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Abstract. Many kinds of particle swarm optimization (PSO)
techniques are now available and various efforts have been
made to solve linear and non-linear problems as well as one-
dimensional and multi-dimensional problems of geophysi-
cal data. Particle swarm optimization is a metaheuristic op-
timization method that requires intelligent guesswork and
a suitable selection of controlling parameters (i.e. inertia
weight and acceleration coefficient) for better convergence
at global minima. The proposed technique, tuned PSO, is
an improved technique of PSO, in which efforts have been
made to choose the controlling parameters, and these param-
eters have been selected after analysing the responses of vari-
ous possible exercises using synthetic gravity anomalies over
various geological sources. The applicability and efficacy of
the proposed method is tested and validated using synthetic
gravity anomalies over various source geometries. Finally,
tuned PSO is applied over field residual gravity anomalies of
two different geological terrains to find the model parame-
ters, namely amplitude coefficient factor (A), shape factor (q)
and depth (z). The analysed results have been compared with
published results obtained by different methods that show
a significantly excellent agreement with real model param-
eters. The results also show that the proposed approach is
not only superior to the other methods but also that the strat-
egy has enhanced the exploration capability of the proposed
method. Thus tuned PSO is an efficient and more robust tech-
nique to achieve an optimal solution with minimal error.

1 Introduction

The gravity method is based on the measurement of grav-
ity anomalies caused by the density variation due to source
anomalies. The gravity method has been used in a wide range
of applications as a reconnaissance method for oil explo-
ration and as a secondary method for mineral exploration,
to find out the approximate geometry of the source anoma-
lies, bedrock depths and shapes of the earth. The interpreta-
tion of geophysical data involves solving an inverse problem;
many techniques have been developed to invert the geophys-
ical data to estimate the model parameters. These methods
can be broadly categorized into two groups: (1) local search
techniques (e.g. steepest descent method, conjugate gradi-
ent method, ridge regression, Levenberg—Marquardt method)
and (2) global search techniques (e.g. simulated annealing,
genetic algorithms, particle swarm optimization, ant colony
optimization). Local search techniques are simple and re-
quire a very good initial presumption — one that is close
enough to the true model for a successful convergence. On
the other hand, global search methods may provide an ac-
ceptable solution but are computationally time intensive.
Several local and global inversion techniques have been de-
veloped to interpret gravity anomalies (Thanassoulas et al.,
1987; Shamsipour et al., 2012; Montesinos et al., 2005; Qiu,
2009; Toushmalani, 2013). However, PSO has been suc-
cessfully applied to many fields, such as model construc-
tion, biomedical images, electromagnetic optimization, hy-
drological problems, etc. (Cedeno and Agrafiotis, 2003; Wa-
chowiak et al., 2004; Boeringer and Werner, 2004; Kumar
and Reddy, 2007; Eberhart and Shi, 2001; El-Kaliouby and
Al-Garni, 2009) but in the geophysical field PSO has a lim-
ited number of applications (Alvarez et al., 2006; Shaw and
Srivastava, 2007).
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In this paper, improved particle swarm optimization,
known as tuned PSO, has been discussed. This PSO method
is a global optimization technique, has artificial intelligence,
preserves its past experience to avoid trapping in local min-
ima and converges at global minima. This technique has a
very good exploration capability (searching capability) and
global convergence capability (ability of finding the opti-
mal solution). These capabilities are modulated by inertia
weight (w) and acceleration coefficients. Therefore, the se-
lection of suitable controlling parameters play a vital role
in its performance, enabling it to achieve an optimal solu-
tion. In traditional PSO, controlling parameters (i.e. w, c|
and cp) are generally taken as 0.9, 1.4 and 1.4 for reasonable
results (Kennedy, 1999; Das et al., 2008). However, control-
ling parameters in PSO analyses are usually data dependent;
hence no unique architecture can be generalized for every
application. In this paper PSO parameters (i.e. w, ¢; and c¢3)
are tuned in several exercises to find the best tuning of the
controlling parameters. They are demonstrated using syn-
thetic gravity anomalies over various geometrical bodies and
their efficacy is compared. On the basis of performance the
method is finally applied to field gravity anomalies to com-
pute the essential model parameters such as amplitude coef-
ficient factor (A), shape factor (¢) and depth (z) and hori-
zontal location(xg) of the source geometry. Thus, the derived
method provides a more accurate, consistent and stable solu-
tion than conventional PSO and other methods.

