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Abstract. Particle swarm optimization (PSO) is a global op-
timization technique that works similarly to swarms of birds
searching for food. A MATLAB code in the PSO algorithm
has been developed to estimate the depth to the bottom of a
2.5-D sedimentary basin and coefficients of regional back-
ground from observed gravity anomalies. The density con-
trast within the source is assumed to vary parabolically with
depth. Initially, the PSO algorithm is applied on synthetic
data with and without some Gaussian noise, and its validity
is tested by calculating the depth of the Gediz Graben, west-
ern Anatolia, and the Godavari sub-basin, India. The Gediz
Graben consists of Neogen sediments, and the metamorphic
complex forms the basement of the graben. A thick unin-
terrupted sequence of Permian–Triassic and partly Jurassic
and Cretaceous sediments forms the Godavari sub-basin. The
PSO results are better correlated with results obtained by the
Marquardt method and borehole information.

1 Introduction

The gravity method is a natural source method which helps
in locating masses of greater or lesser density than the sur-
rounding formations. It is used as a reconnaissance survey
in hydrocarbon exploration. Sedimentary basins, which are
characterized by negative gravity anomalies, are the loca-
tion of almost all of the world’s hydrocarbon reserves. In-
terpretation of gravity data is a mathematical process of try-
ing to optimize the parameters of the initial model in or-
der to get a good match to the observed data. Interpreta-
tion of gravity data is always associated with the ambigu-
ity problem. Ambiguity in gravity anomalies can be over-

come by assigning a mathematical geometry to the anomaly-
causing body with a known density contrast (Rama Rao and
Murthy, 1978). Bott (1960) used stacked prism model to de-
scribe the cross-section of a sedimentary basin, whereas Tal-
wani (1959) used the polygonal model to describe source ge-
ometry. The parabolic density function is used to remove the
complications associated with exponential (Cordell, 1973),
cubic (Garcia-Abdeslem, 2005) and quadratic (Gallardo-
Delgado et al., 2003) density functions. The Marquardt inver-
sion through residual gravity anomalies delineates the struc-
ture of a sedimentary basin by estimating regional back-
ground (Chakravarthi and Sundararajan, 2007; Marquardt,
1963). Several authors have developed 2-D/2.5-D local op-
timization techniques over the 2-D/2.5-D sedimentary basin
(Annecchione et al., 2001; Barbosa et al., 1999; Bhattacharya
and Navolio, 1975; Gadirov et. al, 2016; Litinsky, 1989; Mor-
gan and Grant, 1963; Murthy et al., 1988; Murthyan and Rao,
1989; Rao, 1994; Won and Bavis, 1987) to interpret gravity
anomalies with constant density function. In many publica-
tions over 3-D gravity field computation with an approxima-
tion of geological bodies by 3-D polygonal horizontal prism
has been applied (Eppelbaum and Khesin, 2004; Khesin et al.
1996). Rao (1990) used a quadratic density function, which
is comparatively reliable, to analyse gravity anomalies over
basins having a limited thickness, whereas Chakravarthi and
Rao (1993) carried out modelling and inversion of gravity
anomalies with a parabolic density function.

Particle swarm optimization (PSO) is a robust stochastic
optimization technique based on the movement and intel-
ligence of swarms, which was developed by Kennedy and
Eberhart (1995). PSO applies the concept of social optimiza-
tion in problem solving in various fields. In this paper, a
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Figure 1. The 2.5-D sedimentary basin and its approximation by
juxtaposing prisms.

MATLAB code based on PSO is developed to interpret the
gravity anomalies of 2.5-D sedimentary basins, where the
density varies parabolically with depth. PSO-analysed results
are consistent with and more accurate than other techniques
and also agree significantly well with borehole information.

2 Theory

In Bott’s approach, a sedimentary basin is approximated by a
series of vertical prisms. The gravity anomaly gb at any point
on the profile AA′ as shown in Fig. 1.

gb =

N−1∑
j=2

gj (xl,0)+Cx+D (1)

The gravity effect of lth prism is given as

g(xl,0)=
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The parabolic density function at any depth w is given by

1ρ(w)=
1ρ3

0
(1ρ0−αw)2

. (3)

Finally, after integration of Chakravarthi and Sundarara-
jan (2006), Eq. (2) becomes
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Here, N is the number of observations, G is the universal
gravitational constant, C and D are coefficients of regional
background, c is half width of the prism, z1 and z2 are depths
to the top and bottom of the basin, 2L is strike length of the
prism, a is the offset of the profile from the centre of the
prism and 1ρ0 and α are constants of the parabolic density
function at depth z.

