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Abstract. The goal of magnetic observatories is to measure
and provide a vector magnetic field in a geodetic coordi-
nate system. For that purpose, instrument set-up and cali-
bration are crucial. In particular, the scale factor and ori-
entation of a vector magnetometer may affect the magnetic
field measurement. Here, we highlight the baseline concept
and demonstrate that it is essential for data quality control.
We show how the baselines can highlight a possible calibra-
tion error. We also provide a calibration method based on
high-frequency “absolute measurements”. This method de-
termines a transformation matrix for correcting variometer
data suffering from scale factor and orientation errors. We
finally present a practical case where recovered data have
been successfully compared to those coming from a refer-
ence magnetometer.

1 Introduction

Most magnetic observatories are built according to a stan-
dardized or universally adopted scheme (Jankowski and
Sucksdorff, 1996) including at least a set of three major in-
struments: a variometer, an absolute scalar magnetometer,
and a declination and inclination flux instrument (DI-flux in-
strument). The different data streams are combined to build a
unique vector of magnetic field data. The variometer is a vec-
tor magnetometer, which records variations of the magnetic
field components at a regular interval (e.g. at 1 Hz). How-
ever, this is not an absolute instrument. In particular, refer-
ence directions, the vertical and geographical north, are not
available. They usually work as near-zero sensors, so that an
offset must be added to the relative value of each compo-
nent in order to adjust it and therefore determine the com-
plete vector. Those offsets or baselines should be as constant
as possible but may drift more or less depending on the en-

vironment stability and device quality. For instance, thermal
variations may affect the pillar stability. A baseline can also
suffer from sudden variation due to an instrumental effect af-
ter a (unwanted) motion like a shock due to maintenance staff
or a change in the surrounding environment (Fig. 1). A reg-
ular determination of the baselines is thus necessary to take
their change into account. This is the main goal of the well-
known “absolute measurements” that are carried out by the
two other instruments.

First, a scalar magnetometer records the intensity of the
field |B|. Most of the time, a proton precession or an Over-
hauser magnetometer is used for this task. Overhauser mag-
netometer exploits the fact that protons perform precession
at a frequency proportional to the magnetic field according
to

ωprecession = γ ‖B‖, (1)

where γ , the gyromagnetic ratio, is a fundamental physical
constant (Mohr et al., 2016). Therefore, this magnetometer
can be considered an absolute instrument.

The last instrument serves to determine the magnetic field
orientation according to reference direction. Magnetic dec-
lination is the angle between true north and the magnetic
field in a horizontal plane, and the inclination is the angle
between the horizontal plane and the field. In a conventional
observatory, a DI-flux instrument (non-magnetic theodolite-
embedding single-axis magnetic sensor) is manipulated by
an observer according to a particular procedure (Kerridge,
1988) taking about 15 min per measurement. This instrument
is also considered absolute because angles are measured ac-
cording to geodetic reference directions. Due to this man-
power dependency, the frequency of absolute measurements
does not exceed once per day (St Louis, 2012). However,
new automatic devices such as AutoDIF (automatic DI-flux
instrument; Gonsette et al., 2012) close the loop by automa-
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Figure 1. Baseline example computed from conventional manual
measurements (dark blue) and the automatic system (light blue). In
mid-2013, a baseline jump corresponding to an instrumental effect
occurred, proving that regular absolute measurement are crucial.

tising the DI-flux measurements procedure. Moreover, Au-
toDIF is able to increase the frequency of baseline determi-
nation by performing several measurements per day.

After collecting synchronised data from the three instru-
ments, baselines are computed by using the relation for the
Cartesian coordinate system:

 X0 (t)

Y0 (t)

Z0 (t)

=
 X(t)

Y (t)

Z (t)

−
 δX(t)

δY (t)

δZ (t)

 , (2)

where X(t), Y (t) and Z(t) are, at the time t , the tree con-
ventional components of the field, pointing to the geographic
north, eastward and downward respectively. The “0” index
refers to the baseline spot measurements, while δ refers to the
variometer data. The full baseline measurement protocol in-
cluding a set of four absolute declinations and four absolute
inclinations (even if only two are required for determining
all the unknowns) can be found in the literature; this can also
be found for spherical and cylindrical configurations (Ras-
son, 2005). The need for eight (at least six) measurements
is justified by the DI-flux sensor offset and misalignment. A
baseline function is then applied on these measurements us-
ing various methods such as a least-squares polynomial or
spline approximation. Finally, the vector field is constructed
by adding the variometer values to the adopted baselines.