2 Forward modelling for generating the synthetic
gravity anomalies

A general expression of gravity anomaly caused by a sphere,
an infinite long horizontal cylinder and a semi-infinite verti-
cal cylinder have been used for generating the gravity anoma-
lies in a forward problem that is given in Eq. (1) (Abdelrah-
man et al., 1989) as follows:

Zm
gxi,z,q9) = A————, (D
' ()cl-2 +72)4
where
4 3
~mtGoR’, for asphere, 1,
A= 2mGo R*,  for a horizontal cylinder, " = 1,
7Go R?, for a vertical cylinder, 0,
3
3 for a sphere,
q= 1 for a horizontal cylinder,
1
3 for a vertical cylinder; R < z.

’

where A, g and z represent amplitude coefficient factor,
shape factor and depth and x;, o, G and R are the posi-
tion coordinate, density contrast, universal gravitational con-
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stant and radius of geometrical bodies. The unit of ampli-
tude coefficient factor (A) changes as the geometry of the
model changes, depending on shape factor (¢) and exponent
m. To avoid the confusion of using a unit of amplitude co-
efficient factor we use expression A (mGal km2¢—™). From
the expression it is clear that the unit of amplitude coeffi-
cient factor (A) for a spherical shape is mGalkm? and in
case of a cylinder mGal km. mGal is the traditional unit of
gravity anomaly, mainly used in gravity surveys. The SI unit
of Gal is 0.01 ms~2 while the shape factor is dimensionless.
Two types of synthetic gravity data have been created over
spherical and vertical cylindrical geometrical models using
forward modelling of the Eq. (1). The value of parameters
for the spherical model, i.e. amplitude coefficient factor (A),
shape factor and depth have been taken as 600 mGal km?,
1.5 and 5.0 km respectively. Similarly, the values of param-
eters for the vertical cylindrical model (A =200 mGal km,
g = 0.5 and z = 3.0 km) have been selected. The shape factor
approaches zero as the structure becomes a near-horizontal
bed and approaches 1.5 as the structure becomes a perfect
sphere (point mass). As in the formulae x; is the position co-
ordinate; at the origin x; = 0 Eq. (1) then becomes

$0.2.9) = )
10 % white Gaussian noise is added to synthetic gravity
anomalies using the following equation.

gnoisy (X) = awgn(g(x),0.1), 3

where awgn is additive white Gaussian noise, g(x) represents
gravity anomaly value in which noise is to be added and 0.1
is the magnitude of noise at 10 %.

3 Tuned particle swarm optimization (tuned PSO)

Tuned particle swarm optimization (tuned PSO) is an im-
proved particle swarm optimization (PSO) method, named
after the fine tuning of its learning parameters. The PSO tech-
nique is an evolutionary computational technique inspired by
the social behaviour of the particles (Eberhart and Kennedy,
1995). Each particle as a potential solution of the problem
knows its best values (Ppegt) and its position. Moreover, each
particle knows the best value in the group (Gpest) among the
Poest.- All of the best values are based on the objective func-
tion (Q) so that each problem can be solved. Each particle
tries to modify its position in the current velocity. The ve-
locity of each particle can be updated using the following
equations (Santos, 2010):

Vit = wkok 4 eprand() - (Ph_; — xFT) + corand ()
k k+1\ k+1 k+1
'(Gbest_xi+ )xi+ in+vi+ ’ “4)

where vf‘ is the velocity of the ith particle at the kth iteration,
xf‘ represents the current position of the ith particle at the kth
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iteration, rand( ) is a random number in the range of 0, 1. c|
and ¢, are constants known as the cognitive coefficient and
the social coefficient respectively and w is an inertia weight.
The objective function is calculated by the following equa-
tion (Santos, 2010).

