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Abstract. Recent developments in the application of micro-
energy-dispersive X-ray fluorescence spectrometry mapping
(µ-EDXRF) have opened up new opportunities for fast geo-
scientific analyses. Acquiring spatially resolved spectral and
chemical information non-destructively for large samples of
up to 20 cm length provides valuable information for geosci-
entific interpretation. Using supervised classification of the
spectral information, mineral distribution maps can be ob-
tained. In this work, thin sections of plutonic rocks are ana-
lyzed by µ-EDXRF and classified using the supervised clas-
sification algorithm spectral angle mapper (SAM). Based on
the mineral distribution maps, it is possible to obtain quanti-
tative mineral information, i.e., to calculate the modal min-
eralogy, search and locate minerals of interest, and perform
image analysis. The results are compared to automated min-
eralogy obtained from the mineral liberation analyzer (MLA)
of a scanning electron microscope (SEM) and show good ac-
cordance, revealing variation resulting mostly from the limit
of spatial resolution of the µ-EDXRF instrument. Taking into
account the little time needed for sample preparation and
measurement, this method seems suitable for fast sample
overviews with valuable chemical, mineralogical and textural
information. Additionally, it enables the researcher to make
better and more targeted decisions for subsequent analyses.

1 Introduction

Micro-energy-dispersive X-ray fluorescence microscopy (µ-
EDXRF) is a new and versatile technique commonly used
in various fields such as art (Keune et al., 2016), archeol-

ogy (Kozak et al., 2016), biology (Figueroa et al., 2014),
medicine (Wandzilak et al., 2015) and also with increasing
extent in geosciences, mostly for visualization and quan-
tification of element distributions (Belissont et al., 2016;
Croudace and Rothwell, 2015; Flude and Storey, 2016;
Gergely et al., 2016; Kéri et al., 2016; Lombi et al., 2011;
Melcher et al., 2006; Poonoosamy et al., 2016; Rammlmair
et al., 2001, 2006; Redwan et al., 2016). The combination of
spatial and spectral information for large samples of up to
20 cm length with almost no sample preparation opens many
fields of applications. It provides quick textural and chemi-
cal overview with spatially resolved main and trace element
information (Nikonow and Rammlmair, 2016) at a relatively
low cost and with easy operability compared to, for example,
a scanning electron microscope (SEM). Applying supervised
spectral classification, the chemical data can be used to de-
rive mineral maps for quantitative petrography and the modal
mineralogy (Nikonow and Rammlmair, 2016), which is key
information for rock classification (Streckeisen, 1976).

Conventional automated mineralogy based on SEM and
EDXRF is commonly used in different scientific fields, espe-
cially in the mining industry. It is applied in mineral and ore
characterization or mineral processing (Fandrich et al., 2007;
Sandmann, 2015; Sutherland and Gottlieb, 1991) and pro-
vides high-resolution data, but requires preparation of pol-
ished or thin sections, coating, a skilled operator and from
several hours up to days for measurement. The mineral lib-
eration analyzer (MLA) was developed in the last decade of
the last century by Gu and Napier-Munn (1997) and dom-
inated, together with QEMSCAN (Quantitative Evaluation
of Minerals by Scanning Electron Microscopy; Sandmann,
2015), the market in the following years. It combines the in-
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formation of SEM with several EDX detectors. It uses the
BSE (backscattered electrons) grey values to separate differ-
ent grains and analyzes each identified grain center in order
to provide the modal mineralogy and a set of quantitative ge-
ometric grain parameters (Gu, 2003).

For evaluation of modal analysis and automated miner-
alogy, three types of errors have to be taken into account
(Solomon, 1963): the first is the false classification of a min-
eral, which is dependent on the operator-designed mineral
database (operator error); the second is the 2-D effect, since
1-D information is extrapolated to a 2-D area (counting er-
ror); the third type of error is the 3-D effect resulting from
extrapolation of the 2-D sample surface to the 3-D proper-
ties of the sample (sampling error). Being able to quantify
these errors, the classification data becomes more reliable.
Using µ-EDXRF and spectral classification, the reliability of
the classification algorithm can be measured by the classi-
fication thresholds. Mapping the whole sample surface will
eliminate the 1-D extrapolation effect; only the extrapolation
to the 3-D volume of the sample will remain, but it can be
decreased by mapping large areas or series of rock slices or
thin sections due to progress in measurement speed and par-
tial automatization.

