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Abstract. The use of efficient methods for data processing
has always been of interest to researchers in the field of
earth sciences. Pattern recognition techniques are appropri-
ate methods for high-dimensional data such as geochemi-
cal data. Evaluation of the geochemical distribution of rare
earth elements (REEs) requires the use of such methods. In
particular, the multivariate nature of REE data makes them
a good target for numerical analysis. The main subject of
this paper is application of unsupervised pattern recogni-
tion approaches in evaluating geochemical distribution of
REEs in the Kiruna type magnetite–apatite deposit of Se-
Chahun. For this purpose, 42 bulk lithology samples were
collected from the Se-Chahun iron ore deposit. In this study,
14 rare earth elements were measured with inductively cou-
pled plasma mass spectrometry (ICP-MS). Pattern recogni-
tion makes it possible to evaluate the relations between the
samples based on all these 14 features, simultaneously. In
addition to providing easy solutions, discovery of the hid-
den information and relations of data samples is the advan-
tage of these methods. Therefore, four clustering methods
(unsupervised pattern recognition) – including a modified
basic sequential algorithmic scheme (MBSAS), hierarchi-
cal (agglomerative) clustering, k-means clustering and self-
organizing map (SOM) – were applied and results were eval-
uated using the silhouette criterion. Samples were clustered
in four types. Finally, the results of this study were validated
with geological facts and analysis results from, for exam-
ple, scanning electron microscopy (SEM), X-ray diffraction
(XRD), ICP-MS and optical mineralogy. The results of the
k-means clustering and SOM methods have the best matches
with reality, with experimental studies of samples and with
field surveys. Since only the rare earth elements are used in

this division, a good agreement of the results with lithology is
considerable. It is concluded that the combination of the pro-
posed methods and geological studies leads to finding some
hidden information, and this approach has the best results
compared to using only one of them.

1 Introduction

In present study, the geochemical distribution of rare earth
elements (REEs) was evaluated using bulk lithology sam-
ples for the first time in the Se-Chahun deposit. A cluster-
ing approach attempts to organize unlabeled feature vectors
into clusters (natural groups) such that samples within a clus-
ter are similar to each other but differ from those in other
clusters (Hilario and Ivan, 2004). Clustering analysis is an
important and useful tool for analyzing large datasets that
contain many variables and experimental parameters. There-
fore, the application of cluster analysis to complex datasets
has attracted a high level of scientific interest in various as-
pects of geochemistry research (Nguyen et al., 2015). In or-
der to investigate the distribution of elements, it is essential
for a robust classification scheme to cluster chemistry sam-
ples into homogeneous groups (Guler et al., 2002). Several
common clustering techniques have been utilized to divide
geochemical samples into similar homogeneous groups with
the ultimate objective of characterizing the quality of ele-
ments, such as principal component analysis, fuzzy k-means
clustering technique and Q-mode hierarchical cluster anal-
ysis to assess the chemistry of groundwater and to identify
the geological factors. For example, Ji et al. (2007) devel-
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oped semi-hierarchical correspondence cluster analysis and
showed its application for division of geological units with
the help of geochemical data that are systematically collected
from an area around Tahe in Heilongjiang Province, north
China. Meshkani et al. (2011) used hierarchical and k-means
clustering for identifying distribution of lead and zinc in the
Sanandaj–Sirjan metallogenic zone in Iran. Ziaii et al. (2009)
introduced the neuro-fuzzy method for separating anomalies
and showed that this method is more efficient than using
multivariate statistics. Ellefsen and Smith (2016) evaluated
a clustering method called the Bayesian finite mixture mod-
eling procedure by applying it to geochemical data collected
in the State of Colorado, United States of America.