N
2> v —vf|
0= l , ®)]
N
22107 = vf [+ 255 v 4 v
L

where N is the number of iterations, and v{ and v are ob-
served and calculated gravity anomalies measured at point

p(xi).

3.1 Selection of learning parameter for tuned PSO
modelling

In this paper, a judicious selection of the parameters (i.e.
w, c1, and c2) has been discussed for controlling the con-
vergence behaviour of the tuned-PSO-based algorithm. The
settings of these parameters determine how it optimizes the
search space. These algorithms with a suitable selection of
parameters become more powerful for their practical appli-
cations.

3.1.1 Inertia weight

Inertia weight (w) controls the momentum of the particle
(Eberhart and Shi, 2001; Eberhart and Kennedy, 1995). Here,
two kinds of source geometry are adopted to evaluate more
suitable ranges of parameters in the tuned PSO. For tuning
the inertia weight, 0.4, 0.7 and 0.9, have been taken for two
different acceleration coefficients at 1.4 and 2.0. From Fig. 1
and Table 1, it is clear that the best convergence is performed
by the algorithm at inertia weight 0.7. This value of iner-
tia weight produces a high convergence rate with a smaller
number of iterations than the other values.

3.1.2 The maximum velocity

Maximum velocity (Vmax) describes the maximum number
of changes of position coordinates that can take place during
each iteration. The concept of Vi« was introduced to avoid
explosion and divergence (Das et al., 2008). Generally, a full
search range is set as Vipax for the particles’ positions. For
example, if a particle has position vector x = (x1, x2, x3) and
if —n <x; <n wherei =1, 2, 3 then the maximum velocity
becomes 2n. In our case, the range of particle position —15 <
x; < 15 is more appropriate, so we have taken 30 as the value
of Viax.

3.1.3 The swarm size

It is quite a common practice in the PSO literature to limit the
range of the number of particles. Van den Bergh and Engel-
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Figure 1. Iteration versus rms error plot at different acceleration
coefficients and inertia weights.

brecht (2001) have shown that, although there is a slight im-
provement of the optimal value with increasing swarm size,
a larger swarm increases the number of function evaluations
to converge to an error limit. However, Eberhart and Shi il-
lustrated that the population size has hardly any effect on the
performance of the PSO method. Therefore, in this paper,
population size is set at 100.

3.1.4 The acceleration coefficients

The acceleration coefficients are the learning coefficients
which provide stability for the exploration of the particle.
There are two kinds of acceleration coefficients: (i) the cog-
nitive coefficient ¢, which contributes towards the self ex-
ploration of a particle and (ii) the social coefficient ¢, which
contributes towards the motion of the particles in a global
direction. To find the best tuning of learning parameters, var-
ious values of ¢y, ¢ (i.e. ¢y =c;=1.0, 1.2, 1.4, 1.6, 1.8,
and 2.0) and inertia weights (i.e. 0.4, 0.7 and 0.9) are taken,
and various exercises have been made using the two different
geometrical bodies by fixing each of the inertia weights (Ta-
ble 1). The results were analysed and it was found that the
values of ¢ and ¢; (i.e. ¢ = ¢ = 1.4) are the best-tuned ac-
celeration coefficients for our case. These values of accelera-
tion coefficients have been used to invert the gravity anoma-
lies, which provides significant improvement and produces
optimal solutions for the geological bodies.

4 Discussion and results

Initially the set of the controlling parameters (w, ¢y, c2) were
taken as (0.4, 1.2, 1.2), (0.4, 1.4,1.4), (0.4, 1.6, 1.6), (0.4, 1.8,
1.8) and (0.4, 2.0, 2.0). The rms error was observed during
the examinations of the sensitivity of the parameters and the
applicability of the proposed algorithm using each set of pa-
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Table 1. Performance of the acceleration coefficients c; and c¢; using the synthetic gravity anomalies over spherical and vertical cylindrical

geometrical bodies.