Assessment of 2-D classification data has been applied and
discussed widely among remote sensing scientists. In most
cases, hyperspectral images are evaluated by comparison to
reference images (Foody, 2002), which are supposed to have
true classification values (ground truth images), e.g., through
manual control. Each pixel of the reference image is com-
pared to the new classification, and the numbers of pixels
assigned to each class are entered into an error matrix (or
confusion matrix); the reference pixels are listed in columns
and the new data in rows. The central diagonal represents the
pixels that were assigned to the correct class; all others have
been assigned to a different class. The classification’s overall
accuracy can be calculated by dividing the sum of the cor-
rectly classified pixels (central diagonal) by the total pixel
number (Congalton, 1991).

In this work we evaluate the utility of µ-EDXRF-based
spectral classification and image analysis of thin sections us-
ing hyperspectral software (ENVI) for automated mineralogy
compared to SEM +MLA.

2 Material and methods

2.1 Samples

Three polished thin sections of plutonic rocks from the col-
lection of the Federal Institute for Geosciences and Natural
Resources (BGR, Germany) were selected to be analyzed
both with µ-EDXRF and SEM +MLA. In addition, samples
with different properties regarding mineral content and grain
size were selected. Prior to this work, the thin sections were
analyzed under a polarized light microscope and classified

Figure 1. µ-EDXRF spectrum of a K feldspar with the main con-
stituents: Al (1.04 keV), Si (1,7 keV) and K (Kα: 3,3 keV, Kβ:
3,6 keV).

as quartz diorite (sample 484), monzogranite (sample 342)
and syenogranite (424) with varying mineral content regard-
ing the main minerals quartz, feldspars, biotite, hornblende,
and pyroxenes, as well as trace minerals such as magnetite,
ilmenite, titanite, calcite, apatite, zircon and allanite. The thin
section size is about 35× 23 mm.

2.2 Micro-energy-dispersive X-ray fluorescence
microscopy (µ-EDXRF)

For µ-EDXRF data acquisition, the M4 Tornado from Bruker
was used. The X-ray radiation is generated by a tube with a
a rhodium target operating with a maximum power of 30 W.
The polychromatic beam is focused by a polycapillary lens,
resulting in a spot size of 17 µm at 17.48 keV (molybdenum
(Mo) Kα). In this work, the M4 Tornado is equipped with
two silicon drift detectors facing each other at 180 and 90◦ to
the tube. The maximum tube excitation of 50 kV and 600 µA
was chosen in order to differentiate elements with overlap-
ping lines such as zircon, tin and barium, which have over-
lapping L lines with K lines of phosphorus, calcium and ti-
tanium, respectively. The thin sections were measured with a
step size (i.e., pixel size) of 12 µm and a dwell time of 2 ms
per pixel. The total resolution of the measurement is about
2200× 1600 pixels. The measurement takes about 3 h for
one detector. In order to eliminate the effect of diffraction,
the samples were measured with both detectors separately
and the minimum intensity for each pixel was calculated and
used for the classification. For more details regarding diffrac-
tion elimination see Nikonow and Rammlmair (2016). The
measurement data were saved into a data cube, which con-
tains a full spectrum for each measured pixel. With the M4
Tornado software, these results can be presented as element
distribution maps with element intensities in false colors or
grey scales. From these element maps, regions of interest can
be selected and quantified chemically using the fundamental
parameter approach.
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Table 1. Details of the M4 Tornado mapping and SEM +MLA measurement.

Device M4 Tornado MLA XBSE MLA GXMAP

Sample type ca. 25× 35 mm thin section 28× 38 mm thin section 28× 38 mm thin section
Exciting energy 50 kV, 600 µA 25 kV, 222 µA 25 kV, 222 µA
Step size 12 µm1 grain centers2 6 µm (EDX)1

Dwell time per spot 2 ms 7 ms per grain 7 ms
Measurement time 6 h 9–12 h 40 h

1 Continuous mapping. 2 Grain segmentation by BSE – one EDX measurement per grain center.

Table 2. M4 Tornado chemical analysis of a K-feldspar spectrum from Fig. 1, EMPA from three different spots on K feldspar and literature
value from Deer et al. (2013).