Since the profile AA′ does not pass through the centres of
each prism, Eq. (4) has to be calculated twice by puttingL−a
and L+ a for L and taking the average. The initial depths of
the basin calculated using observed anomaly g0 are given as

di =
g0(xi)1ρ

41.891ρ2
0 +αg0(xi)

, i = 2, 3, 4, . . .N−1. (5)

The profile AA′ entirely covers the lateral dimensions of the
sedimentary basin; therefore the depth of the basin on either
side of the profile become zero. So, d1 = 0= dN

2.1 Particle swarm optimization

PSO uses a number of particles (solutions) that constitute a
swarm moving around in the search space looking for the
best solution. Each particle adjusts its “flying” according to
its own flying experience as well as the flying experience of
other particles. Each particle keeps track of its coordinates in
the solution space which is associated with the best solution
(fitness) that has been achieved so far by that particle. This
value is called personal best, P best. Another best value that
is tracked by PSO is the best value obtained so far by any par-
ticle in the neighborhood of that particle. This value is called
global best,Gbest. The basic idea of PSO lies in accelerating
each particle towards its P best and the Gbest locations with
a random weighted acceleration at each time step (Mohapatra
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and Das, 2013).

V kt = wV
k−1
t + c1 · rand1 ·

(
P bestt −Xkt

)
+ c2 · rand2 ·

(
Gbest−Xkt

)
, (6)

Xkt =X
k−1
t +V kt , (7)

where k is the number of iterations; t is the particle number;
V kt is the velocity of the t th particle at k iterations; Xkt is the
position of t th particle at k iterations; P bestt is the best po-
sition of individual t th particle (local best position); Gbest is
the best position of all particles (global best position); rand1
and rand2 are the independent uniformly random numbers in
the range [0, 1]; c1 and c2 are the positive learning factor
which controls the maximum step length; and w is the in-
ertial weight factor that controls the speed of the particles.
Equation (7) gives the updated velocity based on the current
velocity, current position, local, best position and global best
position. This process is repeated until the desired result is
obtained. The schematic diagram/flow chart of the PSO al-
gorithm is shown in Fig. 2.

2.2 Examples

The MATLAB code based on PSO is applied to a synthetic
model of a sedimentary basin and real field data sets from
Gediz Graben, western Anatolia, and the Godavari sub-basin,
India.

2.3 Synthetic Example

We have used a synthetic gravity anomaly of 45× 103 m
length at a 1.0× 103 m station interval. In Bott’s algorithm,
the prism will be of equal width, 1.0× 103 m, but with
different strike lengths. Here parabolic density function is
used with the constants1ρ0 =−0.65×103 Kg m−3 and α =
0.04× 103 Kg m−3 per 1000 m. The profile does not bisect
the strike lengths of prism, and so offset distance of the
profile from the centre of each prism is mentioned in the
code. We have added an interference term, Ax+B, with
A=−0.007 mgal per 1000 m and B =−10 mgal for the re-
gional background. The required result is found at 15 itera-
tions with a root mean square error (RMSR) of 2.9369e−006
from the Marquardt algorithm.

We have used the same synthetic gravity anomaly for the
PSO algorithm. The Fig. 3 shows the learning process of
P best and Gbest in terms of error and iterations. The best
result is found with 57 iterations and 50 models (Fig. 3). So
it is seen that after 57 iterations and 50 models, the calcu-
lated anomalies match the synthetic anomaly and estimated
depths coincide with the actual structure where the RMSE
is 2.8383e− 004. Gaussian noises of 5 and 10 % are added
to the synthetic data to perceive the robustness of the PSO
algorithm. PSO does not find the true depths, but it gives val-
ues close to the true depths. The upper part of Fig. 4 shows

Figure 2. The detail schematic diagram/flow chart of PSO tech-
niques.

the synthetic and PSO-calculated gravity anomalies of a syn-
thetic model of a 2.5-D sedimentary basin, and the lower part
shows the inferred depth structure obtained from the PSO and
Marquardt algorithm for synthetic data. Figures 5 and 6 show
the synthetic data with 5 and 10 % Gaussian noises and cal-
culated gravity anomalies obtained from the PSO algorithm,
and inferred depth structure obtained by the PSO and Mar-
quardt algorithm.

3 Field example

3.1 Gediz Graben, western Anatolia

The first field case study of the interpretation of gravity
anomalies has been taken from Gediz Graben, western Ana-
tolia. The PSO technique has been applied using 29 vertical
prisms, each with equal width of 2.0× 103 m but with dif-
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Figure 3. Iteration verses RMSE of P best andGbest using the PSO
technique through synthetic gravity anomaly.

