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Abstract. In this study, we present an inversion approach to
detect and localize inclusions in thick walls under natural so-
licitations. The approach is based on a preliminary analysis
of surface temperature field evolution with time (for instance
acquired by infrared thermography); subsequently, this anal-
ysis is improved by taking advantage of a priori information
provided by ground-penetrating radar reconstruction of the
structure under investigation. In this way, it is possible to im-
prove the accuracy of the images achievable with the stand-
alone thermal reconstruction method in the case of quasi-
periodic natural excitation.

1 Introduction

The integration of geophysical and non-invasive diagnostic
methods is a topic of timely interest, and several fields can
benefit of this strategy, such as monitoring of the environ-
ment, infrastructure protection and cultural heritage manage-
ment.

In this scientific frame, several efforts have been made
and interesting results and strategies are drawn in Eppelbaum
(2014) and Alperovich et al. (2013).

Here, we propose to combine two complementary ap-
proaches by coupling thermal and electromagnetic recon-
structions both based on non-invasive sensing techniques.
The non-destructive diagnostic approach proposed here aims
at detecting and localizing inclusions in thick walls by ex-
ploiting surface thermal and ground-penetrating radar (GPR)
surveys. Here, we consider inclusions in the structure, which
may represent for example delaminations or inner cavi-

ties, whose prompt identification can be crucial in structural
health monitoring applications.

The identification of thermal sources (heat flux) or thermal
properties (thermal conductivity and/or capacity) of a ma-
terial has numerous applications. Indeed, a variation of the
thermal parameters may be the signature of an inclusion, and
the identification process is typically performed by solving
an inverse thermal problem. Several reconstruction methods
have been proposed to solve the inverse thermal problem, ei-
ther for source reconstruction (Beck and Blackwell, 1985) or
for parameter reconstruction (Ozisik, 2000). In both cases, it
is necessary to solve an optimization problem, consisting of
the search for the global minimum of a cost function repre-
senting the difference between the collected measurements
and the model data. Several optimization approaches based
on the conjugate gradient or Levenberg–Marquardt algorithm
and using the adjoint-state method have been developed in
one-dimensional (Ozisik, 2000) or in multidimensional sce-
narios (Jarny et al., 1991).

In this frame, a method based on the adjoint-state and
finite-element method has been developed in recent years
at IFSTTAR, with the aim to reconstruct the thermal field
over an investigated domain (Nassiopoulos, 2008; Crinière
et al., 2014). Afterward, this method has been extended to
the reconstruction of the thermal properties of thick walls
in two-dimensional (Brouns, 2014; Brouns et al., 2014) or
three-dimensional (Nassiopoulos and Bourquin, 2010) ge-
ometries. Nevertheless, the results obtained with this method
suffer from large, undesired variations of the retrieved pa-
rameters close the instrument boundaries due to side effects
(Brouns et al., 2014).
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In order to mitigate these spurious effects, in this work
we propose a strategy where the reconstruction performance
of the thermal method is improved by resorting to the infor-
mation provided by the electromagnetic approach based on
ground-penetrating radar. To this end, the data are collected
by long-term thermal monitoring with an adapted infrared
thermography system in combination with a GPR.

As is well known, GPR imaging has proved to be useful in
several application fields, e.g., the detection of buried pipes,
land mines, defects in structures like bridges or roads and the
investigation of archaeological sites (Persico, 2014; Persico
and Soldovieri, 2006; Matera et al., 2016; Rodríguez-Abad
et al., 2016).

The working principle of the GPR is the same as the tradi-
tional radar save for the fact that wave propagation occurs in
a lossy dielectric medium instead of free space. A wideband
electromagnetic pulse is radiated in the investigated medium;
owing to the presence of subsurface anomalies, a part of this
wave is scattered/reflected, and this backscattered signal is
collected by a receiving antenna (Daniels, 2004). Therefore,
as for the thermal imaging, GPR imaging relies upon the fact
that the electromagnetic signal is capable of penetrating in-
side opaque materials. Starting from the knowledge of the
scattered field, a reconstruction of the electromagnetic prop-
erties of the investigated scene can be achieved by solving an
electromagnetic inverse scattering problem, which is is non-
linear (Isernia et al., 1996, 1999) and ill-posed (Soldovieri
et al., 2009).

The diagnostic approach proposed in this work couples
both thermal and electromagnetic reconstruction methods
and consists of three stages. First a preliminary thermal in-
version is carried out to identify possible anomalies in the
structure. Then, a GPR reconstruction is performed to re-
fine the preliminary and rough localization of potential inclu-
sions achieved by the thermal method. Finally, the informa-
tion about the scenario provided by the GPR reconstructed
image is exploited in the thermal inverse modeling to im-
prove the accuracy of this method.