The proposed method of the self-organizing maps (SOMs)
is likely to become a complementary or an alternative tool to
the clustering methods (Kalteh et al., 2008; Iseri et al., 2009).
The SOM method is related to adaptive k-means method but
performs a topological feature map that is more complex than
just cluster analysis. After training, the input vectors are spa-
tially ordered in the array; i.e., the neighboring input vec-
tors on the map are more similar than the more remote ones
(Du and Swamy, 2006). The self-organizing map approach
is based on unsupervised learning algorithms and has excel-
lent visualization capabilities including techniques that ap-
ply the reference vectors of the SOM to give an informative
picture of the data (Lu et al., 2003). Sun et al. (2009) applied
the SOM method to classify Pb–Zn–Mo–Ag anomalies in the
mining area around Sheduolong in Qinghai Province, China.
In 2012, Abedi et al. the used the SOM and fuzzy k-means
techniques to provide a deposit exploration map for the Now
Chun copper deposit in Iran. Sarparandeh and Hezarkhani
(2016) examined the application of SOMs in evaluation of
the geochemical distribution of REEs in the Choghart Fe–
REE deposit in Bafq district and showed its good perfor-
mance. Generally, in cases where there are too many param-
eters and samples, pattern recognition is a suitable approach
for data processing. Exploration of rare earth elements is one
of these cases because of the multi-elemental nature of the
data. For instance, in this study, 14 rare earth elements were
measured with inductively coupled plasma mass spectrome-
try (ICP-MS). Pattern recognition makes it possible to eval-
uate the relations between the samples based on all these 14
features simultaneously. In addition to providing easy solu-
tions, discovery of the hidden information and relations of
data samples is the advantage of these methods. This paper
suggests a new approach for exploration of REEs, which is
more applicable and compatible with the multivariate nature
of them.

2 Geological settings of study area

There are several deposits of iron ore in central and north-
eastern Iran, and magnetite is the main mineral in most of
them. In most iron ore deposits of Iran, metasomatism is

the main cause of concentration (NISCO, 1975). Systematic
exploration work during the 1960s and 1970s outlined 34
zones of aeromagnetic anomalies between Bafq in the south
and Saghand in the north with a total reserve of more than
1500 Mt iron ore (Torab, 2008). The Se-Chahun deposit is
composed of two major groups of ore bodies, called the X
and XI anomalies (NISCO, 1975). Anomaly X crops out as
some small black hills containing 11 Mt iron ore reserve with
mainly rich magnetite ore (Torab, 2008). Anomaly XI occurs
3 km northeast of anomaly X. Each anomaly consists of two
or three smaller tabular to lens-shaped ore bodies in asso-
ciation with other small bodies (Bonyadi et al., 2011). The
mineralization is mainly hosted by metasomatized tuffs of
andesite composition. A geological map of the Se-Chahun
deposit (anomaly X) and the location of samples within the
study area are shown in Fig. 1.

3 Mineralogy and lithology

The host rocks have a gradual boundary. Samples mainly in-
clude iron ores, low-grade ores (transition zone, consisting
of plagioclase and actinolite) and metasomatic rocks (mainly
consisting of actinolite and plagioclase). Figure 7a and c
show two examples of iron ores: phosphorus iron ore with
large amounts of REEs (Fig. 7a) and iron ore with small
amounts of REEs (Fig. 7c). Apatites can be seen in hand
specimens by the cream-pink color (Fig. 7a). Some exam-
ples for metasomatic host rock are presented in Fig. 7b and d.
They are mainly pale green. The main minerals in host rocks
are shown in microscopic images. The ore body is com-
prised of high-grade magnetite. The most important REE-
bearing minerals in the Se-Chahun deposit are apatite and
monazite. There are two types of apatite: REE-bearing ap-
atite and depleted apatite. Bonyadi et al. (2011) showed that
some apatites of Se-Chahun have been leached of light REEs
(LREEs), Y, Na, Cl, Mg, Mn and Fe. REE-bearing apatites
are bright in back-scattered electron (BSE) images, while
leached apatites are dark. In terms of dimensions, there are
two types of apatite: coarse grain and fine grain. They can
be seen under optical and scanning electron microscopes.
However, all of them are extremely altered, and their crys-
tals can not be seen in hand samples. The content of rare
earth elements is directly related to the amount of apatite.
The more the apatite, the greater the amount of REEs. Mon-
azites are very fine grains and can only be distinguished in
scanning electron microscopy (SEM) images (Fig. 2). They
are brighter than apatites and magnetites and contain greater
amounts of REEs. However, there are small amounts of mon-
azite in samples. Therefore, apatite is the main source of
REEs in the Se-Chahun deposit. However, in cases with
medium amounts of REEs, it is found that there is a differ-
ent condition. In fact, there is another group of samples in
which there are lesser amounts of P with considerable con-
centrations of REEs. This group of data was separated easily
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Figure 1. Geological map of Se-Chahun deposit (anomaly X) and sample locations. Contours of open pits are shown on the map, and the
open pits are numbered from 1 to 4 (supplementary part of pit 2 is known as pit 4) (modified after NISCO, 1975).

