of ground-based microwave measurements

away from the resonance peak are most sensitive to changes
close to ground level. Therefore, a combination of various
frequency measurements is able to detect the profile infor-
mation about water vapor.

Similarly, microwave radiation from oxygen at the 60 GHz
absorption complex can be used for retrieving temperature
profile information because atmospheric absorption in the
50–75 GHz range is primarily due to oxygen molecules.
The oxygen absorption line between 51.5 and 67.9 GHz
(Rosenkranz 1993) is primarily due to the magnetic moment
33 spin-rotational lines. These spin-rotational lines merge to-
gether at lower altitude to form a pressure broadened line
which has a shape similar to an absorption band centered
at 60 GHz. However, the oxygen absorption line intensity
is not the result of simple addition of isolated line inten-
sities but rather the “overlap interference” which gives rise
to a very complex absorption band called the oxygen com-
plex. This oxygen complex results in the opacity at 60 GHz
being significantly higher than that at 50 GHz, so a ground-
based radiometer measuring at 60 GHz just observes the ra-
diation emitted close to the ground surface. Thus, to sample
the temperature at various altitudes of the troposphere, mea-
surements need to be performed at a number of frequencies
away from the center frequency.

Since oxygen is the most uniformly mixed gas in the at-
mosphere and its proportion in the lower atmosphere is al-
most constant and altitude independent from ground level
to 80 km, the microwave radiation at the oxygen absorption
lines contain atmospheric temperature profile information.

3.2 Retrieval techniques

3.2.1 Bayesian optimal estimation

The Bayesian optimal estimation is an inversion method
which uses multiple K- and V-band microwave frequency
measurements to retrieve profiles of humidity and tempera-
ture. This retrieval of water vapor and temperature profiles
from brightness temperature measurements is a nonlinear
and ill-posed problem. To overcome the ill-posed problem
Bayesian optimal estimation retrieval technique uses a pri-
ori humidity and temperature information as well as back-
ground information covariance matrix as constraint to deter-
mine a unique solution to the inverse problem. A priori in
this paper represents the measurement of water vapor and
temperature profiles prior to the radiometer brightness tem-
perature measurements. This is also known as the initializa-
tion profile in this paper. The a priori information is taken
from radiosonde launched a few hours before the radiometer
performs the measurement.

In addition to the a priori information, water vapor den-
sity and temperature background information statistics are
also used. Background information statistics here mean the
background information covariance information represented
by the matrix Sa as discussed later in this section. This ma-

trix provides variability information associated with the at-
mospheric humidity and temperature profiles as well as the
inter-layer correlation for a particular time period. The num-
ber of elements in the background data set and the relation-
ships among them determines the values of the background
information covariance matrix elements. Since in this study
the data set used for calculating the background statistics has
been taken close to measurement time, it will be more repre-
sentative of weather conditions during that time period and
location.

The Bayesian optimal estimation uses the Levenberg–
Marquardt (LM) optimization method (Rodgers, 2000) given
in Eq. (1).

x̄i+1 = x̄i +

(
(1+ γ )S

−1
a +K

T

i S
−1
ε K i

)−1

(
K
T

i S
−1
ε

[
T̄ ′B− T̄B(x̄i)

]
− S
−1
a [x̄i − x̄a]

)
, (1)

where i is the iteration index, K i is the kernel or weighting
function matrix and determines the sensitivity of the mea-
surements at various frequencies to changes in the parame-
ter of interest at various altitudes, x̄i is the water vapor den-
sity or temperature profile which is updated at each itera-
tion and is same as initialization profile for i = 1, T̄ ′B is the
measured brightness temperature vector at water vapor den-
sity or temperature measurement frequencies and x̄a is the
a priori profile and is same as the initialization profile in this
case because a small data set is used as background data set.
T̄B(x̄i) is the radiative transfer model simulated brightness
temperature using the absorption coefficients calculated from
a Rosenkranz model (Rosenkranz, 1993, 1998).
Sε is the observation error covariance matrix and con-