R. Roshan and U. K. Singh: Inversion of residual gravity anomalies using tuned PSO

Gravity data Weighting ¢1 =10, ¢1=12, c¢1=14, =16, =18, ¢=2.0,
description factor =10 =12 oc=14 ¢p=16 =18 ¢,=20
rms error

Synthetic w=04 0.004899  0.002899 0.00014  0.000907  0.000853  0.000861
spherical body w =07 0.002532  0.000118 0.000013  0.000087 0.000187  0.000247

w =09 0.005215 0.000118  0.000063  0.000379  0.000167  0.002695
Synthetic w=04 0.004892  0.003231  0.000327  0.000835 0.000704  0.000932
vertical w=07 0.001913  0.000318 0.000011  0.000065 0.000207  0.000511
Cylindrical body w =0.9 0.003259  0.000551 0.000189  0.000183  0.001265  0.002747

Table 2. (a) Optimized model parameters, converged iteration and rms error in the inversion of synthetic gravity anomaly over a spherical
source model and (b) optimized parameters, converged iteration and rms error in the inversion of synthetic gravity anomaly with 10 % white

Gaussian noise over a same-source model from tuned PSO.

(a) Optimized parameters, converged iteration and rms error in
the inversion of synthetic gravity anomaly over a spherical source model.

Z (km) A (mGal kmz) q go (mGal) xg (km) Iteration rms error (%)
4.99883 550 1.5 240 —1.89x 1073 100 0.000405
4.9999 66031 1.5 240  239x 1073 200 0.000015
5.00 610.15 1.5 240 —1.44x107° 300 0.000000
5.00 60436 1.5 24.0 33x 10713 400 0.000000
5.00 604.10 1.5 240 8.17x10716 500 0.000000

(b) Optimized parameters, converged iteration and rms error in the inversion of synthetic
gravity anomaly with 10 % white Gaussian noise over a spherical source model.

z (km) A (mGal kmz) q go (mGal) xo (km) Iteration rms error (%)
4.5 60549 1.5 24 —6.95x 1072 100 0.174890
4.5 60399 1.5 24 —6.81 x 1072 200 0.174885
4.5 55032 1.5 24 —6.86 x 1072 300 0.174883
4.5 601.42 1.5 24 —6.86x 1072 400 0.174883
4.5 680.0 1.5 24 —6.85x 1072 500 0.174883

rameters. Similarly, the same observations were made after
replacing the inertia weight of 0.4 with 0.7 and 0.9, keeping
the same values of acceleration coefficients (c; and c¢y) as
shown in Table 1. We analysed Table 1 and suggest that the
value of the rms error is at a minimum for the set of param-
eters (0.7, 1.4, 1.4) in comparison to other sets of parame-
ters. In addition, the algorithm using the sets of parameters
(0.7, 1.4, 1.4) has a lower number of local minima and faster
convergence than the other (Fig. 1). The proposed technique
using tuned parameters was demonstrated on synthetic and
field residual gravity anomalies to find the amplitude coef-
ficient factor (A), shape factor (¢) and depth (z) of various
geometrical bodies of different geological terrains.

Geosci. Instrum. Method. Data Syst., 6, 71-79, 2017

4.1 Application to synthetic gravity anomalies

Two geometrical models, i.e. sphere and vertical cylinder,
have been considered for testing the applicability and effi-
cacy of tuned PSO. The synthetic gravity anomalies over the
above-considered models are generated from Eq. (1). In ad-
dition, other data sets (noisy synthetic gravity anomalies) are
also generated with 10 % Gaussian noise to perceive the ef-
ficacy of the proposed algorithm. In each case, the gravity
profile length is 51 km and the data points are kept at equal
intervals of 1km. The proposed tuned PSO algorithm has
been applied to the above-mentioned synthetic data sets. The
optimized results obtained by tuned PSO for synthetic data
without noise have been shown in Table la and Table 2a.
Similarly, the results for synthetic data with noise have been
shown in Table 1b and Table 2b.
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Figure 1 shows the iteration versus error. It suggests that
the error is at a minimum and has a lower number of lo-
cal minima at values of controlling parameters c; = 1.4,
c2 = 1.4 and w = 0.7. It means that the tuned PSO technique
minimizes the number of local minima for solving the geo-
physical non-linear inverse problems. The synthetic gravity
anomaly without noise and computed gravity anomaly by
tuned PSO are shown in Figs. 2a and 3a respectively. Simi-
larly, the synthetic gravity anomaly with noise and computed
gravity anomaly by tuned PSO are shown in Figs. 2b and 3b.
Figures 2a and 3a show that the calculated gravity anomaly
curves by tuned PSO are matched well with the synthetic
gravity anomaly curves for spherical and vertical cylindri-
cal models respectively. The behaviour of ppesc and gpes; are
shown in Fig. 4 and suggests that the error for gpes; decreases
more rapidly with a high convergence rate.