Equation (2) assumes a variometer properly set up with the
Z axis vertical and theX axis pointing toward the geographic
north. The scale factor of each component is also assumed to
be perfect.

A correct orientation is usually ensured by paying atten-
tion during the set-up step, but its stability in time is not al-
ways evident. Permafrost areas are examples of drifting re-
gions (Eckstaller et al., 2007) where variometer orientation
is not guaranteed. If the orthogonality errors are neglected,

the problem of calibration can be expressed as follows: X

Y

Z

= Rz (γ )Ry(β)Rx (α)

 k1 0 0
0 k2 0
0 0 k3

 δU

δV

δW


+

 X0
Y0
Z0

 , (3)

where the Rx,y,z are an elementary rotation matrix and the
ki variables are the scale factors for each component. U ,
V and W are the three variometers output into the sensors
reference frame. Calibration procedures can be divided into
two categories. On one hand, the scalar calibration compares
scalar values computed from the vector magnetometer to ab-
solute scalar values. This technique is exploited by satellites
because the vector reference field is not available. Never-
theless, instruments are orbiting around the Earth (Olsen et
al., 2003). The different scalar measurements from the scalar
instrument can therefore be compared to the scalar values
computed from the vector instrument. On the other hand, the
vector calibration directly compares vector magnetometer
measurements to the reference vector value. Marusenkov et
al. (2011) used a second variometer already calibrated as the
reference. Previously, Jankowski and Sucksdorff (1996) pro-
posed a comparison between the variometer data and the ab-
solute measurements performed during disturbed days in or-
der to calibrate the observatory. The development was made
for small angle errors (no more than 1–2◦), but Jankowski
and Sucksdorff (1996) suggested that the method could re-
main valid for any angle. Jankowski and Sucksdorff (1996)
also pointed out the difficulty in getting sufficiently strong
magnetic activity at low latitudes. The method presented in
this paper is relatively close to the latter, except for the fact
that the automatic DI-flux instrument can generate a large
number of absolute measurements within a short time (e.g.
48 absolute measurements every 24 h), leading to a fast au-
tomatic calibration process also at low latitude or during sig-
nificantly magnetic periods.

The method presented in this document is related to a vari-
ometer in XYZ configuration. However, other configurations
may also be considered. For instance, many observatories set
up their magnetometers in an HDZ configuration, whereH is
the direction of the magnetic north, D the declination and Z
the vertical component. Working directly with theD compo-
nent would lead to non-linear equations. Nevertheless, most
modern variometers are based on fluxgate sensor technology.
Thus, the recorded signal is the orthogonal projection of the
field along the fluxgate sensitive axis. The residue (δE) ex-
pressed in nT (nanotesla) can be used like any geographic
component and converted afterward into a declination value
according to

δD =
180
π

asin
(
δE

H

)
. (4)
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The same approach can be used for a DFI magnetometer.
However, the reader should keep in mind that not all vari-
ometer axes might have a compensating coil allowing them
to work in the entire field. Indeed, recording the D and I
variations is similar to a DI-flux process. The sensor is quasi-
perpendicular to the field so that the residues are close to
zero. The recorded signal could rapidly saturate.

2 Calibration error detection

Before solving the calibration problem, it could be useful to
give some clues for detecting required adjustments. Indeed,
it is difficult, when only examining definitive data, to detect
a few nanotesla errors in daily amplitude. Direct comparison
with other observatories requires them to be close enough
while many observatories cannot afford to buy an auxiliary
variometer. Fortunately, baselines are useful tools for check-
ing data. As described below, they are affected by calibration
errors, and, if they are measured with a sufficiently high fre-
quency, particular errors can be highlighted.