Figure 2. Back-scattered electron images of a sample from phosphate rocks. Abbreviations: Ap – apatite; Mnz – monazite; and Mag –
magnetite.
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Figure 3. Dendrogram for identifying the optimum threshold and
number of clusters.

by clustering methods. This was confirmed by evaluation of
samples under SEM. After a complete survey of samples un-
der SEM, it was found that the samples of this cluster (e.g.,
Fig. 7b) contain monazite with an absence of apatite.

4 Scanning electron microscopy

Several samples were analyzed with SEM, and the results
were used for evaluation of mineralogy and also validity of
this study. Figure 2 shows the BSE images of a sample from
phosphate rocks. Monazites are brightly colored and include
Ce, La and Nd. Apatites are dark gray and include P, Ca
and La but no Ce. As can be seen in Fig. 2, there are small
amounts of monazite. Monazites can be seen in two ways:
(1) small crystals around the apatite and (2) inclusions in ap-
atite crystals (Fig. 2a).

5 Chemical analysis

In this study, 42 bulk lithology samples were collected from
anomaly X of Se-Chahun iron ore deposits. They are from
pit 1, 2 and 4 (supplementary part of pit 2 is known as pit 4,
Fig. 1). 19 samples were taken from pit 1, 9 samples from pit
2 and 14 samples from pit 4. Samples were taken from the ore
body and metasomatic zones. After preparation of the sam-
ples, they were analyzed with ICP-MS. The concentrations
of REEs were normalized between 0 and 1 and were used as
input data for clustering. These data can be divided roughly
into three groups: samples with high, medium and low con-
centration of REEs. Accurate determination of groups re-
quires multivariate analysis and data processing. Another im-
portant point is that the samples are enriched by LREEs and
Y. Large amounts of REEs occur in phosphorus iron ores,
and they are more in the supplementary part of pit 2 (or pit
4). Assayed REEs are 14 elements: La, Ce, Pr, Nd, Sm, Eu,

Gd, Tb, Dy, Er, Tm, Yb, Lu and Y. Mean, variance, minimum
and maximum of these rare earth elements are presented in
Table 1.

6 Methodology

Four methods – a modified basic sequential algorithmic
scheme (MBSAS), hierarchical (agglomerative) clustering,
k-means clustering and SOM – were applied in this study.
These methods have been applied in diverse aspects of sci-
ence and engineering, somewhat in geochemistry and never
for exploration of REEs. The papers of Sarparandeh and
Hezarkhani (2016) and Zaremotlagh and Hezarkhani (2016)
are the only efforts which have been made in this area. How-
ever, there is no study that applies and compares several types
of algorithms. In this study, in addition to providing such use-
ful information and experience, the authors show that some
extra information such as the relation between REEs content
and lithology of samples can be achieved by the proposed
methods. Moreover, a good discrimination based on lithol-
ogy is attained just by using REEs. The general concepts of
each method are explained in the following.