Tables 2a and 3a show the values of the rms error using the
synthetic data without noise. Also, Tables 2b and 3b show the
rms error using the synthetic data with noise. The analysis of
the tables reflects that the rms error is comparatively higher
in the case of synthetic data with noise. However, the hor-
izontal location (xp) is a substantially stable parameter and
varies on a small scale. Table 6 shows the computation time
taken by the algorithm to find the solution for given num-
ber of iterations. The number of models is 100 in the entire
analysis of synthetic gravity anomalies. It is clear from the
table that the algorithm is powerful and takes less computa-
tion time to produce optimal results.

4.2 Application to field gravity anomalies
4.2.1

Mobrun sulfide body near Rouyn-Noranda,
Canada

The Mobrun polymetallic deposit near Rouyn-Noranda com-
prises two complexes of massive lenses within mainly felsic
volcanic rocks of the Archean Blake River Group (Barrett et
al., 1992). Host volcanic rocks of mainly sulfide ore bodies
are mostly massive, breciated, and tuffaceous rhyolites. The
Mobrun ore body is located at a shallow depth; the top of
the body is at a depth of approximately 17 m and extends to
175 m (Aghajani et al., 2009).

Tuned PSO in MATLAB has been applied to field residual
gravity anomalies. The anomaly profile length of 268 m has
been taken from the Mobrun sulfide body, Noranda, Canada
(Nettleton, 1976; Essa, 2012). It is seen from Fig. 5 that both
anomaly curves, i.e. analysed from tuned PSO and observed
gravity anomalies, are significantly well correlated with the
optimal rms error of 0.0271 %. The results in terms of model
parameters (amplitude coefficient factor, shape factor and
depth) over the Mobrun ore body, analysed using the tuned
PSO method, can seen in Table 4a. This table provides the
optimum results obtained from tuned PSO with a 0.0271 %
error. This agrees well with the results obtained from other
methods. The calculated value of the shape factor, ¢, is 0.77
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Figure 2. (a) Synthetic gravity anomaly versus tuned PSO calcu-
lated gravity anomaly over a spherical model and (b) synthetic grav-
ity anomaly versus tuned PSO calculated gravity anomaly over the
same model with 10 % white Gaussian noise.

(Table 4a). This value over the Mobrun sulfide ore body re-
flects the shape of a semi-infinite vertical cylindrical geolog-
ical body present at a depth of 30 m. Since the shape factor
computed by the proposed method (¢ = 0.77) lies between
the shape factor of a perfect semi-infinite vertical cylinder,
i.e. ¢ =0.5, and the shape factor of an infinite horizontal
cylinder, i.e. ¢ = 1.0, it can be seen from Table 4b that the
values of amplitude coefficient factor, shape factor and depth
correspond to 60.0, 0.77 and 30 are more accurate than the
results analysed by various authors.
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Table 3. (a) Optimized model parameters, converged iteration and rms error in the inversion of synthetic gravity anomaly over a vertical
cylindrical source model and (b) optimized parameters, converged iteration and rms error in the inversion of synthetic gravity anomaly with

10 % white Gaussian noise over a same-source model from tuned PSO.

(a) Optimized parameters, converged iteration and rms error in the inversion
of synthetic gravity anomaly over a vertical cylindrical source model.