tains the uncertainty information associated with the mea-
surement. The observation error covariance matrix takes into
consideration the radiometric measurement noise (E), repre-
sentativeness error (M) and radiative transfer model errors
(F ). Radiometric noise is determined based on radiometric
resolution, which is the minimum difference in scene bright-
ness temperature that can be sensed by the receiver. This
value for MP3000-A varies from 0.1 to 1 K depending on
integration time (Radiometrics Corporation, 2008). The typ-
ical value is 0.25 K for each measurement frequency while
considering an integration time of 250 ms. In addition to the
radiometric noise, forward model errors are introduced due
to inadequate absorption models. These are determined us-
ing the difference between brightness temperatures simulated
by two absorption models, i.e., the Rosenkranz model and
MPM93 (Liebe et al., 1993). Another source of uncertainty
is the representativeness error, which takes into consideration
the radiometer’s sensitivity to fluctuations in the atmosphere
on a time scale shorter than what can be represented by any
numerical weather prediction model or radiosondes profiles.
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Figure 3. The observation error covariance matrix for (a) water va-
por frequency measurements (b) temperature measurements.

The representative covariance is calculated in Eq. (2).

M = E
(
T̄ ′B(t +1t)− T̄

′
B(t)

)(
T̄ ′B(t +1t)− T̄

′
B(t),

)T (2)

where t is time and 1t is the time scale of difference. The
observation error covariance matrix is shown in Fig. 3, where
the axes represent the number of measurement frequencies.
The diagonal elements of the observation error covariance
matrix are approximately in the range of 0.23 to 0.29 K2 and
some of the off-diagonal elements are close to zero.
Sa is the background covariance matrix, which is

computed using information from 50 radiosonde profiles
launched over a period of 1 month. γ is the LM factor and
its value is updated at each iteration based on value of J (x)
from Eq. (3). Various initial values of γ in the range of γ = 1
and γ =∞ have been considered for starting of the iteration.
For γ = 1, the iteration might move towards a local minima
while in case of γ =∞ the iteration immediately moves to-
wards the global minima, which gives a solution that does
not converge. Therefore, the initial value of γ is assumed to
be 1. It is observed that the algorithm does not converge with
a valid output for this initial value of gamma so the initial
value of gamma is increased at regular intervals to check the
convergence. It is found empirically that gamma with an ini-
tial value of 5000 converges the algorithm for all cases. As
part of the iteration, if the value of J (x) increases, then the
iteration is discarded and the value of γ is increased 10 fold
and the iteration is repeated. This is done so as to discard any
invalid output which could be close to one of the local min-
ima. If value of J (x) decreases, then the iteration is valid and
the value of γ is reduced by a factor of 2 for the next iteration
even if the convergence criteria is not satisfied, i.e., Eq. (4)
(Hewison, 2007). This process is followed until the conver-
gence criterion given by Eq. (4) is validated by the output
profile. The normalized cost function and gamma values are
shown in Fig. 4. It can be observed that as the cost function
decreases, the gamma value decreases and vice versa.
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Figure 4. The value of normalized cost function and gamma with
respect to number of iterations are shown in the top and bottom
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LM technique output is dependent on the cost function
represented by J (x) in Eq. (3):

J (x)=
[
x̄− x̄b

]T
S
−1
a

[
x̄− x̄b

]
+

[
T̄B (x̄i)− T̄B

′
]T
S
−1
ε

[
T̄B (x̄i)− T̄B

′
]
, (3)

where x̄b and x̄ are the initialization profiles (either water va-
por or temperature) and output profile (either water vapor or
temperature) for each iteration, respectively. The final water
vapor or temperature output profiles are determined by the
convergence criterion given by Eq. (4):[
T̄B (x̄i+1)− T̄B (x̄i)

]T
S
−1
δy

[
T̄B (x̄i+1)− T̄B (x̄i)

]
�m, (4)

where m is 5 and 7 (dimension of water vapor and temper-
ature measurement vector) for water vapor and temperature
profile retrieval and Sδy is the covariance between T̄ ′B and
T̄B(x̄i). Equation (4) determines the termination of the iter-
ative process. The iteration stops when Eq. (4) reaches the
value q, which is very small in comparison to m. Therefore,
the value of q is chosen to be 0.05 and 0.07 for water va-
por and temperature profile retrieval, respectively, which is
1/100 times the number of measurements used.