Figure 4. Synthetic and calculated gravity anomalies with parabolic
density function due to a synthetic model of a 2.5-D sedimentary
basin, obtained from the PSO algorithm, and inferred depth struc-
ture obtained from the PSO and Marquardt algorithm.

ferent strike lengths, whereas Chakravarthi and Sundarara-
jan (2007) used the same prism and interpreted gravity
anomaly by the Marquardt algorithm using a parabolic den-
sity function whose constants are 1ρ0 =−1.407× 103 and
α = 2.26935× 103 Kg m−3 per 1000 m.

We have used a similar number of prisms in PSO to im-
prove the results. So with 65 iterations and 50 models, we
achieve a good fit between observed and PSO-analysed grav-
ity anomalies with a RMSE of 0.0083. The maximum thick-
ness of the graben is inferred as 1.87×103 m, which matches
well with 1.8×103 m as estimated by Sari and Salk (2002), as
compared to 1.64×103 m obtained by Chakravarthi and Sun-
dararajan (2007). The upper part of Fig. 7 shows the observed
and PSO-calculated gravity anomalies over Gediz Graben,
western Anatolia, and the lower part show the inferred depth
structure obtained from the PSO and Marquardt algorithm.

3.2 Godavari sub-basin

The Godavari sub-basin is one of the major basins of the
Pranhita–Godavari valleys (Rao, 1982), whose approximate
strike length is 220× 103 m. The gravity profile is taken for

Figure 5. Synthetic data with 5 % Gaussian noise and calculated
gravity anomalies obtained from the PSO algorithm, and inferred
depth structure obtained from the PSO and Marquardt algorithm.

Figure 6. Synthetic data with 10 % Gaussian noise and calculated
gravity anomalies obtained from the PSO algorithm, and inferred
depth structure obtained from the PSO and Marquardt algorithm.

study from the residual Bouguer gravity anomaly map of the
Godavari sub-basin as shown in Fig. 8. We have used 29
vertical prisms, each with equal widths of 2.0× 103 m but
with different strike lengths for sedimentary basin modelling.
The constants of parabolic density functions used for the Go-
davari sub-basin are1ρ0 =−0.5×103 and α = 0.1518259×
103 Kg m−3 per 1000 m (Chakravarthi and Sundararajan,
2004). So with 71 iterations and 45 models, we achieve a
good fit between observed and PSO-analysed gravity anoma-
lies. The RMSE is 0.0099. The maximum depth of the basin,
obtained from PSO, is 4.09× 103 m, which is quite close
to the borehole information (Agarwal, 1995). Chakravarthi
and Sundararajan (2005) obtained a maximum depth of 4.0×
103 m, whereas Ramanamurty and Parthasarathy (1988) sug-
gested 4.5× 103 m as the thickness of the basin. The up-
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Figure 7. Observed and calculated gravity anomalies with parabolic
density function, Gediz Graben, western Anatolia, obtained from
the PSO algorithm, and inferred structure obtained from the PSO
and Marquardt algorithm.

Figure 8. Residual Bouguer gravity anomaly map of the Godavari
sub-basin (modified after Chakravarthi and Sundararajan, 2005) and
gravity anomaly profile taken for study.

per part of Fig. 9 shows the variation of observed and PSO-
calculated gravity anomalies of the Godavari sub-basin, and
the lower part shows the inferred structure obtained from the
PSO and Marquardt algorithm.

Figure 9. Observed and calculated residual Bouguer gravity anoma-
lies of parabolic density function of the Godavari sub-basin ob-
tained from the PSO algorithm, and inferred depth structure from
the PSO and Marquardt algorithm.

4 Conclusions

Particle swarm optimization in the MATLAB environment
has been developed to estimate the model parameters of a
2.5-D sedimentary basin where the density contrast varies
parabolically with depth. We have implemented the PSO al-
gorithm on synthetic data with and without Gaussian noise
and two field data sets. An observation has made that PSO
is affected by some levels of noise, but estimated depths are
close to the true depths. The results obtained from PSO us-
ing synthetic and field gravity anomalies are well correlated
with borehole samples and provide more geological viabil-
ity. Despite its long computation time, PSO is very simple to
implement and is controlled by only one operator.

Data availability. Our paper presents the applicability and poten-
tiality of PSO in gravity inverse problems. First, PSO is validated
on synthetic gravity anomalies with and without noise, and the de-
veloped PSO-based algorithm is finally applied over two kinds of
field gravity data taken from different geological terrains: (i) resid-
ual gravity anomaly over Gradiz Graben, western Anatolia (Sari and
Salk, 2002), and (ii) residual gravity anomaly taken from Godavari
sub-basin, India (Chakravarthi and Sundararajan, 2004).
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