Z (km) A (mGalkm) q go (mGal) xg (km) Iteration rms error (%)
3.015 18231 0.5 66.33 —4.4 %1073 100 0.001743
3.016 185.92 0.5 66.33 —37x107% 200 0.001635
3.016 192.59 0.5 6633 —2.74x 10710 300 0.001633
3.015 162.15 05 6633 —7.98x 10711 400 0.001633
3.016 169.00 0.5 66.33 —6.58 x 10711 500 0.001633

(b) Optimized parameters, converged iteration and rms error in the inversion of synthetic
gravity anomaly with 10 % white Gaussian noise over a vertical cylindrical source model.

z (km) A (mGalkm) q go (mGal) xg (km) Iteration rms error (%)
3.02 167.33 0.5 65.81 —3.95 x 1072 100 0.036732
2.99 160.38 0.5 66.33 1.36 x 1072 200 0.036968
3.02 161.74 0.5 65.88 —4.52 x 1072 300 0.036672
30.2 160.35 0.5 65.88 —4.50 x 1072 400 0.036672
3.02 198.67 0.5 65.88 —4.50 x 1072 500 0.036672

Table 4. (a) Analysed results and parameters (A, z and ¢) used to invert the gravity anomaly over Mobrun sulfide ore body and (b) compar-
ative results over Mobrun field, Canada from various methods and tuned PSO.

(a) Optimized parameters, converged iteration and rms error in the
inversion of field gravity anomaly over Mobrun sulfide ore body.

z(km) A (mGal km2) q go (mGal) xg (km) Iteration rms error (%)
31 58.08 0.77 1.7781  —2.99078 100 0.027149
31 59.55 0.76 1.1156  —3.02429 200 0.027163
31 58.00 0.76 1.7826  —2.13091 300 0.027125
31 59.03  0.77 1.7826  —2.15033 400 0.027124
30 59.99 0.77 1.7992  —2.15013 500 0.027124

(b) Comparative results over Mobrun field example from various methods and tuned PSO.

Parameter Grant and  Euler deconvoltuion Fast interpretation Tuned PSO

West (1965) (Roy et al., 2000)  method (Essa, 2012) method
Z (m) 30.0 29.44 333 30.0
q - 0.77 0.78 0.77
A (mGal) - - 59.1 60.0

4.2.2 Louga anomaly, west coast of Senegal, western
Africa

The case study area Louga, on the west coast of Senegal, is
used for another interpretation of gravity data using tuned
PSO. The Senegal basin is part of the north-western African
coastal basin — a typical passive margin basin opening west
to the Atlantic. The complexities of the rift tectonics of the
Atlantic opening give rise to a series of sub-basins aligned
north—south. The pre-rift (upper proterozoic to Palaeozoic),
syn-rift (Permian to Lower Jurassic) and post-rift are di-

Geosci. Instrum. Method. Data Syst., 6, 71-79, 2017

vided into a number of sub-basins, controlled by east—west
transform-related lineaments (Nettleton, 1962).

In this paper, tuned PSO in MATLAB environment has
also been applied to another field case study. The grav-
ity anomaly of Louga area, west coast of Senegal, western
Africa (Essa, 2014) has been chosen for tuned PSO analy-
sis as shown in Fig. 6. It has a profile length of 32 km. The
results in terms of the model parameters (amplitude coeffi-
cient factor, shape factor and depth) over the Louga anomaly
analysed from tuned PSO method can be seen in Table Sa.
It is seen from Fig. 6 that both gravity anomalies curves

www.geosci-instrum-method-data-syst.net/6/71/2017/
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Figure 3. (a) Synthetic gravity anomaly versus tuned PSO cal-
culated gravity anomaly over a vertical cylindrical model, (b)
synthetic gravity anomaly versus tuned PSO calculated gravity
anomaly over the same model with 10 % white Gaussian noise.

analysed with tuned PSO and observed gravity anomalies
are extremely well correlated with the optimal rms error of
0.0271 %. The optimum results of the model parameters am-
plitude coefficient factor (A), shape factor (¢) and depth (z)
are 545.30mGalkm, 0.53 and 4.92km respectively. They
show significantly good agreement with the results obtained
by various authors as shown in Table 5b. The tuned-PSO-
analysed value of the shape factor confirms that the shape of
the causative body is a semi-infinite vertical cylinder present
at a depth of about 4.92 km.
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Figure 5. Observed field gravity anomaly versus tuned PSO calcu-
lated gravity anomaly over Mobrun sulfide ore body, Canada.