6.1 Sequential clustering

Sequential methods are easy and fast algorithms. These in-
clude a basic sequential algorithmic scheme (BSAS) as well
as a modifed version (MBSAS). In BSAS two parameters
should be defined by the user: the maximum number of clus-
ters and dissimilarity threshold. The basic idea behind BSAS
is that each input vector x is assigned to an already created
cluster or a new one is formed. Therefore, a decision for vec-
tor x is reached prior to the final cluster formation, which is
determined after all vectors have been presented. The refine-
ment of BSAS, which is called modified BSAS (MBSAS),
overcomes this drawback. The algorithmic scheme consists
of two phases. The first phase involves the determination of
the clusters, via the assignment of some of the vectors of
x to them. During the second phase, the unassigned vectors
are presented for a second time to the algorithm and are as-
signed to the appropriate cluster (Theodoridis and Koutroum-
bos, 2003). Therefore, in this study the MBSAS algorithm
was applied for clustering of samples based on REEs. In this
study, the mean of each group and the Euclidean distance
were used as the cluster centers and a measure of dissimilar-
ity, respectively.

6.2 Hierarchical clustering

Hierarchical clustering procedures are among the most com-
monly used methods of summarizing data structure. They use
a hierarchical tree, which is a nested set of partitions repre-
sented by a tree diagram or dendrogram (Fig. 3). To separate
each branch of the dendrogram, a numerical value that indi-
cates the dissimilarity between clusters should be measured.
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Figure 4. Silhouette plots for each method show the validity of each sample in a certain cluster. Positive values show that the sample has
been clustered in the correct group and its magnitude is a measure of accuracy.

Table 1. Mean, variance, minimum and maximum of 14 assayed rare earth elements in 42 samples.

Elements (ppm) La Ce Pr Nd Sm Eu Gd Tb Dy Er Tm Yb Lu Y

Mean 73 154 20 75 13 2 13 2 12 7 1 13 1 56
Variance 27 180 111 800 1202 15 180 299 3 242 4 121 40 1 64 0 2869
Minimum 3 2 0 5 1 0 1 0 1 1 0 1 0 9
Maximum 995 2037 203 740 102 9 90 12 60 32 4 42 3 305

There are several different algorithms for finding a hierarchi-
cal tree. An agglomerative algorithm begins with n subclus-
ters, each containing a single data point, and at each stage
merges the two most similar groups to form a new cluster,
thus reducing the number of clusters by one. The algorithm
proceeds until all the data fall within a single cluster. A divi-
sive algorithm operates by successively splitting groups, be-
ginning with a single group and continuing until there are n
groups, each of a single individual. Generally, divisive algo-
rithms are computationally inefficient, except where most of
the variables are binary attribute variables (Webb, 2002). In
this study, an agglomerative approach was used.

6.3 K-means clustering

K means is one of the most popular and well-known clus-
tering algorithms. In this method, first, k samples are con-
sidered as initial cluster centers. Then, distances between the
points and these centers are calculated, and the nearest points
to each center are assigned to that cluster. Next, the mean of
each cluster will be used as a new center. This process contin-
ues until no changes appear in the clusters (Theodoridis and
Koutroumbos, 2003). The k-means algorithm seeks to parti-
tion the data into k groups or clusters so that the within-group
sum of squares is minimized (Webb, 2002).
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Figure 5. SOM topology and determining the number of samples for each cluster (a), SOM neighbor weight distances and neighbor connec-
tions (b).

Figure 6. Comparative bar charts of normalized values of REE, P and Fe for all clustering methods.

6.4 Self-organizing map

An SOM is a kind of artificial neural network (ANN). It can
be used for unsupervised clustering. This method was intro-
duced by Kohonen in 1980, and their main application is
to reduce the dimensional (Kohonen, 1998). In this method,
topological structure of the input space will be saved. The
net of neurons can be a right angle or hexagonal grid, and
the adjacent cells upgrade during successive stages (Engel-
brecht, 2002).

6.5 Cluster validity

The optimum number of clusters was found by the silhouette
method. In this method, a graphical validation was used for
evaluating the number of clusters and comparing different

scenarios. Therefore, by calculating the distances between
samples in the clusters and distances between the prototypes
the optimal number was determined (Rousseeuw, 1987).