The paper is organized as follows. The thermal inverse
model is detailed in Sect. 2. Then, Sect. 3 deals with the elec-
tromagnetic inverse scattering approach. Section 4 describes
the way in which the “geometrical” information provided by
GPR is exploited for the thermal data inversion. Numerical
examples assess the effectiveness of the proposed inversion
approach and are reported in Sect. 5. Conclusions and per-
spectives are addressed in Sect. 6.

2 Thermal modeling

The 2-D geometry relevant to the thermal reconstruction
problem is sketched in Fig. 1. It is assumed that tempera-
ture measurements are collected at the upper surface of the
investigated structure, which is a rectangular wall containing
several anomalies. The acquisition of the surface tempera-

Figure 1. Geometry of the problem.

ture time evolution can be carried out by infrared thermogra-
phy coupled with environmental sensors as presented in Du-
moulin et al. (2013) and Dumoulin and Boucher (2014). This
outdoor experimental setup permits surveying and recording
the pseudo-periodic evolution of the temperature for several
days under natural solicitations. In such a measurement field
configuration, also called “passive infrared thermography”,
no external heat source (like lamps or alternative heat ex-
citation sources) are used to tune the system in “active in-
frared thermography” mode (not easy to set up in outdoor
conditions); anyway monitoring of environmental conditions
is mandatory for the identification procedure.

A direct thermal model is first established to get numer-
ical temperature data at the surface of the investigated wall.
Thereafter, a thermal inversion is performed with the adjoint-
state method in order to get the reconstruction of the shal-
lower part of the investigated wall. The direct and inverse
thermal models are described below.

2.1 Thermal state computation

As shown in Fig. 1, the measurements are performed along
the upper wall surface 0m. A heat flux, convective exchanges
with the ambient air and radiative exchanges with the sky
arise at this surface. On the other wall surfaces 00, an adia-
batic constraint has been imposed. Such an approach is low
in time, because heat diffusion propagation and interaction
with the defective area inside the inspected thick wall are
naturally governed by its thermal properties. On the other
hand, an emerging smart solution for autonomous long-term
thermal monitoring systems as presented in Dumoulin et al.
(2013) and Dumoulin and Boucher (2014) can be set up at
a real site to provide measurement data over a long time pe-
riod, more adapted to depth investigation from surface mea-
surements.

The heat modeling for the investigated wall D is given by



ρC ∂T
∂t
−∇ · (k∇T )= 0 for (x, t) ∈D× [0, ta]

k∇T ·n=8s +h(Ta(t)

−T (x, t))+hrad
(Ts(t)− T (x, t)) for (x, t) ∈ 0m× [0, ta]

k∇T ·n= 0 for (x, t) ∈ 00−× [0, ta]
T (x,0)= T0(x) for x ∈D

, (1)
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where T (x, t) is the temperature at the generic location x for
the time t , ρ is the density, C is the thermal capacity, k is
the thermal conductivity, φ is a thermal flux, h is the convec-
tive exchange coefficient and hrad is the equivalent radiative
exchange coefficient hrad = εσ (Tsurf+ Ts)(T

2
surf+ T

2
s ) (tem-

peratures here in K). This coefficient is obtained with the lin-
earization of Stefan’s law. Moreover, ε is the emissivity of
the surface; σ is Stefan’s constant; Tsurf is the temperature at
the surface; Ts is the sky temperature; Ta is the air temper-
ature n is the outward-pointing normal; 0m is the boundary
located at the surface of the domain, where measurements
are performed and 00 is the whole of the other boundaries.

We denote withL2(�) the space of square integrable func-
tions on � and H 1(�) the Sobolev space:

H 1(�)= {f ∈ L2(�)} such that
1∑
k=0

∫
x∈�

(
∂kf

∂xk

)2

d�<∞. (2)

The variational and Dirichlet formulations (Gartling and
Reddy, 2010) allows one to write, on an orthogonal basis (φi)
of H 1(�),

∑
i

∂Ti∂t
∫
�

ρCφi(x)φj (x)d�+ Ti

∫
∂�

hφi(x)φj (x)d0

+

∫
�

k∇φi(x)∇φj (x)d�


−

∫
∂�

(
ϕφj (x)+hφjTa

)
dx

= 0 ,∀j. (3)

For a numerical solution of the thermal problem, we con-
sider a mesh of elements {�e} and nodes {N e

}. The approx-
imation T ≈ T̃ is made (Allaire, 2005), with T̃ ∈ V q the dis-
crete space of piecewise polynomials of degree ≤ q in each
mesh element �e.

V q = {f ∈H 1(�) such that f|�e ∈ Pq}, (4)

with Pq being the space of piecewise polynomials of degree
≤ q. A basis of V q is the piecewise polynomials (φi) of de-
gree ≤ q such that

φi(xj )= δij , ∀xj ∈N e, (5)

where δij is the Kronecker symbol.
Eq. (3) is still valid for T̃ written on the basis of (φi).

Therefore, to simplify the notation, T will refer to the ap-
proximated solution in the space V q .