3.2.2 Impact of background data set on retrieval

As already studied and determined by Scheve (1999), Hewi-
son (2007), Solheim et al. (1998) and Sahoo et al. (2015a),
the number of measurement frequencies which provide alti-
tude related information about water vapor and temperature
is limited by the information content or degrees of freedom of
the measurements. Thus, use of these measurements in var-
ious inversion methods to retrieve the thermodynamic prop-
erties at more number of altitudes than the information con-
tent limit is an ill-posed as well as a nonlinear problem. To
overcome these shortcomings, Bayesian optimal estimation
method uses background information statistics.
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Background information statistics here mean the back-
ground covariance information represented by the matrix Sa.
The background data set is very important for the perfor-
mance of the retrieval algorithm in terms of accuracy and
ability to sense temporal changes. This is because it deter-
mines the range of variability information associated with
water vapor or temperature profiles during a time period.
Thus the background data set taken closer in time to the ra-
diometer measurement will describe the atmospheric condi-
tions, i.e., the temperature and humidity profiles during the
measurements while background data set taken over a long
period (1 year or so) of time will take into consideration the
variability information for the whole year and hence will over
shadow variability information which might be more useful
in a short period of time.

The atmospheric conditions during a particular season or
month are correlated because the atmospheric conditions
are similar throughout the time period accept a few outliers
which cannot be correlated to the time of interest. Therefore,
measurements along with the background data set and the
a priori will retrieve the most probable water vapor and tem-
perature profile while an outlier might or might not be de-
tected depending on whether that event is properly described
by the background covariance matrix.

The background information covariance matrix used in
this paper is shown in Fig. 5a and b, calculated using water
vapor density and temperature profiles, respectively, which
have been measured over a period of 1 month. It can be ob-
served from Fig. 5a that most of the water vapor variability
information is between 20 and 40 layers, which correspond
to the altitude range of 2–4 km. However, Fig. 5b shows that
the temperature variability information is primarily below al-
titude of 1 km and also in the range of 2–4.2 km. In contrast to
these results, when background information covariance ma-
trix is computed from a large data set, important weather
events or temporally varying conditions are overshadowed
because the covariance matrix takes into consideration the
overall variability information while reducing the weight of
certain weather conditions which correspond to a particular
season (Sahoo et al., 2015b).

The goal of this study is to retrieve water vapor and tem-
perature profiles with improved accuracy while using a back-
ground data set measured over a period of 1 month so as to
detect the temporal changes and gradients in the lowest 8 km
of the profiles.

3.3 Neural network estimation

Estimation of water vapor and temperature profiles from mi-
crowave radiometer brightness temperatures is done using a
proprietary NN method developed by Radiometrics Corpora-
tion (Solheim, et al., 1998). NN zenith estimation of temper-
ature, water vapor density profiles, relative humidity profiles
and liquid water content is performed at a time from the mi-
crowave measurements as well as the infrared channel mea-

Figure 5. Background information covariance matrix for 80 layers
(each layer is 100 m thick): (a) water density and (b) temperature
profiles. The x and y axes are in kilometers for both the figures.

surements. The retrieved profiles are estimated at 58 height
levels at every 50 m steps from the surface up to 500 m, then
at every 100 m steps to 2 km, and then the step size is in-
creased to 250 m from 2 to 10 km. However, it has to be noted
that above approximately 7 km, the atmospheric water vapor
density and temperature approach the climatological mean
values.

As part of the retrieval process the training of the NN
is performed using a back-propagation algorithm and ra-
diosonde data which have been collected over a period of
time, i.e., usually 4 to 5 years. The radiosonde data used
for training the network are taken from one or more sites
which have climatological conditions similar to the observa-
tion site. The radiosonde profiles are used for simulating the
brightness temperature using absorption models and radia-
tive transfer equations. The NN estimation uses a standard
feed-forward network (Radiometrics Corporation, 2008) to
retrieve the temperature, humidity and liquid water profile
that is most consistent with the atmospheric conditions and
radiometric measurements.