M4 Tornado EMPA 55/1 EMPA 56/1 EMPA 64/1 Literature

SiO2 63.57 64.30 63.77 63.53 64.66
TiO2 0.40 0.00
Al2O3 21.65 18.13 18.62 18.16 19.72
Fe2O3 0.22 0.18 0 0 0.08
MgO 0.66 0.00
CaO 0.49 0.34
Na2O 1.88 0.22 0.22 0.27 3.42
K2O 11.09 15.90 16.29 15.61 11.72

Sum 99.96 98.71 98.9 97.57 99.94

2.3 Scanning electron microscope (SEM) and mineral
liberation analyzer (MLA)

For comparison and validation of the µ-EDXRF-based min-
eral classification and analysis, the SEM FEI Quanta 650F
MLA-FEG was used. For this work, two modes of MLA
were applied: (1) samples 424 and 342 were measured in
the XBSE mode, where grains are classified and separated
according to their grey level in the BSE image. Then, each
separated grain is measured in the center with the X-ray de-
tectors and classified chemically using a predefined mineral
database. For the sample 484 the XBSE mode was not suit-
able, since the grey values of hornblende and biotite were too
similar for a correct grain separation. Therefore, this sample
was measured in (2) GXMAP mode. In this mode, grains are
not separated by their grey values, but the whole sample was
continuously mapped with an EDX analysis every 6 µm. The
details of the SEM image acquisition are listed in Table 1.
A detailed description of the functionality of MLA and the
measuring modes can be found in the literature (Dobbe et
al., 2009; Fandrich et al., 2007; Gu, 2003).

2.4 Mineral classification of element distribution maps

For analysis of the element distribution maps obtained by
M4 Tornado, ENVI 5.1 by Exelis (Exelis Visual Informa-
tion Solutions, 2015) was used. The supervised classification
algorithm spectral angle mapper (SAM) (dos Reis Salles et
al., 2016; Kruse et al., 1993) was applied on the 2-D data

from M4 Tornado for the mineral classification. The classi-
fication algorithm allocates a mineral name to each pixel in
the element distribution map according to a previously de-
fined database of mineral spectra (endmember collection).
It calculates the spectral similarity of two spectra, which is
described by the angle between the vectors of both spectra.
The angle of the spectral similarity can have values from 0 to
π/2 in radians (Masoumi et al., 2017). The vectors are in an
n-dimensional space, where n is the number of bands (here,
element lines) (Masoumi et al., 2017). The SAM was devel-
oped for classification of hyperspectral images and is most
widely applied in context with mineralogical classification
(Van der Meer and De Jong, 2003; Girouard et al., 2004).

To establish the spectral database, thin sections were stud-
ied under a polarized light microscope. Some minerals were
also analyzed by electron microprobe analysis (EMPA; Ta-
ble 2; Sobańska, 2009). Knowing the mineral name and its
location on the thin section, the spectra of the correspond-
ing pixels of the EDXRF measurements were defined as
mineral endmembers for the mineral database. Additionally,
EDXRF spectra of selected areas such as mineral grains can
be selected to calculate a sum spectrum and quantify the el-
ement ratios for a quantitative chemical analysis using the
Bruker fundamental parameter algorithm. Figure 1 shows the
spectrum of a K feldspar, and the quantification results are
listed in Table 2, which match well the chemical data of a
K feldspar from Deer et al. (2013). In comparison to EMPA
data, light elements such as Al and Na seem to be slightly
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Figure 2. Block scheme for the workflow of the µ-EDXRF analysis.

Figure 3. Thin section scan and classification results from mineral liberation analyzer (MLA) and M4 Tornado – ENVI. The size of thin
sections 424 and 484 is about 30× 20 mm; thin section 342 is about 40× 25 mm; the color key for the classified minerals is displayed in
Fig. 4.

overestimated by M4 Tornado quantification but are still in
an identifiable range of a K feldspar. The workflow of the µ-
EDXRF measurement and following analysis is displayed in
the block scheme of Fig. 2.