From Eq. (3), we get a differential equation on time for the
temperature at the nodes {T }:

[M]
∂{T }

∂t
+ [K] {T } = {8}. (6)

This equation is temporally solved with an implicit Euler
algorithm, so the temperature is obtained at each node of the
mesh and for each time step. Finally, in order to provide a
more realistic modeling, white Gaussian noise is added to
the computed temperature.

2.2 Thermal reconstruction

The aim of the inverse thermal problem is to achieve a recon-
struction of the thermal capacity ρC and conductivity k in
the investigated domain. To achieve this goal, we introduce
a functional J to be minimized (Brouns, 2014; Nassiopou-
los and Bourquin, 2010). The minimization of this functional
is performed with the Levenberg–Marquardt algorithm. This
algorithm needs the computation, at each iteration, of the gra-
dient of the locally linearized functional, which is carried out
by means of the adjoint-state method. Note that, by using the
adjoint-state method, it is possible to get the adjoint equa-
tions which have a similar structure to thermal direct Eq. (1).
The functional J is expressed as

J : u 7−→
1
2
‖T (u)− T m‖2M+

ε

2
‖u− u0

‖
2
R, (7)

with u ∈ U being the pair of thermal parameters u= {k,ρC}
and U the space of unknowns:

U =
(
L∞+ (�)

)2 , L∞+ (�)=
{
v ∈ L∞(�),v ≥ 0 a.e.

}
. (8)

In the above formula, T (u) is the thermal state, here
the temperature field in the space M, associated with u;
ε is the Tikhonov parameter; u0 is an a priori estimation
of the thermal parameters u; T m are the measured val-
ues obtained with the direct model at the location 0m for
timescale [0, ta]. Moreover, M is the space of measures
M= L2(0m,L

2([0, ta])). The norm in M is defined as
(Brouns, 2014)

‖f ‖2M =

ta∫
0

∫
0m

f 2(x, t)d0dt, (9)

where R=
(
L2(�)

)2 is the regularization space.
The inverse problem consists in finding u ∈ U as

u= argmin
v∈U

J (v). (10)

To solve this non-quadratic optimization problem, we ap-
ply the Levenberg–Marquardt algorithm, which is frequently
used to solve nonlinear inverse problems, as thermal recon-
struction (Jarny et al., 1991) or the reconstruction of elec-
tric conductivity (Bal et al., 2012). At each iteration, the
Levenberg–Marquardt algorithm linearizes locally the func-
tional in order to find a minimum point, which becomes the
point around which the linearization is carried out at the next
iteration (Levenberg, 1944).
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At each iteration, the functional J is linearized in J̃u next
to the value of the reconstructed thermal parameters u at this
iteration. For a small variation δu of the thermal parameters,
it follows that

J̃u(δu)=
1
2
‖T (u)+ δT (u)δu− T m‖2M+

ε

2
‖u

+ δu− u0
‖

2
R+

ν

2
‖δu‖2R, (11)

where ν is the damping parameter, which allows defining a
confidence interval around u (Hanke, 2010).

The minimum of J̃u is reached in δu as

δu= argmin
δv∈U

J̃u(δv)⇔ J̃ ′u(δu)= 0, (12)

where J̃ ′u is defined as

J̃u(δu+ δũ)= J̃u(δu)+ J̃
′
u(δu)δũ+ o(‖δũ‖U ). (13)

To minimize J̃u, we use the conjugate gradient method,
which needs the computation of the differential J̃ ′u(δu).

The adjoint-state method initially developed in the con-
trol theory (Lions, 1971) is also applied. Applying the ad-
joint method allows keeping the same equation structure and
also using the same resolution method for the direct and
the inverse problem (Jarny et al., 1991; Brouns, 2014). This
method consists in introducing and computing the adjoint op-
erator of T ′(u). First, we introduce δθ , i.e., the solution of the
tangent linear model (Eq. 14):



ρC ∂δT
∂t
−∇ · (k∇δT )

=∇ · (δk∇θ)− δρC ∂T
∂t

for (x, t) ∈�×[0, ta]
k∇δT ·n

=−δk∇T ·n− (h+hray)δT for (x, t) ∈ 0m× [0, ta]
k∇δT ·n

=−δk∇T ·n for (x, t) ∈ 00× [0, ta]
δT (x,0)= 0 for x ∈�

. (14)

Then, we introduce δθ∗, i.e., the adjoint operator of δθ .
This operator is the solution of the adjoint problem (Jarny
et al., 1991; Brouns, 2014)


−ρC ∂δT ∗

∂t
−∇ · (k∇δT ∗)= 0 for (x, t) ∈�×[0, ta]

k∇δT ∗ ·n=−(h+hray)δT
∗

+(T + δT − T m) for (x, t) ∈ 0m×[0, ta]
k∇δT ∗ ·n= 0 for (x, t) ∈ 00×[0, ta]
δT ∗(x, ta)= 0 for x ∈�

. (15)

The adjoint model (Eq. 15) has the same structure as the
tangent linear model (Eq. 14) and the direct model (Eq. 1).
Therefore, the adjoint and the tangent linear models can also
be solved on the same mesh of the direct model with the same
finite-element formulation.