7 Results and discussion

The aim of this study is to investigate the geochemical distri-
bution of REEs. Therefore, the concentrations of REEs (after
normalization between 0 and 1) were used as input data for
clustering. But, after data processing, the clustering results
were compared with concentrations of phosphorus and iron.
Moreover, the lithology of samples was considered for val-
idation. Clustering results of four methods – MBSAS, hier-
archical (agglomerative) clustering, k-means clustering and
SOM – will be discussed in the following.
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Figure 7. Some examples for samples which have been classified in four types along with their microscopic images. (a) Type 1: high anomaly
(phosphorus iron ore), sample 4–1, iron ore sample including apatite and monazite; (b) type 2: low anomaly (metasomatized tuffs), sample
2–6, including actinolite, calcite, feldspar and monazite; (c) type 3, low anomaly (iron ore), sample 4–6, iron ore sample including apatite
(mostly depleted from REEs) and monazite; (d) type 4: background (iron ore and others), sample 1–16, metasomatite including plagioclase,
feldspar and actinolite. Abbreviations: Ap – apatite; Mnz – monazite; Act – actinolite; Mag – magnetite; and Pl – plagioclase.

The input of the methods is a dataset of 42 vectors with 14
dimensions (42 samples and 14 rare earth elements). First,
outliers should be put aside. For this purpose, the dendro-
gram based on the average of each cluster and Euclidean dis-
tance between the clusters was composed. Linkage analysis
showed that two samples have more distance from others and
can be put aside as outliers. They are phosphorous iron ore
with high concentrations of REEs. Contents of REEs in these
two samples are much higher than in others. They belonged
to certain clusters (due to the similarity) at the end of calcu-
lations.

In MBSAS and hierarchical methods, two parameters (i.e.,
optimum threshold and number of clusters) should be identi-
fied. To this end, the dendrogram was drawn. Figure 3 shows
the dendrogram for identifying the optimum threshold and
number of clusters. It has been calculated based on the aver-
age of each cluster and Euclidean distance between the clus-
ters. The optimum threshold was identified as 0.4 based on
the endrogram (Fig. 3). In this way, four clusters were ob-
tained. However, for all four methods, the number of clusters
was changed in the range of 2–6, and then results were eval-
uated using the silhouette criterion. Finally, four clusters was

decided upon as the optimal number. In this case the best re-
sults of silhouette values were attained for all methods. Sil-
houette plots for each method show the validity of each sam-
ple in a certain cluster. Positive values show that the sample
has been clustered in the correct group and its magnitude is
a measure of accuracy. Results of the silhouette method are
shown in Fig. 4. As can be seen in Fig. 4, one sample in the
MBSAS and hierarchical methods has a negative value. This
means that this sample is in the wrong cluster. Comparing
the results of the methods shows that the MBSAS and hier-
archical methods had the same outputs, and so the k-means
and SOM methods have similar outputs. Moreover, results of
the k-means and SOM methods have the best matches with
reality, with experimental studies of samples and with field
surveys.

Characteristics of each cluster in each method are summa-
rized in Table 2. For this purpose, averages of

∑
REEs (total

concentrations of rare earth elements) as well as P and Fe for
each cluster have been calculated. Comparing these results
with laboratory analyses and field studies, we concluded that
samples can be classified into four types (Fig. 7): (1) high
anomaly (phosphorus iron ore), (2) low anomaly (metasom-
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Table 2. Characteristics of each cluster in each method. Iron and phosphorus concentrations are shown for comparison.

MBSAS

Cluster no.
∑

REEs (ppm) P (ppm) Fe% Description

1 169 933 29 Background (iron ore and others)
2 422 1294 10 Low anomaly (metasomatized tuffs)
3 2646 31 934 47 High anomaly (phosphorus iron ore)
4 749.14 11 061 49 Low anomaly (iron ore)