3 Results: comparison between ENVI and MLA for
plutonic rock thin sections

For comparison and verification of the µ-EDXRF-ENVI clas-
sification, three thin sections of plutonic rocks were analyzed
and classified with ENVI and compared to MLA. The classi-
fication results and the mineral distribution maps are shown
in Fig. 3; the modal mineralogy of both methods is listed in
Table 3.

In general, the mineral distribution maps of both classi-
fications correspond well with the thin section photo. Both
methods recognized the present minerals. Single grains can

be identified in thin section and both mineral distribution
maps. Minerals that sometimes are difficult to differentiate
in thin section microscopy such as quartz and plagioclase
can be identified and separated using the chemical informa-
tion, since plagioclase contains silicon as well as aluminum,
sodium and calcium. Texture and grain structures of even
complex intergrowth are recognizably well mapped. A few
differences can be found in details: MLA is able to detect
microstructures such as microperthitic intergrowth in sam-
ple 424, due to the smaller beam diameter and the sampling
depth limited to a few micrometers, whereas the data based
on the M4 Tornado measurement integrate information of a
17 µm spot size. In the ENVI classification of sample 342,
clinopyroxene grains surrounded by plagioclase sometimes
have small rims of hornblende. This is due to the overlap of
both minerals producing mixed signals which are chemically
similar to hornblende. The MLA data (6 µm pixel size) were
resized to an M4 pixel size of 12 µm by combining 2 by 2
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Table 3. Modal mineralogy from the M4 classification in area-% (MLA indicates thin section analyzed by MLA in XBSE mode, GX indicates
MLA in GXMAP mode, M4 indicates thin section analyzed by the M4 Tornado. < 0.0 means that the mineral was detected in a quantity less
than one decimal.

424 MLA 424 M4 342 GX 342 M4 484 MLA 484 M4

Unclassified 0.6 < 0.0 < 0.0 < 0.0 1.9 < 0.0
Quartz 36.0 33.0 20.0 19.9 15.3 11.4
K feldspar 39.6 44.7 42.1 42.3 3.3 0.9
Plagioclase 15.4 12.0 25.1 22.2 45.8 50.5
Hornblende 0.2 0.9 6.7 8.4 17.9 22.1
Biotite 7.6 8.6 0.1 < 0.0 13.8 13.9
Calcite 0.4 0.3 ND ND 0.1 < 0.0
Clinopyroxene ND ND 1.6 2.2 0.1 < 0.0
Orthopyroxene < 0.0 < 0.0 2.4 2.6 ND ND
Magnetite < 0.0 < 0.0 0.3 0.4 0.2 < 0.0
Ilmenite ND ND 0.8 0.9 ND ND
Titanite ND ND ND ND 1.0 0.6
Apatite < 0.0 < 0.0 0.3 0.2 0.5 0.3
Zircon 0.1 < 0.0 0.2 0.1 < 0.0 < 0.0
Allanite < 0.0 < 0.0 0.4 0.4 < 0.0 < 0.0

pixels (nearest neighbor) for technical reasons and image to
image registration (Table 4). To compare both classifications
in detail, an error matrix was calculated with ENVI. The er-
ror matrix shows fair overall accuracy of 76 %. There seem
to be three classes of accuracy: the first class, with good ac-
curacy of about 80 %, consists of K feldspar, quartz, allanite
and hornblende. The second class, with fair to medium accu-
racy between 60 and 70 %, consists of ilmenite, plagioclase
and orthopyroxene. Minerals with low accuracy are clinopy-
roxene, which is mostly confused with hornblende; and mag-
netite, zircon and apatite, which are mostly unclassified in
MLA.

For a detailed visual comparison of both classifications,
a section of sample 342 is shown in Fig. 4. As mentioned
before, small plagioclase veins cannot be identified with the
M4 Tornado; it is also noticeable that some minerals such as
allanite, ilmenite or orthopyroxene have small unclassified
(white) rims in the ENVI map, which is due to the mixed
fluorescence signals coming from a different depth in the
M4 Tornado measurement. Separation of clinopyroxene and
hornblende is difficult, because both minerals are chemically
similar. Main elements such as silicon, calcium and iron are
present in both minerals, and other elements such as alu-
minum, potassium or titanium have very low X-ray fluores-
cence intensities in the M4 Tornado measurement due to their
low content or low atomic number. Nevertheless, the grain
outlines in general are comparable.