The differential of Ju can be computed with the optimal
control theory by estimating (Brouns, 2014)

J ′u(δu)δũ=−

ta∫
0

∫
�

δk̃∇T · ∇δT ∗d�dt −

ta∫
0

∫
�

δρ̃C
∂T

∂t
δT ∗d�dt

+ε

∫
�

δk̃
(
k+ δk− k0

)
+ δρ̃C

(
ρC+ δρC− ρC0

)
d�

+ν

∫
�

δk̃δk+ δρ̃CδρCd�. (16)

The conjugate gradient algorithm is applied at each iter-
ation of the Levenberg–Marquardt algorithm, with δk̃ and
δρ̃C denoting the infinitesimal variation of these parameters
at each step. With J ′u(δu)δũ, we can get a reconstruction of
the thermal parameters k and ρC in the investigated domain.

3 Electromagnetic inverse modeling

The GPR imaging of an unknown wall requires recording
electric field measurements at the air–wall surface. The GPR
is composed of a transmitting and a receiving antenna having
a spatial common offset, which are moved simultaneously to
gather data along a scanning line. The transmitting antenna
radiates an electromagnetic signal in the wall, and a part of
this signal is reflected by buried anomalies and detected by
the receiving GPR antenna.

3.1 Electric field computation

For GPR signal modeling, we consider a 2-D geometry con-
sisting in a three-layered medium where the upper medium
is free space, the central medium represents the lossy dielec-
tric wall and the lower medium is free space (see Fig. 1). It is
supposed that the upper air–wall interface is located at z= 0,
having assumed an x− z coordinate system, with the x axis
directed parallel to the air–wall surface and the z axis normal
to it. The free space is characterized by dielectric permittivity
and magnetic permeability equal to ε0 and µ0, respectively.
The wall has a relative dielectric permittivity equal to εb and
an electrical conductivity equal to σb. All media are supposed
to be non-magnetic (Soldovieri et al., 2007a).

In order to simulate the electric field at the measurement
points along the air–wall surface, the forward problem has
to be solved based on the known geometrical and electro-
magnetic properties of the scenario. This problem is herein
solved numerically by using the popular gprMax tool devel-
oped by Giannopoulos (2005). The code discretizes Maxwell
equations in space and time by means of the finite-difference
time-domain (FDTD) method based on Yee’s algorithm. The
antennas are modeled as electric line sources assumed invari-
ant along the y axis (Soldovieri et al., 2007a). The perfectly
matched layers (PMLs) are used to terminate the computa-
tional domain in order to prevent spurious reflections of the
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electromagnetic waves from the outer boundaries. At each
time step, the electric field measurements are recorded at the
receiving antenna location. Moreover, a simulation is carried
out for each position of the transmitting and receiving anten-
nas in order to compute GPR data in the multi-bistatic con-
figuration. Finally, in order to account for the effects of mea-
surement noise, white Gaussian noise is added to the com-
puted electric field.

3.2 Electromagnetic inverse problem

The goal of GPR imaging is to reconstruct the dielectric
properties of the investigated domain D plane starting from
the knowledge of the scattered field measurements taken at
the surface of the structure under test.

The unknown of the inverse scattering problem is de-
scribed in terms of the electric contrast function χ (Persico
et al., 2005; Persico, 2014; Soldovieri et al., 2009, 2007b):

χ(x,z)=
εeq(x,z)− εeqb

εeqb
, (17)

where

εeq(x,z)= ε0εr(x,z)− j
σ (x,z)

2πf
(18)

and

εeqb = ε0εb− j
σb

2πf
(19)

are the equivalent complex dielectric permittivities of the tar-
get and the wall, respectively, and σb and εb are the conduc-
tivity and the relative dielectric permittivity of the wall.

The scattered electric field is related to the unknown con-
trast function χ by the integral equation (Persico, 2014)

Es(xs)= k
2
s

∫ ∫
D

Ge(xs,x
′,z′)E(xs,x

′,z′)

χ(x′,z′)dx′dz′, (20)

where Es is the scattered field datum probed at xs, ks is the
wave number in the wall, Ge is the external Green’s func-
tion and E is the total field (summation of the incident and
scattered field) in D.

The electromagnetic inverse scattering problem is nonlin-
ear and ill-posed. This fact implies the necessity to apply a
regularization scheme in order to obtain a stable solution.
Furthermore, the nonlinear nature of the problem brings ad-
ditional difficulties related to the presence of false solutions
(local minima).