5 Conclusions

In this paper, various synthetic gravity anomalies and field
gravity anomalies have been adopted to evaluate the applica-
bility and efficacy of tuned PSO algorithms and also to deter-
mine the suitable range of settings for the learning parame-
ters (i.e. inertia weight and acceleration coefficients). On the
basis of the performance, a novel algorithm PSO with suit-
able learning parameters has been implemented for gravity
anomalies of assuming models such as spheres and vertical
cylinders. This technique has been tested and demonstrated
on synthetic gravity anomalies with and without Gaussian
noise and finally applied to field residual gravity anomalies
over the Mobrun sulfide ore body, Noranda, QC, Canada and
the Louga anomaly on the western coast of Senegal, western
Africa. This technique provides robust and plausible results
even in the presence of noise and is consistent with the results
obtained from other classical methods. Thus, tuned PSO is a

Geosci. Instrum. Method. Data Syst., 6, 71-79, 2017
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Table 5. (a) Analysed results and parameters (A, z and ¢g) used to invert the gravity anomaly over the western Senegal anomaly, Louga area,
western Africa and (b) comparative results over same area from various methods and tuned PSO.

(a) Optimized parameters, converged iteration and rms error in the
inversion of field gravity anomaly over western Senegal (Louga area) anomaly.

z (km) A (mGalkm) q go (mGal) xog (km) Iteration rms error (%)
4.90 549.44 0.52 9483 —2.60x 107! 100 0.027065
4.90 550.0 0.53 9480 —2.56x 107! 200 0.026552
491 549.57  0.53 9479 —2.45x 107! 300 0.026552
491 547.66 0.53 9479 —2.42x 107! 400 0.026551
491 54530 0.53 9479 —239x107! 500 0.025551

(b) Comparative results of various methods
over the western Senegal (Louga area) anomaly.

Parameter  New fast least square  Tuned PSO

method (Essa, 2014) method
z (km) 4.94 492
q 0.53 0.53
A (mGal) 545.68 545.30

Table 6. Synthetic source models, iterations and computation time (in seconds).

Iteration Computation time (in second)
Synthetic data over ~ Synthetic data over ~ Synthetic data over ~ Synthetic data over
spherical body spherical body  vertical cylindrical ~ vertical cylindrical
without noise with noise  body without noise body with noise
100 2.128 2472 2.471 2.470
200 3.528 3.440 3.317 3.435
300 4.965 4.965 4.601 4.731

100 T T T T T
O Observed field data
Calculated data

90

80 .

Uy 1

Gravity anomalics (mGal)
(=)
<

30

20 | . | . | . .
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Figure 6. Observed field gravity anomaly versus tuned PSO cal-
culated gravity anomaly over the western Senegal anomaly, Louga
area, western Africa.
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powerful tool that improves the results of classical PSO and
other techniques significantly with less time and optimal er-
ror.

6 Data availability

The main aim of our work deals with the applicability of the
proposed algorithm tuned PSO in the geophysical potential
field. Initially tuned PSO is demonstrated on synthetic data
created by Eq. (1) in the text (Abdelrahman et al., 1989)
and details about synthetic data were given in Sect. 4.1. Fi-
nally, proposed algorithms were applied over two kinds of
field data, taken as follows: (i) residual gravity anomaly over
Mobrun field area of profile length 268 m was digitized at in-
terval of 8.4 m from Essa (2012) and (ii) the Louga anomaly,
west coast of Senegal, western Africa, of profile length 32 km
was digitized at interval of 1.0 km from Essa (2014).
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