4 Discussion

The proposed method depends mainly on the correct min-
eral classification. The key is to create a comprehensive min-
eral database that contains all present minerals and is able

to distinguish minerals of similar spectral features. Having
information about the geological system of the sample and
the possible paragenesis will improve the classification and
decrease the occurrence of unclassified areas. Since many
minerals are parts of solid solution series, e.g., plagioclase,
pyroxene or biotite, the mineral database can consist of sev-
eral endmembers of one mineral group in order to classify
chemical changes within one solid solution series.

Isochemical minerals such as rutile, anatase and brookite
(TiO2) are not distinguishable with an M4 Tornado mea-
surement. Only with further information from other methods
such as Raman spectroscopy or X-ray diffraction could more
information about the crystal system be obtained and used
for the classification. Until then, identification of the mineral
is based on the chemical information. However, the classifi-
cation can be extended from mineral groups to mineral end-
members easily, when more detailed information is available.
The rock classification should “grow with the science” (Carr
and Hibbard, 1991).

A similar problem creates the range of detectable ele-
ments. Since the lightest detectable element is sodium, min-
erals that contain lighter elements are not clearly identifi-
able. Apatite, for example, can be identified by the abun-
dance of phosphorus, calcium and possibly chlorine. Dis-
tinguishing between fluorapatite and hydroxylapatite is not
possible with this method. Therefore, the group name ap-
atite should be used. A special case is iron. If there is a min-
eral containing iron solely, there are several possibilities: the
iron oxides magnetite and hematite would fit the chemical
data since oxygen is not detectable. The presence of titanium
would indicate magnetite or titanomagnetite. Iron hydrox-
ide and oxide-hydroxide fit the chemical data, too, as well
as siderite (iron carbonate). Little amounts of calcium, mag-
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Table 4. Error matrix in percent for sample 342 with the MLA as reference data in the columns and the µ-EDXRF in lines with mineral
abbreviations as follows: unclassified, Uncl.; clinopyroxene, Cpx; hornblende, Hbl; allanite, Aln; magnetite, Mag; ilmenite, Ilm; quartz, Qtz;
K feldspar, Afs; zircon, Zrn; apatite, Ap; orthopyroxene, Opx.

Class Uncl. Cpx Hbl Aln Mag Ilm Qtz Pl Afs Zrn Ap Opx Total

Uncl. 58.21 6.54 5.84 8.21 20.06 17.93 8.36 8.26 6.17 40.9 19.11 11.77 9.68
Cpx 0.42 38.18 11.24 3.08 7 0.91 0.52 1.71 0.12 8.7 5.76 6.96 2.11
Hbl 1.14 38.22 77.92 3.04 20.91 5.81 1.34 4.92 0.45 5.45 11.5 10.56 7.63
Aln 0.02 0.06 0.01 79.96 0.07 0.16 0.05 0.06 0.03 0.02 0.49 0.01 0.32
Mag 0.04 0.54 0.42 0.02 41.77 9.89 0.02 0.27 0.03 1.57 1.66 1.92 0.34
Ilm 0.12 0.56 0.45 1.57 0.6 63.96 0.1 0.71 0.08 7.22 6.9 0.51 0.78
Qtz 3.75 0.43 0.05 0.25 0.14 0.07 79.55 4.48 3.8 0.74 0.57 0.25 18.01
Pl 13.63 1.9 1.02 2.16 1.72 0.54 6.47 66.13 5.04 10.71 15.82 0.59 20.07
Afs 22.13 0.04 0.04 0.19 0.19 0.02 3.13 12.37 84.11 1.54 0.95 0.06 38.49
Zrn 0 0.04 0.01 0.26 0.02 0.02 0.02 0.07 0.03 20.21 0.44 0 0.06
Ap 0.04 0.31 0.38 0.51 0.01 0.03 0.03 0.25 0.04 1.19 22.54 0.01 0.18
Opx 0.5 13.17 2.61 0.74 7.53 0.67 0.4 0.76 0.12 1.77 14.27 67.36 2.33

Total 100 100 100 100 100 100 100 100 100 100 100 100 100

Figure 4. Detailed view of a section in the upper right corner of sample 342: mineral distribution map from MLA (a) and ENVI (b).

nesium or manganese would indicate the iron carbonate, but
several possibilities still remain for iron.