In order to avoid the nonlinearity problem and reduce the
computation complexity of the related data processing algo-
rithms, the Born approximation is applied to linearize the
problem in Eq. (20) and overcome the local minima problem.
According to the Born approximation, the total field E in D

is approximated as the incident field, i.e., E ≈ Einc. Accord-
ingly, the scattering phenomenon is governed by the linear
integral Eq. (20) (Leone and Soldovieri, 2003; Persico et al.,
2005; Soldovieri et al., 2007a).

Es(xs)= k
2
s

∫ ∫
D

Ge(x,x
′,z′)Einc(xs,x

′,z′)

χ(x′,z′)dx′dz′ (21)

In order to retrieve the unknown contrast function χ , the
singular value decomposition (SVD) of the linear operator
defined by Eq. (21) is computed. Specifically, the singular
system {σn,un,vn} is introduced, with {σn} being the se-
quence of singular values sorted in decreasing order, {un}
being the basis function in the unknown space and {vn} being
the basis functions in the data space. The regularization of the
solution is achieved by means of the truncated SVD (TSVD)
algorithm (Leone and Soldovieri, 2003; Persico et al., 2005;
Soldovieri et al., 2007a).

χ =

N∑
n=1

1
σn
〈Es,vn〉un, (22)

where 〈, 〉 denotes the scalar product in the data space and N
is a truncation index fixed usually fixed as a good compro-
mise between accuracy and stability of the solution.

4 Coupling of thermal and electromagnetic methods

The GPR imaging method presented in Sect. 3 has several
drawbacks. First of all, the retrieved contrast function de-
pends on the electrical properties of the background (Sol-
dovieri et al., 2011). Moreover, due to the Born approxi-
mation, the reconstructions are only qualitative; i.e., they
provide an indication about the position and approximate
shape of the targets (Leone and Soldovieri, 2003; Persico
et al., 2005). It must be further stressed that some distortions
unavoidably arise in GPR images due to multipath clutter
(Gennarelli and Soldovieri, 2015).

The thermal reconstruction method also exhibits several
drawbacks. The effusivity ratio has an important effect on
the quality of the reconstructions (Crinière et al., 2014). The
defect area can be overestimated for some kinds of inclu-
sions. The reconstruction is also sensitive to the side effects
(Brouns et al., 2014) and to the noise (Nassiopoulos and
Bourquin, 2013).

In this work, we propose to reduce the area of the ther-
mal investigation domain in order to mitigate the side effects
and noise sensitivity if there is no inclusion close to the mea-
surement points. This refinement of the investigation domain
extent is performed when the GPR image indicates that there
is no inclusion near the measurement points.

Accordingly, we first perform a reconstruction of the wall
with the GPR. The GPR reconstruction allows defining a
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Figure 2. Thermal subdomains.

smaller investigation region where an inclusion is likely to
be located. Thereafter, a thermal reconstruction is performed
over this smaller domain.

To get a first location of the inclusions with the GPR, the
spatial map defined by the normalized amplitude of the con-
trast function χ̂ is considered (Soldovieri et al., 2009).

χ̂(x,z)=
|χ(x,z)|

max
(x,z)∈D

|χ(x,z)|
(23)

The normalized contrast function is null where the dielec-
tric permittivity is equal to that of the background and differ-
ent from 0 over target regions. As introduced and discussed
in Soldovieri et al. (2009), a threshold Tm is also introduced
to get the characteristic function Ur . In a first approach, we
chose the same value (0.5) for the threshold.

Ur(x,z)=

{
1 if χ̂(x,z)≥ Tm
0 else

, (24)

which defines a binary image of the probed scene on the basis
of the amplitude of the retrieved contrast function.

Based on the information retrieved from GPR images, we
define three useful subdomains for the thermal reconstruction
(see Fig. 2).

The first subdomain D1 contains the elements of the ther-
mal mesh located close to the points having a characteristic
function equal to 1. This subdomain is most likely to contain
the discontinuities or inclusions detected with the GPR.

The second subdomain D2 contains the elements of the
thermal mesh where the characteristic function is equal to 0;
inclusions are supposed not to be located in this subdomain.

To reduce the discontinuity between the two below subdo-
mains, we consider a third subdomain D3 located between
D1 and D2. This subdomain aims at being an area in which
an inclusion might be retrieved. However, D3 is different
from D1 insofar as the thermal reconstruction performed in
this area takes into account the fact that the probability of an
inclusion being in this area is lower than in D1.

Figure 3. Joint thermal and electromagnetic imaging approach.

Figure 4. Geometry of the simulated scenario.

Let us define A as the set of points (x,z) such that
Ur(x,z)= 1 and B as the set of mesh element centroids used
for the thermal reconstruction.