Hierarchical

Cluster no.
∑

REEs (ppm) P (ppm) Fe% Description

1 749 11 061 49 Low anomaly (iron ore)
2 383 123 4 Low anomaly (metasomatized tuffs)
3 199 1335 29 Background (iron ore and others)
4 2646 31 934 47 High anomaly (phosphorus iron ore)

k means

Cluster no.
∑

REEs (ppm) P (ppm) Fe% Description

1 143 775 25 Background (iron ore and others)
2 383 143 3 Low anomaly (metasomatized tuffs)
3 407 3387 44 Low anomaly (iron ore)
4 1887 23 585 48 High anomaly (phosphorus iron ore)

SOM

Cluster no.
∑

REEs (ppm) P (ppm) Fe% Description

1 1887 23 585 48 High anomaly (phosphorus iron ore iron ore)
2 383 123 4 Low anomaly (metasomatized tuffs)
3 407 3387 44 Low anomaly (iron ore)
4 143 775 25 Background (iron ore and others)

Table 3. Concentrations of REEs (ppm), P (ppm) and Fe (%) for the samples of Fig. 7.

Element La Ce Pr Nd Sm Eu Gd Tb Dy Er Tm Yb Lu Y P Fe

4–1 330 644 72.16 233 33.93 3.38 31.9 4.3 23.88 13.07 1.53 25.9 1.06 125.1 16 201 51.59
2–6 109 309 64.5 260.3 48.41 5.02 45.49 7.57 43.2 28.51 3.82 26.3 2.77 168.8 168 2.8869
4–6 93 183 21.42 69.4 10.49 1.14 9.9 1.41 8.85 4.91 0.62 16.8 0.43 42.1 3396 52.88
1–16 15 50 6.76 28.4 6.62 1.02 6.64 1.11 7.67 4.79 0.64 6.9 0.59 38.4 127 3.79

atized tuffs), (3) low anomaly (iron ore), and (4) background
(iron ore and others). Since only the rare earth elements are
used in this division, a good agreement of the results with
lithology is considerable. Type 1 is comprised of iron ore
with a high anomaly of REEs (about 1900 ppm) and the high
content of phosphorus (more than 2 %). Figure 2 shows SEM
images of a sample from type 1. This type is the most prone
to rare earth elements and containing apatite and monazite.
However, fluorapatite is the main mineral of REEs in this
type (due to the X-ray diffraction (XRD) and SEM analy-
ses). The second type (i.e., metasomatized tuffs) has a low
anomaly of REEs, whereas the concentration of P is low.
Samples of this group are metasomatized tuffs of andesite
composition and mainly consist of actinolite and plagioclase

with low concentrations of Fe and P, but the contents of REEs
are considerable (on average about 400 ppm). SEM analysis
shows that monazite is the mineral of REEs and apatite does
not exist in this type. The third type shows a low anomaly of
REEs with the lithology of the ore body and relatively high
content of P (about 3400 ppm in SOM and k-means results
and about 1 % in MBSAS and hierarchical clustering). The
last type is background (low concentrations of REEs) and
comprised of various samples of iron ore and others (mainly
metasomatic samples).

As mentioned above, the results of the k-means cluster-
ing and SOM methods have the best matches with reality,
with experimental studies of samples and with field sur-
veys. However, a self-organizing map has the capability to
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present a two-dimensional map (for visual evaluation of clus-
ters) from multidimensional data. In addition, the weight dis-
tance matrix provides a tool to compare clusters. These ad-
vantages of the SOM method make it more applicable for
data processing in exploration works. Figure 5a shows the
SOM topology which has been used in this study as well as
the number of samples for each cluster. Since a SOM has
a two-dimensional topology, the relations between centers
of 14-dimensional clusters have been illustrated on a two-
dimensional map. Weight distance matrix or unified distance
matrix (U matrix) is one of the SOM’s tools. Figure 5b shows
neighbor weight distances. Lines are used to display the rela-
tionship between neighboring neurons. The darker the color,
the greater the distance between the neurons; the lighter the
color, the smaller the distance between the neurons. There-
fore, as can be seen in Fig. 5b, type 1 (i.e., high anomaly or
phosphorus iron ore) has the maximum distance with type
3 and to a lesser degree with type 2. Also, type 3 and 4
are closest together and most similar to each other in terms
of REEs. Finally, type 1 or phosphorus iron ore type is the
most promising type for rare earth elements. This type oc-
curs mainly in the supplementary part of pit 2 (or pit 4). For
a better comparison of the four methods, the outputs of clus-
tering algorithms (Table 2) were normalized, and the results
were summarized in four bar charts (Fig. 6).