Furthermore, the resolution limits of each device have to
be taken into account. Looking at the modal analysis, differ-
ences occur mostly from the estimation of quartz and plagio-
clase and the intimate intergrowth of feldspars. According
to the MLA measurement, sample 484 contains about 5 %
less plagioclase than what the M4 classification determined.
These differences result from the microperthitic intergrowth
of the sample. The perthite shows small lamellae of plagio-
clase in the K-feldspar host. When these lamellae are smaller
than the beam diameter of 17 µm, the pixel is classified as
an alkali feldspar with elevated sodium and calcium content,
while a small fraction of plagioclase is lost in the modal min-
eralogy. Similarly, differences can occur from other mineral
combinations or overlaps in one pixel, which may even result
in a different mineral classification or in unclassified grain
boundaries. Plagioclase overlapping with pyroxene can be
chemically similar to hornblende and result in a small horn-

blende rim between plagioclase and pyroxene grains. Miner-
als with low classification accuracy, compared to MLA, such
as zircon, magnetite and apatite, are present mostly as small
and single grains surrounded by plagioclase. This results in
an unclassified rim due to overlapping signals of both miner-
als. Because of the small grain sizes, a number of unclassified
border pixels form a relatively large proportion compared to
the number of core pixels and, therefore, result in a very low
classification accuracy.

Comparing the M4 classification procedure to MLA, some
difficulties should be mentioned. With MLA, differentiation
of minerals with a similar average atomic number is diffi-
cult when the measurement should involve all rock-forming
and accessory minerals from very low to very high average
atomic numbers. The grey values are a function of the aver-
age atomic number of the mineral, and the XBSE mode uses
the grey values of the BSE image for grain separation. The
grain separation in XBSE mode is based on the grey value
of the BSE image. Minerals of similar atomic number will
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be eventually combined (e.g., plagioclase–quartz–muscovite
or biotite–hornblende–pyroxene), and only one measurement
in the center of the particle will be performed. Contrast and
brightness of the BSE images are adapted for the present
mineral assemblage. If a good contrast for distinction of light
minerals (dark in BSE) such as quartz and plagioclase were
needed, the grey level spectrum would be stretched in the
lower region to differentiate light minerals. Consequently,
heavier minerals such as allanite or zircon would appear
white, and adjacent minerals of equal grey value would be
identified as one grain and would not be separated. There-
fore, it was necessary to measure the thin section of sample
484 in GXMAP mode, which increased the measuring time
from 12 to 40 h. Another source of error was found to be the
frame overlapping. Some frames are shifted apart, and the
automatic particle joining had to be corrected manually sev-
eral times.

The combination of µ-EDXRF and hyperspectral classifi-
cation shows good applicability for heavy accessory miner-
als and sulfide ores, since heavy elements are easy to detect
due to their good fluorescence response. Even small grains
of accessories can be detected, since the EDXRF mapping
provides spatially resolved data. If there is a sample area of
20×15 cm with just one gold grain large enough to detect, the
element distribution map will show the gold grain. ENVI of-
fers the possibility of locating such minor minerals of interest
and providing the pixel coordinates of each grain of interest.
Furthermore, the mineral distribution maps offer opportuni-
ties to perform image analysis, e.g., for calculation of geo-
metric grain parameters (Nikonow and Rammlmair, 2016).

An important factor to consider for scientist and labora-
tories is the financial aspect, such as purchase and mainte-
nance costs as well as easy handling and usability of the
devices. In this case, the financial advantage is on the side
of the µ-EDXRF. The acquisition costs for the µ-EDXRF
including two detectors and the software (ENVI) is about
EUR 250 000, whereas the SEM including the MLA software
may be around 4 times higher. To operate the SEM, high vac-
uum pumps and a nitrogen supply are necessary in addition
to a skilled operator, whereas the µ-EDXRF can operate at at-
mospheric pressure or in low vacuum and is relatively easy to
operate for scientists and also students. Both devices should
preferably be operated in an air-conditioned laboratory; how-
ever, in this work the µ-EDXRF was not in an air-conditioned
room.