However, in this case sufficient radiosonde profiles were
not available for Mahabubnagar, so a slightly different ap-
proach was used in this study for neural network estimation
of profiles. Radiosonde profiles were still used as training
data set but these were taken from areas which had simi-
lar weather conditions and same altitude and latitude (but
different longitude) as Mahabubnagar, Telangana. However,
two sites at the same altitude and longitude may have sig-
nificantly different weather depending on the general confor-
mation of the mountains in the area, the marine currents as
well as the advection processes. This could lead to biases in
the training of the radiometer algorithm which in turn would
increase the error of the retrieved profile.

4 Retrieval of atmospheric profiles

The Bayesian optimal estimation and NN zenith estimation
methods are applied to the zenith microwave measurements
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to estimate water vapor density and temperature profiles from
ground to an altitude of 8 km in the troposphere for various
days and times. The Bayesian optimal estimation method re-
quires an initialization profile which is taken from radioson-
des launched every day at 12:00 UTC. The initialization pro-
files from radiosondes are vertically averaged to correspond
to 100 m layer thickness of retrieval. In addition to the mea-
surements and initialization profile, background information
covariance matrix is also required, which is calculated from
the data set of radiosonde profiles launched during the ex-
periment and is shown in Fig. 5. The retrieved profiles are
compared with those from NOAA reanalysis data. The re-
analysis profiles have water vapor and temperature samples
at varying pressure levels. Therefore, these profiles are made
uniform by interpolation so as to have samples at every 100 m
interval from ground to 8 km above ground level.

4.1 Water vapor profiles

Water vapor profiles estimated using the Bayesian optimal
estimation and NN method are shown in Fig. 6, along with
the reanalysis data from NOAA. It can be observed that
Bayesian optimal estimation performs better than the NN in
estimating water vapor profile on all the days considered.
The Bayesian optimal estimation is able to detect the vari-
ation in the profiles, which are smoothed by the NOAA data
because of the coarse vertical resolution. The retrieved pro-
file in Fig. 6a shows that both the Bayesian and NN zenith
estimated water vapor profiles have similar performance on
7 August 2011 when the errors are in the range of 1.5–
2.5 g m−3 from ground to 3 km above ground level. However,
for 16 August 2011 the Bayesian and NN zenith retrieval er-
rors are in the ranges of 0–1.5 and 0–3 g m−3, respectively, as
shown in Fig. 6b. The Bayesian retrieved profiles show sig-
nificantly improved performance on 25 and 26 August 2011
and have errors less than 1.5 g m−3 in the lowest 2 km of the
troposphere, which is better than the error associated with the
NN zenith estimated profiles. It can also be observed from
Fig. 6 that at the altitude range of 3–7 km, Bayesian opti-
mal estimation method has an error less than 0.8 g m−3 for
all cases except for 25 August 2011. Thus the NN zenith re-
trieval has a slight negative bias in the lowest 2 km of the
troposphere.

In addition to the higher accuracy, Bayesian optimal es-
timation has been able to detect the gradient in the lowest
4 km of troposphere on 7, 16 and 25 August 2016, which is
not observed in the reanalysis data. This detection of gra-
dients in the water vapor density profiles is significant be-
cause water vapor is highly variable in the lowest 3 to 4 km
of the troposphere, which greatly affects the evolution of
the weather changes. The statistical analysis for profiles re-
trieved by Bayesian optimal estimation and NN is discussed
in Sect. 4.3.
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Figure 6. Time series analysis data of water vapor retrieved profiles.