2.1 Scale factor error

Let us consider an observatory working with a variometer,
such as a LEMI-025, in a Cartesian coordinate system. Each
sensor converts a real magnetic signal expressed in nanotesla
into a more suitable format (usually a voltage). This con-
verted signal passes through an ADC providing, in turn, a
digital representation of the initial signal. A scale factor is
then used to convert the true signal into a digitised signal.
Consider the X component:

δXvoltage = k1 δXreal, (5)
δXdigital = k2δXvoltage = k δXreal, (6)

where δXreal is the real magnetic variation in nT toward theX
direction, k1 is a scale factor in volt/nT converting the mag-
netic field signal into an electrical signal, δXvoltage is the im-
age of the field signal expressed in volts, k2 is a scale factor
in nT/volt converting the electric signal into a digital value,
k = k2k1 is the dimensionless scale factor converting the real
magnetic signal into its digital representation. k should be as
close to 1 as possible.

Supposing now a difference between the digital and real
variation of a component resulting from a badly calibrated
scale factor, the baseline measurement will be affected by
this error:[

X∗0 (t)
Y ∗0 (t)
Z∗0 (t)

]
=

[
X(t)
Y (t)
Z (t)

]
−

[
kx 0 0
0 ky 0
0 0 kz

][
δX(t)
δY (t)
δZ (t)

]
, (7)[

X∗0 (t)
Y ∗0 (t)
Z∗0 (t)

]
=

[
X0 (t)
Y0 (t)
Z0 (t)

]
+

[
(1− kX) 0 0

0 (1− kY ) 0
0 0 (1− kZ)

]
[
δX(t)
δY (t)
δZ (t)

]
. (8)

The (*) symbol denotes the erroneous baseline affected by
a scale factor error. The baseline then varies with respect to
its corresponding variometer component value, meaning that
a correlation exists between both.

The scale factor is usually factory calibrated and should be
stable over time. It is certainly true but there are many situ-
ations for which the scale factor is not known exactly (e.g. a
homemade instrument) or differs from its factory value (e.g.
a repair after a lightning strike may affect the instrument pa-
rameters). The impact of a scale factor error also depends on
the magnitude of the magnetic activity. A 1 % error for the
H component scale factor at mid-latitude would lead to no
more than 0.5 nT during quiet days. On the other hand, the
same percent error at high latitude during a stormy day may
affect the data by several nT.

2.2 Orientation error

Now, let us consider once again the same XYZ variometer
but this time presenting an orientation error. That could be
due, for instance, to a levelling error caused by a bad set-up or
an unstable basement and/or an X axis pointing to any other
direction than the conventional one. The given components
are affected by this orientation error and do not correspond
to the expected ones. This is the reason why instruments such
as ASMO (Alldregde, 1960) or any other three-axis magne-
tometers will never be considered as a full magnetic obser-
vatory.

Rasson (2005) treated the simplified case of a rotation θ
around the Z axis. The orthogonality between components
was assumed to be perfect. In that particular case, the relative
real values at time t are given by[
δX(t)
δY (t)
δZ (t)

]
=

[
cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

][
δU(t)
δV (t)
δW(t)

]
. (9)

The X0 baseline, for instance, should be computed as

X0 =X(t)− cos (θ)δU(t)+ sin(θ)δV (t). (10)

If no correction is applied, the observed baseline gives the
following form:

X∗0 =X0− (1− cos(θ))δU(t)− sin(θ)δV (t). (11)

In this case, a correlation exists between the baseline and
another relative component. Figure 2 shows an example of
a variometer rotated around its vertical axis by 1.7◦. The
high-resolution baseline (blue) computed by means of an au-
tomatic DI-flux instrument presents the same trend as the
δY (red) component. The peak–peak amplitude is more than
2 nT.

The general case is much more complex in particular if
the orientation error is combined with a significant scale fac-
tor error. Indeed, the term (1− cos(θ)) in Eq. (11) may be
interpreted either as a scale factor error or as an orientation
error.
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Figure 2. Light blue: X0 baseline computed from high-frequency
absolute measurements. Dark blue: variometer Y component from
the LEMI-025. Because the variometer is not properly oriented, a
strong correlation appears between X0 and Y.

3 Calibration process

Absolute measurements, before giving baselines, provide ab-
solute or spot values of the magnetic field. When performed
with a sufficiently high frequency (e.g. once per hour), the
generated magnetogram can be compared to the variometer
value. Therefore, a vector calibration can be done as if a ref-
erence variometer was available.