Taking into account the limits and potentials of both meth-
ods, it is important to analyze the question or the problem
the data should answer or solve. If the samples have fine in-
tergrowths or small grains that need to be resolved in high
detail, the spot size of 17 µm might be too large. Also if the
presence of light elements such as carbon and oxygen needs
to be known, other methods such as MLA should be pre-
ferred. On the other hand, the big advantage of µ-EDXRF is
the little preparation and measuring time required. It is possi-
ble to have chemical information of a large sample area hours

after having taken the samples. Whereas chemical analysis
can take days to pulverize or digest the samples, EDXRF
mapping can give a good overview in a short time period,
although within a certain error limit. Moreover, the sample
stays intact for further analyses. For detailed chemical analy-
sis either the bulk sample has to be processed or small ar-
eas or minerals have to be separated, which is very time-
consuming. µ-EDXRF provides spatially resolved chemical
data, and therefore even small areas of interest can be ana-
lyzed separately. For microscopy and petrographic analysis
thin sections have to be prepared, which are limited in most
cases to an area of a few cm2. Microscopy is very helpful,
but it can be advantageous to be able to see more than a few
thin sections. Since the EDXRF maps are fast to obtain, de-
pending on the size and chosen acquisition time, results can
be obtained within minutes or several hours.

5 Conclusions

In this work we describe the multispectral classification of
plutonic rock thin sections based on µ-EDXRF data. The
SAM classification was shown to work well for primary,
mostly unweathered plutonic rocks. Compared to MLA, the
mineral classification results correspond well on thin sec-
tions. Problems arise due to the technical limits of the used µ-
EDXRF instrument including resolution and not-measurable
elements, whereas a lot of valuable information of even
larger samples than thin section size can be obtained faster
with multispectral classification.

This method is suitable for obtaining a fast sample
overview with chemical, textural and mineralogical informa-
tion, and even geometric grain information, as it works non-
destructively and covers an area of 20× 15 cm. Therefore, it
can be seen as the first step in a series of geoscientific anal-
yses providing a large scale overview, while the samples re-
main intact. This method can help in choosing the areas of
interest for more detailed measurements, thin section prepa-
ration, MLA, or other high-resolution or bulk geochemical
analyses. Having spatial and chemical information about the
samples can decrease the number of thin sections that need
to be prepared or the following chemical analyses, since the
choice can be made more targeted and systematic. Overall,
it is an objective, repeatable, and quantifiable way for modal
mineralogy and petrographic image analysis.

Data availability. Raw data are available upon request from the
corresponding author.

Competing interests. The authors declare that they have no conflict
of interest.

www.geosci-instrum-method-data-syst.net/6/429/2017/ Geosci. Instrum. Method. Data Syst., 6, 429–437, 2017



436 W. Nikonow and D. Rammlmair: Automated mineralogy based on µ-EDXRF

Acknowledgements. The results of this work are part of research
that is funded by the German Federal Ministry of Education and
Research (BMBF) within the project SecMinStratEl (grant no.
033R118B). The authors are thankful to Jeannet Meima for the
many helpful comments on the manuscript, Katarzyna Krasniqi for
parts of the mineral database, Dominic Göricke for technical sup-
port with the SEM and Gerhard Heide from the TU Bergakademie
Freiberg for the fruitful discussions.

Edited by: Lev Eppelbaum
Reviewed by: two anonymous referees

References

Belissont, R., Muñoz, M., Boiron, M.-C., Luais, B., and Mathon,
O.: Distribution and oxidation state of Ge, Cu and Fe in spha-
lerite by µ-XRF and K-edge µ-XANES: insights into Ge incor-
poration, partitioning and isotopic fractionation, Geochim. Cos-
mochim. Acta, 177, 298–314, 2016.