4.2 Temperature profiles

Temperature profiles were estimated using both the estima-
tion methods (Bayesian and NN methods) and have been
shown in Fig. 7. The Bayesian method outperforms the NN
estimated profile on all the days considered here. For alti-
tudes below 3 km, the Bayesian optimal estimation has an
error range of 0–1.5 K, and for altitudes above 4 km the
Bayesian method error is less than 3 K for most of the cases
considered in Fig. 7. The NN estimated profile consistently
shows a negative bias when compared with the reanalysis
data at all altitudes. However, the negative bias is more sig-
nificant at 3 km and above where the NN error is higher than
6 K.

It can be noted that some of the fine changes and gradients
in the temperature profile in the altitude range of 0–3 km are
sensed by the Bayesian estimated temperature profile. The
ability to sense gradients and temporal changes in the tem-
perature profile are because of the background covariance
matrix, which has been computed using a data set compiled
over 1 month during the measurement time. This data set is
correlated to the radiometer measurements because the ra-
diosondes data have been taken over the time period of the ra-
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Figure 7. Time series analysis data of temperature retrieved profiles. 
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Figure 7. Time series analysis data of temperature retrieved pro-
files.

diometer measurements. The statistical analysis for Bayesian
optimal estimation and NN zenith is discussed in Sect. 4.3.

4.3 Error analysis

To analyze the performance of both the retrieval techniques,
the retrieval errors are calculated as the difference between
the estimated (using either the NN or the Bayesian optimal
estimation) and the reanalysis profiles. The range of errors
associated with the water vapor profiles estimated using NN
and Bayesian optimal methods are shown in Fig. 8a and b,
respectively. Figure 8a shows that the errors for NN estima-
tion in the lowest 2 km of the troposphere are in the range
of −4.5 to 4 g m−3 and as the altitude increases the error
range decreases and reduces to −2 to 2 g m−3 at 4 km above
ground level. However, the range of errors associated with
the Bayesian optimal estimation are −1 to 1 g m−3 at all al-
titudes for most of the cases as shown in Fig. 8b. Thus, the
error associated with the Bayesian optimal estimation is sig-
nificantly less than that of the NN algorithm particularly for
water vapor profile retrieval. It can also be observed that the
errors in most of the cases are less than zero for both the
retrieval methods. This is because of the estimated profile
being less than the reanalysis profile in most of the cases
(thus the negative bias). In addition to that, it can be observed
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Figure 8. Error associated with water vapor density profile retrieved by (a) neural network (b) Bayesian 
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Figure 8. Error associated with water vapor density profile retrieved
by (a) neural network and (b) Bayesian optimal estimation.

that some of the retrieved profiles in Fig. 8b showed higher
than usual absolute errors, i.e., 2 g m−3 and above. This is
because the water vapor profile retrieval accuracy is signif-
icantly affected by the a priori profile as shown by Sahoo
et al. (2015). If the atmospheric conditions during the a pri-
ori profile measurement (radiosonde launch) are very differ-
ent from the conditions during the radiometer measurements
then the actual profile will be different from the a priori. This
will result in errors which are higher than when the a priori
and estimated profiles are similar or the weather conditions
for the two times are not very different. This difference in
weather conditions is due to a weather phenomenon or a rain
event.

The range of errors associated with the temperature pro-
files are shown in Fig. 9a and b for both the NN and Bayesian
optimal techniques, respectively. The error associated with
the neural network profile is in the range of −3 to 5 K in the
lowest 1 km of the troposphere and then the range changes to
−4 to −8 K at 4 km above ground level. It is clear that the
NN zenith retrieval underestimates the value of the tempera-
ture profile. The error associated with the Bayesian optimal
estimated profile is shown in Fig. 9b and is in the range of
−1 to 0 K except in the case of a few profiles. As in the case
of water vapor profile, the errors associated with tempera-
ture profiles by Bayesian optimal estimation are significantly
less than NN estimated profiles. The Bayesian optimally esti-
mated retrievals using radiometer observations compare well
with the reanalysis data because of the retrieval being con-
strained by a-priori and surface measurements provided by
the radiometer.