A DI-flux instrument, either a manual system such as a
Zeiss 010-B or an automatic system like the AutoDIF, is af-
fected by the sensor offset and misalignments errors. A single
spot measurement is therefore computed from a set of four
declination (index 1 to 4) and four inclination (index 5 to
8) records. The eight synchronised variometer values as well
as the eight scalar measurements are averaged. Thus, each
spot value and corresponding variometer value is computed
as follows:

Xm =

∑
Fi

8
cos

(
I5+ I6+ I7+ I8

4

)
cos

(
D1+D2+D3+D4

4

)
, (12)

Ym =

∑
Fi

8
cos

(
I5+ I6+ I7+ I8

4

)
sin
(
D1+D2+D3+D4

4

)
, (13)

Zm =

∑
Fi

8
sin
(
I5+ I6+ I7+ I8

4

)
, (14) δUm

δVm
δWm

= 1
8

 ∑
δUi∑
δVi∑
δWi

 , (15)

where, the “i” index refers to the records 1 to 8 synchronised
with the four declinations and the four inclinations.

Let us consider a series of n samples built from Eqs. (12)–
(15). The general case, including orthogonality errors, can be

expressed by rewriting Eq. (3) as follows:[
Xm

Ym
Zm

]T

=

[
a b c
d e f
g h i

][
δUm

δV m

δWm

]T

+

[
X0
Y0
Z0

]
, (16)

where Xm = [Xm1, . . .,Xmn]T , Y = [Ym1, . . .,Ymn]T , Z =
[Zm1, . . .,Zmn]T are the time series of X, Y and Z spot
values recorded by means of the absolute instruments and
δU = [δUm1, . . ., δUmn]T , δV = [δVm1, . . ., δVmn]T , δW =
[δWm1, . . ., δWmn]T are the three component time series of
the variometer. Because the period of acquisition is relatively
small (a few days is enough), the baseline values X0, Y0, Z0
are assumed to be constant. For each component X, Y and
Z, the problem consists of solving a linear system, where a
time series of spot values and the quasi-synchronised three
variometer components are the input. Assuming the system
to be overdetermined, the latter is solved in the least-squares
sense. Equation (17) gives the coefficients corresponding to
the X component (others are similar):

a

b

c

X0

= (ATA
)−1

ATX, (17)

where A=
[
δU δV δW 1

]
. Once the whole coef-

ficients matrix is determined, the variometer data are re-
dressed: δX

δY

δZ

T =
 a b c

d e f

g h i

 δU

δV

δW

T . (18)

Equation (18) refers to all variometer data and not only the
averaged data obtained from Eq. (15). For each set of abso-
lute measurements, the three corrected baselines can be pro-
cessed in a conventional way. Considering an XYZ variome-
ter, the Z0 baseline is first computed and then X0 and Y0 are
computed:

Z0 =
F5+F6+F7+F8

4
sin

(
I5+ I6+ I7+ I8

4

)
−
δZ5+ δZ6+ δZ7+ δZ8

4
, (19)

Hi =

√
F 2
i − (Z0+ δZi)

2, (20)

X0 =
H1+H2+H3+H4

4
cos

(
D1+D2+D3+D4

4

)
−
δX1+ δX2+ δX3+ δX4

4
, (21)

Y0 =
H1+H2+H3+H4

4
sin

(
D1+D2+D3+D4

4

)
−
δY1+ δY2+ δY3+ δY4

4
. (22)

A function (polynomial, cubic-spline, etc.) is then fitted
on them. Finally, the magnetic vector is built according to
Eq. (2).
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Figure 3. LEMI-025 installed in the Dourbes magnetic observatory.
The red arrow indicates the true north direction. The orange arrows
highlight the bubble-levels saturation.
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Figure 4. LEMi-025 baselines. Light blue: before processing. Dark
blue: after processing.

4 Case study

A LEMI-025 variometer has been installed in the Dourbes
magnetic observatory. The device has deliberately been set
up in a non-conventional orientation as shown in Fig. 3. The
levelling and orientation error have been strongly exagger-
ated compared to those encountered in conventional obser-
vatories, but, if we consider a possible future automatic de-
ployment using systems such as a GyroDIF (Gonsette et al.,
2017), the orientation could be completely random. An Au-
toDIF installed in the Dourbes absolute house has been used
for performing absolute declination and inclination measure-
ments because of its high-frequency measurement capability.
An Overhauser magnetometer recorded the magnetic field in-
tensity at the same time. One measurement every 30 min has
been made during 4 days from 20 to 24 July 2016. The mean
Kp index over this period is 2 while the maximum is 5 (only
three periods of 3 h reached level 5 of the Kp index).