The subdomain D1 is made of the elements of centroid
(x,z) ∈ B such that

∃(x0,z0) ∈A such that

{
|x− x0| ≤ l1x

−l1z− ≤ z− z0 ≤ l1z+
. (25)

The subdomain D2 is made of the elements of centroid
(x,z) ∈B such that

∀(x0,z0) ∈A such that
{
|x− x0| ≥ l2x
z0− z ≥ l2z− or z− z0 ≥ l2z+

, (26)

where l1x , l2x , l1z+, l1z−, l2z+ and l2z− are length such that
l1x ≤ l2x

l1z+ ≤ l2z+

l1z− ≤ l2z−

. (27)

The lower part of the inclusion might be badly located
(Persico et al., 2005). To take into account this effect, we
add the following condition:{
l1z+ ≤ l1z−

l2z+ ≤ l2z−
. (28)
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Figure 5. (a) Reconstructed thermal conductivity (k). (b) Reconstructed thermal capacity (ρC).

The subdomain D3 is composed of the elements of the
thermal mesh which are not in D1 or in D2.

The location of these subdomains is shown in Fig. 2.
In the case D3 6=∅, we define in D3 the norm ‖ · ‖D3 rel-

ative to the hermitian scalar product 〈·, ·〉D3 defined as

〈a,b〉D3 =

∫
D3

a(x)b(x)d�. (29)

We propose to take into account the a priori information
coming from the electromagnetic characteristic function Ur
in the following way (see Fig. 3).

The subdomain D2 is far from the a priori location of in-
clusions or discontinuities. The assumption is made that no
defect is located in D2. Consequently, we suppose that there
is no inclusion in this subdomain and that the thermal prop-
erties u in this subdomain are those of the background u0.

∀x ∈D2,u(x)= u
0(x) (30)

To take into account the fact that the subdomain D3 is lo-
cated between D1, where the inclusions have been recon-
structed with the GPR reconstruction, and D2, where we
have made the assumption that there is no inclusion, we sup-
pose that for subdomain D3 the thermal properties are close
to those of the background. Anyway, we leave open the op-
tion that thermal parameters could not be equal to the back-
ground parameters in order to be able to reveal a potential
inclusion which would have been located wrong or not iden-
tified with the GPR. To do that, we add to the functional J a
constraint term:

µ

2
‖u− u0

‖
2
D3
, (31)

where µ is a scalar allowing the intensity of the constraint to
be adjusted.

We define U ′ as the subspace of U such that ∀(x,z) ∈D2,
u(x,z)= u0(x,z).

Figure 6. Reconstruction of inclusion with the thermal method
without a priori information.

The optimization problem becomes the following: find u ∈
U ′ such that

u= argmin
v∈U′

J (v), (32)

where

J (u)=
1
2
‖T (u)− T m‖2M+

ε

2
‖u− u0

‖
2
R+

+
µ

2
‖u− u0

‖
2
D3
. (33)

To minimize J , the differential J ′u(δu)δũ, introduced in
Sect. 2.2, needs to be evaluated. This differential has been
evaluated, without a constraint term, in Eq. (16) and becomes

J ′u(δu)δũ=−

ta∫
0

∫
�

δk̃∇T · ∇δT ∗d�dt

−

ta∫
0

∫
�

δρ̃C
∂T

∂t
δT ∗d�dt + ε

∫
�

δk̃
(
k+ δk− k0

)
+δρ̃C

(
ρC+ δρC− ρC0

)
d�

+ν

∫
D3

δk̃
(
k+ δk− k0

)
+ δρ̃C

(
ρC+ δρC− ρC0

)
d�
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Figure 7. (a) Reconstructed contrast function. (b) Reconstructed characteristic function.

Table 1. Thermal and electric properties of the materials.

Material ρC [JK−1 m−3] k [W m−1 K−1] εr σ [Sm−1]

Limestone 2420× 855 2.22 8 0.01
Wood 600× 1900 0.15 5 10−8

Table 2. Lengths used to generate the three subdomains.

Parameter l1x l1z+ l1z− lx l1z+ l1z−

Length [m] 0.1 0.05 0.8 0.1 0.05 0.8

+ν

∫
�

δk̃δk+ δρ̃CδρCd�. (34)

This new formulation of the functional J has to be com-
pared to the first one (Eq. 16) expressed in Sect. 2.2, as it
integrates now a new constraint term, which allows us to ex-
ploit a priori information retrieved from GPR data inversion.

5 Numerical tests

The numerical examples reported in this study are con-
cerned with a limestone wall containing a wood inclusion
(see Fig. 4). The electric and thermal properties of these
materials can be found in the pertinent literature (Dumoulin
et al., 2010; Giannopoulos, 2005) and are listed in Table 1.
The wall has a length of 2 m and a height of 1.5 m, and the
wood inclusion is 1 m long and 10 cm thick. The top of this
inclusion is located at a depth of 40 cm.

Synthetic GPR data are computed using the gprMax code,
by considering a Ricker pulse radiated at the central fre-
quency of 1300 MHz. The data are gathered along the ob-
servation line ranging from x = 0.1 m to x = 1.9 m with a
step of 3 cm.