Carr, J. R. and Hibbard, M.: Open-ended mineralogical/textural
rock classification, Comput. Geosci., 17, 1409–1463, 1991.

Congalton, R. G.: A review of assessing the accuracy of classifica-
tions of remotely sensed data, Remote Sens. Environ., 37, 35–46,
1991.

Croudace, I. W. and Rothwell, R. G.: Micro-XRF Studies of Sedi-
ment Cores: Applications of a non-destructive tool for the envi-
ronmental sciences, Springer, 2015.

Deer, W., Howie, R., and Zussman, J.: An introduction to the rock-
forming minerals, The Mineralogical Society, London, 2013.

Dobbe, R., Gottlieb, P., Gu, Y., Butcher, A., Fandrich, R., and H, L.:
Scanning Electron Beam-Based Automated Mineralogy-Outline
of Technology and selected applications in the Natural Resources
Industry, 11th European Workshop on Modern Development and
Applications in Microbeam Analysis, Gdynia/Rumia, Gdansk,
Poland, 169–189, 2009.

dos Reis Salles, R., de Souza Filho, C. R., Cudahy, T., Vicente,
L. E., and Monteiro, L. V. S.: Hyperspectral remote sensing ap-
plied to uranium exploration: A case study at the Mary Kath-
leen metamorphic-hydrothermal U-REE deposit, NW, Queens-
land, Australia, Journal of Geochemical Exploration, 179, 36–50,
2016.

Exelis Visual Information Solutions, I., a subsidiary of Harris Cor-
poration: ENVI, 2015.

Fandrich, R., Gu, Y., Burrows, D., and Moeller, K.: Modern SEM-
based mineral liberation analysis, Int. J. Miner. Process., 84,
310–320, 2007.

Figueroa, R., Lozano, E., Belmar, F., Alcaman, D., Bohlen, A.,
Oliveira, C., Silva, A., and Veloso, J.: Characteristics of a ro-
bust and portable large area X-ray fluorescence imaging system,
X-Ray Spectrometry, 43, 126–130, 2014.

Flude, S. and Storey, M.: 40Ar/39Ar age of the Rotoiti Breccia and
Rotoehu Ash, Okataina Volcanic Complex, New Zealand, and
identification of heterogeneously distributed excess 40Ar in su-
percooled crystals, Quaternary Geochronology, 33, 13–23, 2016.

Foody, G. M.: Status of land cover classification accuracy assess-
ment, Remote Sens. Environ., 80, 185–201, 2002.

Gergely, F., Osán, J., Szabó, B. K., and Török, S.: Analytical perfor-
mance of a versatile laboratory microscopic X-ray fluorescence

system for metal uptake studies on argillaceous rocks, Spec-
trochimica Acta Part B: Atomic Spectroscopy, 116, 75–84, 2016.

Girouard, G., Bannari, A., El Harti, A., and Desrochers, A.: Val-
idated spectral angle mapper algorithm for geological map-
ping: comparative study between QuickBird and Landsat-TM,
XXth ISPRS congress, geo-imagery bridging continents, Istan-
bul, Turkey, 12–23, 2004.

Gu, Y.: Automated scanning electron microscope based mineral lib-
eration analysis An introduction to JKMRC/FEI mineral libera-
tion analyser, Journal of Minerals and Materials Characterization
and Engineering, 2, 33, 2003.

Gu, Y. and Napier-Munn, T.: JK/Philips mineral liberation analyzer
– an introduction, Proceedings of the Minerals Processing’97
Conference, Cape Town, SA, p. 2, 1997.

Kéri, A., Osán, J., Fábián, M., Dähn, R., and Török, S.: Com-
bined X-ray microanalytical study of the Nd uptake capability
of argillaceous rocks, X-Ray Spectrometry, 45, 54–62, 2016.

Keune, K., Mass, J., Mehta, A., Church, J., and Meirer, F.: An-
alytical imaging studies of the migration of degraded orpi-
ment, realgar, and emerald green pigments in historic paint-
ings and related conservation issues, Heritage Sci., 4, 1–14,
https://doi.org/10.1186/s40494-016-0078-1, 2016.

Kozak, L., Niedzielski, P., Jakubowski, K., Michałowski, A.,
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