Before processing, the baseline computation clearly high-
lights the set-up error as shown in Fig. 4. Actually, such big
variations do not meet the international standards (St Louis,
2012) and could discard the concerned magnetic observatory.
Indeed, most observatories perform absolute D and I mea-
surements no more than once a day, introducing an aliasing
in the baseline computations. The amplitude of the baseline
variations in Fig. 4 is such that the 5 nT tolerated errors are
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Figure 5. Variometer difference between a reference variometer and
the case study variometer. The value are clearly within 1 nT.

not met anymore. However, after solving the system for each
components and applying the transformation matrix to the
variometer data, the baseline computation gives more correct
data. In this case, a cubic-spline function has been used for
fitting to the baseline measurements.

A second LEMI-025 is installed in the variometer house
of the Dourbes observatory. This one is correctly set up, so
it could be used for a posteriori comparison. Figure 5 shows
the difference between vector components built from the case
study variometer and the reference variometer. Notice that,
even if both are separated by as much as 10 m, the obser-
vatory environment should ensure minimal difference. If we
exclude the borders for which the cubic-spline baselines are
badly defined, the three curves meet the INTERMAGNET
1 s standards requiring an absolute accuracy not worse than
±2.5 nT. The Y andZ curves remain within±0.44 nT. TheX
component is slightly more noisy, with the upper and lower
borders being +1.11 and −0.38 nT respectively. The mean
differences are 0.06, 0.009 and 0.002 nT for X, Y and Z
curves respectively, and the corresponding standard devia-
tions (1σ) are 0.26, 0.15 and 0.23 nT respectively.

5 Discussion

In this paper, the measurement errors have not been taken
into account. In particular, absolute measurements were per-
formed sequentially so that the magnetic field could be
changed between the first and the last measurement. Equa-
tions (12)–(14) do not take the variations between the mean
declination time and the mean inclination time into account.
Indeed, using Eqs. (19)–(22) with the badly set up variometer
for compensating the magnetic activity would lead to a non-
linear system. Nevertheless, AutoDIF achieves a complete
protocol of absolute measurement within less than 5 min in-
cluding the geographic north measurement at the beginning.
Because of the high number of measurements during a few
days, the error due to this delay can be considered as ran-
dom. Assuming that the measurement errors are a random
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noise, their effects are therefore cancelled according to the
Gauss–Markov theorem.

Jankowski and Sucksdorff (1996) suggested taking advan-
tage of a disturbed day in order to maximise the effect of a
set-up error. However, the global measurement noise may in-
crease, in particular at high latitude. Indeed, the synchronisa-
tion between instruments may become critical. Additionally,
a rapid change in the magnetic field may induce soil current
that could affect both the DI-flux instrument and the vari-
ometer. Fortunately, as the noise is random and this is even
truer during chaotic magnetic activity, it has no effect on the
final results.

Equation (16) supposes a constant baseline so that a small
variation will contribute to the residues. However, the use
of an automatic DI-flux instrument provides a large number
of measurements within a short time period. The case study
has been performed during only 4 days, within which the
baseline variations are reasonably considered small. Their
contribution to the error can therefore be considered neg-
ligible compared to the possible scale factor and orienta-
tion parameter effects. Nevertheless, INTERMAGNET rec-
ommends performing absolute measurements with an inter-
val ranging from daily to weekly (St Louis, 2012).

6 Conclusions

The baselines and absolute measurements are powerful tools
for checking data quality and for highlighting possible gross
errors. The present paper has demonstrated that even with a
strong set-up error, it is possible to recover good magnetic
data meeting the international standards. It also contributes
to automatic installation and calibration of magnetic mea-
surement systems. Future observatory deployments will be
more and more complex, with automatic dropped systems in
unstable environments. The challenges of tomorrow are in
Antarctica, the Earth’s seafloor or even Mars (Dehant et al.,
2012). The application of theses methods will contribute to
reaching those objectives. They will require not only auto-
matic instruments but also regular and automatic control.
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