Another analysis was performed to determine the sensitiv-
ity of retrieved profile to changes in elements of observation
error covariance matrix in the Bayesian optimal estimation.
Water vapor and temperature profiles already retrieved for
various days as shown in Figs. 6 and 7 have been reanalyze
after increasing the diagonal element of the observation er-
ror covariance matrix by 0.25 K2. The retrieved profiles for
water vapor and temperature for both the observation error
covariance matrices are shown in Fig. 10. It can be observed
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Figure 9. Error associated with temperature profiles retrieved by (a) neural network (b) Bayesian 

optimal estimation. 
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Figure 9. Error associated with temperature profiles retrieved by
(a) neural network and (b) Bayesian optimal estimation.

that the retrieved water vapor profile for the modified covari-
ance matrix has higher error than the profile retrieved using
the covariance matrix shown in Fig. 3. The increase in er-
ror for the retrieved water vapor profile is in the range of 0.3
to 1.9 g m−3 (0 to 8 km altitude). Similarly, the increase of
0.25 K2 in the diagonal elements of the temperature observa-
tion covariance matrix shown in Fig. 3 results in an increase
of the temperature profile error by 0.2 to 0.5 K (0 to 8 km alti-
tude) as shown in Fig. 10. Thus, the observation error covari-
ance matrix has a significant impact on the retrieved profile
quality and accuracy.

Additional analysis was performed to determine the de-
viation of the retrieved profiles from the NOAA reanalysis
profile. Root mean square (RMS) errors are calculated for
both the Bayesian and NN methods. RMS errors are calcu-
lated by comparing radiometer retrieved humidity and tem-
perature profiles (retrieved using both Bayesian optimal es-
timation and NN method) with the reanalysis data (which is
used as truth in this case).

Figure 11a shows the RMS error associated with Bayesian
optimal and NN estimated water vapor profile. Bayesian re-
trieval error varies from 0.2 to 0.4 g m−3 in the lowest 4 km
of the troposphere and is less than 0.2 g m−3 above 5 km alti-
tude. In contrast, RMS error for NN retrieved profile is in the
range of 1–2.5 g m−3 in the lowest 2 km of troposphere and is
less than 1 g m−3 above 4 km. Thus, the RMS error for water
vapor profile retrieved using Bayesian optimal estimation is
less than NN.

Figure 11b shows the RMS error for Bayesian optimal and
NN estimated temperature profiles. The RMS error associ-
ated with the Bayesian optimal estimated profile is less than
0.6 K at any altitude from 0 to 8 km above ground level. How-
ever, the NN zenith retrieval error range is 1–2 K for lowest
2 km and then increases consistently above 2 km. The max-
imum error is approximately 7.5 K at 8 km above ground
level. Thus, the Bayesian retrieval algorithm performs sig-
nificantly better than NN zenith for estimating temperature
profile.

It is observed that the RMS error for NN estimated water
vapor density profile has a decreasing behavior with altitude
whereas the temperature profile RMS error has an increasing
behavior with height. This is due to bias being introduced in
the algorithm. NN algorithm used to retrieve the water va-
por and temperature profiles has been trained using a data
set taken from areas which have similar weather conditions
as the radiometer observation site. However, two sites at the
same altitude and longitude may have significantly different
weather depending on the general conformation of the moun-
tains in the area, the marine currents as well as the advection
processes. This training of the algorithm is causing the re-
trieval bias for both the water vapor and temperature profiles.
However, at high altitudes the range of water vapor density
values which are possible are limited and close to zero (ob-
viously the climatological mean) due to which the errors re-
duce as altitude increases as shown in Fig. 11a. This is not
the case for temperature profiles, which can have really low
values at high altitudes. If the training data have really low
values of temperature at high altitudes for a set of brightness
temperatures then the retrieved profile will also be low in
comparison to the actual profile or the reanalysis data in this
case. Thus as the altitude increases, the temperature profile
error increases too.