In this study, pattern recognition helped to divide the sam-
ples into appropriate groups, according to the contents of
REEs, and results are consistent with the concentration of P
and with the lithology of the samples. The variety of parame-
ters, especially in case of REE explorations, somewhat com-
plicates for interpretation of the data and exploration area.
Since single-variable methods do not provide useful infor-
mation, the authors proposed four common clustering algo-
rithms, which have been explained above. The output of these
four methods (Fig. 6 and Table 2) shows that the discrimi-
nation of clusters is based on the lithology of the samples,
in addition to the REEs. Therefore, it is proven that pro-
posed methods have found the relation between the distri-
bution of REEs and the lithology of the study area. In this
regard, we claim that pattern recognition helps to find some
hidden information associated with the complicated nature
of REE systems. Figure 7 is prepared to show the application
and efficiency of unsupervised methods in evaluating geo-
chemical distribution of REEs in the Kiruna type magnetite–
apatite deposit of Se-Chahun, while it does not need to do
additional geological studies with extra cost and time. These
samples are shown as the representative samples for each
cluster. Their contents of REEs are presented in Table 3.
Sample 4–1 (phosphorus iron ore, Fig. 7a) contains about
9 % apatite (based on XRD analysis). There are high con-
tents of REEs (

∑
REEs = 1543 ppm) and P (16 201 ppm) in

this sample. Figure 7b is an example (sample no. 2–6) for
type 2 (low anomaly, metasomatized tuffs). Rare earth ele-
ments of this type are from monazite. Apatite was not ob-
served in this type, and therefore the concentration of P is

relatively lower. BSE image of a monazite in sample 2–6 is
shown in Fig. 7b. Figure 7c is a sample (4–6) for iron ore
with a low anomaly of REEs. Apatites of this sample are
mainly depleted from REEs. They were observed under SEM
(depleted apatites are darker in BSE images). Therefore, al-
though there are large amounts of P in it, the concentrations
of REEs are relatively lower (Table 3). A metasomatite sam-
ple (nos. 1–16) is shown in Fig. 7d as an example for back-
ground. Plagioclase and actinolite are the main minerals of
it. Concentrations of

∑
REEs and P in this sample are 175

and 127 ppm, respectively.
Four methods – MBSAS, hierarchical (agglomerative)

clustering, k-means clustering and SOM – were applied in
this study. However, the k-means clustering and SOM meth-
ods are more advanced in comparison to others. They im-
prove and modify the weights or centers of the clusters con-
tinuously in several stages. In contrast, the MBSAS and hi-
erarchical methods are more simple and elementary, because
the centers of clusters are determined in one stage. Further-
more, SOM has the advantage that the distances between
the clusters can be assessed visually on a two-dimensional
map (Fig. 5b). Since the input dataset is comprised of 14-
dimensional vectors (14 REEs), SOM is a good tool for eval-
uating it in a two-dimensional space.

8 Conclusions

The following points were concluded:

– Successful clustering of a dataset which is consistent
with geological facts and laboratory and field studies
was achieved.

– The results of the k-means clustering and SOM methods
have the best matches with reality, with experimental
studies of samples and with field surveys.

– Since only the rare earth elements were used in this di-
vision, a good agreement of the results with lithology is
considerable.

– Results showed that the unsupervised pattern recog-
nition helps to find some hidden informations, which
would be difficult to achieve in usual ways (i.e., find-
ing the appropriate clusters). Methods which have been
presented in this study will help better interpretation of
data, despite there being many variables.

– A combination of numerical models and geological
studies leads to the best outputs and outcomes in ex-
ploration programs of REEs.

– The proposed methods help to reduce the time and cost
by eliminating the need for additional geological stud-
ies.
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