The investigation domain for GPR reconstruction has the
same size as the wall, and it is discretized with a step of
1.4 cm in both directions. For the GPR reconstruction, we ex-

Table 3. Thermal and electric properties of the materials.

Material ρC [JK−1 m−3] k [Wm−1 K−1] εr σ [Sm−1]

Air 1.225× 1006 0.0242 1 0
Steel 8055× 480 15.1 1 1.11× 106

Figure 8. Reconstruction of inclusions with the thermal method
without a priori information.

ploit a frequency band [100, 2600] MHz, which is discretized
with a frequency step equal to 30 MHz.

The TSVD algorithm is applied with a threshold on the
singular values equal to −30 dB; i.e., the singular values
larger than 0.0316 times the maximum singular value are re-
tained.

Then, to get the three investigation subdomains, we use the
parameters summarized in Table 2.

With regard to the thermal direct model, we define the fol-
lowing synthetic periodic thermal loading at the monitored
surface 0m:
Ta(t)= 12+ 5sin(ωt −φ)
Ts(t)=−5+ 12sin(ωt −φ)
8rad(t)= 250× 1

2 (sin(ωt −φ)+ |sin(ωt −φ) |)
, (35)

where Ta and Ts are expressed in units of degrees Celcius
(◦C), and 8rad in watts per square meter (Wm−2). The mea-
surements are collected over a time interval of 5 days. The
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Figure 9. (a) Reconstructed conductivity with a priori information. (b) Reconstructed capacity with a priori information.

Table 4. Properties of the reconstructed inclusions.

Material ρC ρC error (ρC) k k error (k) S S (target) error (S)

Wood (no GPR) 1.89× 106 1.14× 106 66 % 2.00 0.15 1233 % 0.63 0.10 530 %
Wood (GPR) 1.05× 106 1.14× 106

−7.9 % 1.00 0.15 566 % 0.30 0.10 200 %
Air (no GPR) 1.83× 106 1.23× 103 1.5× 105 % 1.78 0.0242 7255 % 0.46 0.10 360 %
Air (GPR) 7.59× 105 1.23× 103 6.2× 104 % 0.820 0.0242 3288 % 0.41 0.10 310 %
Steel (no GPR) 2.24× 106 3.87× 106

−42 % 2.40 15.1 −84 % 0.71 0.10 610 %
Steel (GPR) 2.94× 106 3.87× 106

−24 % 2.87 15.1 −81 % 0.29 0.10 190 %

Figure 10. Reconstruction of inclusions with the thermal method
with a priori information.

length of this chosen time period is enough in terms of heat
diffusion for the inclusion to have an influence on to the
surface temperature evolution due to the geometry and ma-
terials considered. As the thick wall acts as a low-pass fil-
ter in the thermal domain, measurements are not influenced
by high-frequency phenomena and in practice different pe-
riods can be found for which the weather conditions match
quasi-periodic behavior at a natural site. The convective ex-
change coefficient is equal to h= 10 Wm−2 K−1. The equiv-
alent radiative exchange coefficient is evaluated as hrad =

σε (Tsurf+ Ts)(T
2
surf+ T

2
s ), where Tsurf is equal to mean air

temperature and Ts to the mean of sky temperature. White
Gaussian noise with an amplitude equal to 0.5 ◦C is added to
the data calculated in accordance with the direct model.

The reconstructed fields for thermal parameters without
a priori information (not geometry information inferred by
GPR inversion) are shown in Fig. 5a and b.

In order to analyze these images in a simple but quantita-
tive way, we implement the following approach to identify
the contour shape of the reconstructed anomaly. To this end,
we analyze both the values of the reconstructed thermal pa-
rameters and their gradients. An element of the mesh is part
of a contour if both reconstructed values, k and ρC, are dis-
tant by at least a% of the background parameters. This cri-
terion aims at excluding from the inclusion all the elements
having reconstructed parameters close to the background pa-
rameters. The threshold a = 10 % is chosen for this study.

We suppose that the thermal parameters have strong vari-
ability along the contour of the inclusion and assume that,
at the boundaries of the inclusion, the norm of the gradient
of both reconstructed parameters is higher than elsewhere in
the investigated domain. On the basis of this consideration,
we assume that a point (x,z) belongs to the contour of an
inclusion only if{
‖∇k(x,z)‖

k0(x,z)
≥ b

‖∇ρC(x,z)‖

ρC0(x,z)
≥ b

. (36)

After processing, closed contours that verified the above
condition Eq. (36) are kept, and their contexts constitute a
set of subdomains that belongs to the defective area. At that
stage, no filtering on the size of the defective area is applied,
to preserve multiple detection possibilities.
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Figure 11. (a) Reconstructed inclusion of air without a priori information. (b) Reconstructed inclusion of air with a priori information.