5 Conclusion and discussion

This paper comprehensively describes the Bayesian optimal
estimation and the improvements applied to the technique
to estimate humidity and temperature profiles with increased
accuracy. The Bayesian technique is an optimal combination
of ground-based microwave radiometer observations and the
related background information as well as the a-priori infor-
mation. Hence, the background data set is one of the impor-
tant parameters in improving accuracy and in increasing the
ability to detect temporal changes and gradients. Therefore,
the effect of using a small background data set has been stud-
ied in this paper. To that effect the Bayesian optimal estima-
tion has been applied to the radiometer measurements per-
formed for the month of August 2011 to retrieve water vapor
density and temperature profiles while considering a data set
taken for a period of 1 month. The retrieved profiles show
that gradients can be detected along with temporal changes.
These retrieved profiles have been compared with those from
the NN method and also with the NOAA reanalysis data,
which is considered as truth in this case. The results show
that Bayesian optimal estimation using a small background
information data set (50 profiles taken over a period of 1
month) has better performance than the NN method (which
requires a large background data set taken over 4–5 years as
training data), particularly when a large background data set
is not available to train the NN method. This improved accu-
racy can be achieved because the profiles in the background
data set are temporally and spatially correlated with the mea-
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Figure 10. Retrieved profile sensitivity to observation error covariance matrix. (a) Water vapor profile. (b) Temperature profile.
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Figure 11: RMS Error analysis for (a) water vapor profiles and (b) temperature profiles. 
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Figure 11. RMS error analysis for (a) water vapor profiles and (b)
temperature profiles.

surements performed by the radiometer. Thus, the most per-
sistent profile is retrieved and the Bayesian optimal estima-
tion achieves the improved retrieval performances through-
out the altitude of interest.

Water vapor profiles retrieved using the Bayesian optimal
estimation technique (Fig. 6) compares well with the reanal-
ysis data for 16 August 2011 and 26 August 2011 with differ-
ences less than 1.5 g m−3 for the whole profile and for other
days the difference is lower than the error observed for NN
from ground to 3 km altitude. For most of the days the abso-
lute errors are less than 2 g m−3. In addition to that retrieved
profiles are able to detect the gradients in the water vapor
profile which are otherwise smoothed by the reanalysis data.
The RMS error analysis for Bayesian estimation shows that
the RMS errors are less than 0.8 g m−3 from ground to 8 km
altitude, which in turn is less than the errors observed for NN.

Thus, the water vapor profile can be retrieved using Bayesian
optimal estimation with an accuracy of better than 1.5 g m−3

for most of the cases. Temperature profiles retrieved using
Bayesian optimal estimation have errors of less than 3 K in
the lowest 5 km of troposphere when compared with the re-
analysis data while the NN profiles usually have a difference
of 3 K or more for the whole profile. However, on most of the
days temperature profiles can be retrieved with an accuracy
of better than 1.5 K while detecting the gradients. This has
been again proved in the RMS error analysis in Fig. 11. The
RMS error shows that Bayesian method has error less than
0.7 K while the NN has error higher than 2 K and increases
as the altitude increases.

Along with other analyses, one has been performed to de-
termine the sensitivity of retrieved profile accuracy to change
in observation error covariance matrix. It has been observed
that water vapor profile retrieved error increases by almost
1–2 g m−3 with an increase of 0.25 K2 of the diagonal ele-
ments of the matrix. However, an increase of 0.25 K2 of the
diagonal elements of the temperature error covariance matrix
results in an increase of error less than 0.8 K.

By analyzing the errors it can be concluded that water va-
por and temperature profiles can be retrieved with improved
accuracy using Bayesian optimal estimation. Along with the
accuracy, the water vapor and temperature gradients and tem-
poral changes can also be detected. When a large background
data set is not available the Bayesian optimal estimation per-
forms way better than the NN retrieval technique in terms of
accuracy.
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6 Data availability

The radiometer brightness temperature data is property of In-
dian Institute of Tropical Meteorology (IITM), Pune which
is an autonomous organization under the Ministry of Earth
Sciences, India. The data is not publicly available but can
be availed by collaborating with IITM as well as sending
a request to Dr. G. Pandithurai at pandit@tropmet.res.in.
The Bayesian optimal estimated water vapor and tempera-
ture profiles data can be provided by the authors to the user
based on the request. The NOAA reanalysis data is on NOAA
website and can be easily accessed by the user.
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