Figure 12. (a) Reconstructed inclusion of steel without a priori information. (b) Reconstructed inclusion of steel with a priori information.

In order to have a first estimation of the contours, we start
with values of the threshold b to 0 and select the points of
the investigated domain satisfying both criteria. Then, we in-
crease the value of b until significant variations in the size
or the number of the reconstructed inclusions occur. Beyond
this critical value b0, we observe that at least one main con-
tour which exists with b < b0 is not closed yet. Here, we have
empirically chosen a threshold b = 0.5.

With both criteria, in the case of no a priori information,
we get the reconstruction of the inclusion shown in Fig. 6.

Let us turn to consider the case of the thermal reconstruc-
tion when the information about the geometry is gained by
GPR imaging. The reconstructed (normalized) contrast func-
tion is shown in Fig. 7a, and the corresponding geometry of
the inclusion is highlighted by the characteristic function in
Fig. 7b.

The inferred thermal subdomains are shown in Fig. 8. The
thermal reconstruction applied on the subdomains D1, D2
and D3 lead to the thermal fields presented in Fig. 9a for the
conductivity and in Fig. 9b for the capacity.

The reconstruction of the inclusion is shown in Fig. 10;
in this case we have empirically chosen a gradient threshold
b = 2.2.

To complete our study, we focus on the case in which the
inclusion is comprised of air or steel instead of wood. The air
is characterized by a relative dielectric permittivity equal to
1, whereas the steel can be assumed as a perfectly electrical-
conducting object. The thermal properties of these materials
are described in Table 3 (Dumoulin et al., 2010; Giannopou-
los, 2005).

As can be observed in Figs. 11 to 12, the location and the
shape of the inclusion are better identified with a priori infor-
mation. The area of the reconstructed inclusion is lower with
a priori information and closer than the area of the initial in-
clusion, regardless the nature of the inclusion.

In practice, we focus the minimization of the functional
J on two subdomains when we have a priori information.
These two subdomains do not include here the part of the
initial investigated domain located close to the surface, so the
side effects are highly reduced with the GPR information. In
particular, the variations of the thermal parameters close to
the surface, visible in Fig. 5a and b, do not interfere if we use
a priori information. In fact, with the GPR reconstruction, we
get the information that there is no inclusion close to the sur-
face, so there is no research of inclusion next to the surface.
The noise added to thermal measurements has essentially no
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effect on the reconstruction because the high frequency of
this noise cannot propagate far from the surface effect (the
thermal diffusion from surface acts as a low-pass filter). The
coupling of these two methods allows one to greatly reduce
the side effects and to get an improvement of the shape of the
reconstructed inclusion.

However, we can notice that the reconstructed thermal
properties’ (thermal conductivity and heat capacity) values
encompass not only the location of the inclusion but also
connected areas in the non-affected part of the material ma-
trix. The relative differences between the reconstructions and
the targets are reported in Table 4. The relative errors for the
heat capacity are significantly improved by using the joint
approach excepted for inclusion filled with air. The relative
errors for the thermal conductivity remain important, but care
must be taken while making that analysis as the inclusion
nature has low thermal conductivity, except for steel. For in-
stance, air thermal conductivity is very low, and small numer-
ical error will significantly affect the relative error. Nonethe-
less, the reconstructed parameters are coherent: the recon-
structed values are higher than those of the background for
steel, and lower for wood and air, as was expected. Finally,
the inclusion shape reconstruction is enhanced, though this
reconstruction phase could take advantage of more advanced
post-processing approaches. In particular, we want to point
out results obtained for the steel inclusion for which it can be
observed that the joint thermal and electromagnetic approach
allows us now to better reconstruct the inclusion and not only
detect it by a signal processing approach.

6 Conclusions

In this numerical study, we have proposed a diagnostic ap-
proach, for thick wall structures, combining thermal and
GPR imaging approaches in order to improve the fidelity of
the reconstruction results obtained with only one method.

The thermal method is based on the minimization of a
functional, which is achieved with the Levenberg–Marquardt
algorithm by computing a gradient with the adjoint-state
method.

The GPR imaging problem has been formulated by re-
sorting to a linearized inverse scattering model based on
the Born approximation. The resulting linear problem has
been inverted via the truncated singular value decomposition
scheme.

The combination of both reconstruction methods has then
been presented. Based on GPR reconstruction, three subdo-
mains have been identified. The first one is the most likely to
contain inclusions; the second one is far from potential inclu-
sions revealed by the GPR. The third one is located among
the previous ones. A constraint term has been added to the
functional to minimize it in order to take into account the
a priori information provided by GPR images.

Numerical examples have been reported and have con-
firmed improved performance in terms of location of the in-
clusion, shape of the inclusion, area and thermal parameters.
However, the thermal conductivity is still far from the true
inclusion conductivity.

Future research work will focus on the validation of the
proposed approach against experimental data at a dedicated
test site in outdoor conditions.
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