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Abstract. At geomagnetic observatories the absolute mea-
surements are needed to determine the calibration parame-
ters of the continuously recording vector magnetometer (var-
iometer). Absolute measurements are indispensable for de-
termining the vector of the geomagnetic field over long peri-
ods of time. A standard DI (declination, inclination) measur-
ing scheme for absolute measurements establishes routines
in magnetic observatories. The traditional measuring schema
uses a fixed number of eight orientations (Jankowski et al.,
1996).

We present a numerical method, allowing for the evalu-
ation of an arbitrary number (minimum of five as there are
five independent parameters) of telescope orientations. Our
method providesD, I and Z base values and calculated error
bars of them.

A general approach has significant advantages. Additional
measurements may be seamlessly incorporated for higher ac-
curacy. Individual erroneous readings are identified and can
be discarded without invalidating the entire data set. A pri-
ori information can be incorporated. We expect the general
method to also ease requirements for automated DI-flux mea-
surements. The method can reveal certain properties of the
DI theodolite which are not captured by the conventional
method.

Based on the alternative evaluation method, a new faster
and less error-prone measuring schema is presented. It avoids
needing to calculate the magnetic meridian prior to the incli-
nation measurements.

Measurements in the vicinity of the magnetic equator are
possible with theodolites and without a zenith ocular.

The implementation of the method in MATLAB is avail-
able as source code at the GFZ Data Center (Brunke, 2017).

1 Introduction

Absolute measurements of the magnetic declination D and
inclination I are taken by means of a non-magnetic theodo-
lite with a fluxgate sensor mounted on its telescope that is
nearly parallel to the optical axis. The reading of the magne-
tometer S becomes null when it points in a direction perpen-
dicular to the field. A standard DI measuring scheme estab-
lished routines in magnetic observatories. It uses eight such
telescope orientations for absolute measurements. This stan-
dard DI scheme allows for a simple numeric evaluation and
cancels out the influence of intrinsic instrument errors like
sensor offset and misalignment angles between fluxgate sen-
sor and telescope (hereafter referred to as instrument param-
eters).

The alternative method for DI measurements was moti-
vated by a very practical reason. Zenith oculars are very sel-
dom available. Without them, inclination measurements are
not possible around the magnetic equator where the magnetic
field is almost horizontal. We wanted to enable measure-
ments with a DI-flux theodolite and without a zenith ocular.
The need to evaluate DI measurements at arbitrary orienta-
tions was felt before we started our work on a viable solu-
tion. Peter Crosthwaite (Crosthwaite, 1994) and Anna Willer
(née Nilsson) (Nilsson, 2010) gave us useful personal notes
on their approaches. Our work is partly based on their notes
but overcomes potential convergence problems faced in the
previous work.

We present a numerical method, allowing for the evalu-
ation of an arbitrary number (minimum of five as there are
five independent parameters) of telescope orientations. No
prescribed fixed measuring scheme is needed. We imple-
ment an instrument model to calculate the fluxgate reading
S, dependent on field, instrument parameters and telescope
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orientation. The instrument model does not cover more in-
strument parameters than misalignment angles and offsets.
Our method does not extend the physical description of a
DI theodolite, but it allows for orientations of the ones used
traditionally for D and I measurements. Inserting measured
values for each telescope orientation gives one non-linear
equation for each orientation. Eventually this results in an
overdetermined system of non-linear equations. This sys-
tem is solved in the sense of the least square solution using
the Gauss–Newton method generalized to an overdetermined
system. The accuracy of the resultingD and I base values de-
pends both on the choice of the telescope directions and on
the accuracy of the measurements. The method provides es-
timated variances for the resulting D and I base values. The
calculated residuals provide a measure of quality for each in-
dividual measurement.

We took advantage of methods known from geophysical
inversion theory such as assessing the residuals, using a pri-
ori information and objectively assessing the accuracy of the
results (Schmucker, 1975; Tarantola, 1982). Exploitation of
the method in practice also showed benefits for the routine
work at observatories. We show, for example, that at a given
rate of erroneous readings, a higher percentage of success-
ful absolute measurements can be achieved. We apply our
method to various data sets. We show the benefit to accu-
racy and reliability of routine absolute measurements at the
Niemegk Observatory and the resulting base values.

2 The conventional D and I measurement

2.1 The measuring schema

For the D measurement, the telescope is put to a horizon-
tal orientation (reading of vertical circle: 90◦). Then the two
orientations with the telescope pointing to the magnetic east
and the west are determined by adjusting the magnetometer
reading S to a small value. This is repeated with the telescope
flipped over (vertical reading: 270◦; sensor on the other side
of the telescope). The four resulting readings of the horizon-
tal circle (D readings ϕ1, . . .,ϕ4) are used to calculate the
direction of magnetic north (Eq. 1). Subsequently the hori-
zontal circle is adjusted to the magnetic north, and the two
orientations on the vertical circle are determined where the
magnetometer reading S is null. This is finally repeated with
the horizontal circle adjusted to the magnetic south. These
last four measurements ξ1, . . ., ξ4 serve to calculate the incli-
nation I in Eq. (2).

This conventional DI scheme has two major advantages:

a. It allows for a simple numeric evaluation by just aver-
aging four readings.

b. The influence of the instrument parameters like sensor
offset and the misalignment angles between the fluxgate
sensor and the telescope cancel out.

A detailed description of the measurement and its evaluations
can be found in (Jankowski and Sucksdorff, 1996; Matzka
and Hansen, 2007; KringLauridsen, 1985; Kerridge, 1988).

In this paper we refer to the angle ϕ as the geographic
direction. The angle ϕ is obtained from the actual reading
of the horizontal circle, using a mark with known azimuth.
Below we will use the symbols N↑, N↓, E↑, E↓, S↑, S↓,
W↑,W↓, denoting the theodolite orientations according to the
next cardinal point of the compass directions the telescope is
pointing to. The arrow indicates whether the magnetometer
sensor is situated above or below the telescope.

2.2 The evaluation

In the conventional scheme the calculations of declination
D1 and inclination I1 are principally restricted to calculating
mean values; see (Jankowski and Sucksdorff, 1996).

Declination and inclination usually vary during the mea-
suring process. Let D1 and I1 be the values of declination
and inclination at the time of the first magnetometer read-
ing S1. The successive horizontal readings ϕi, i = 2. . .4 have
to be corrected for the natural variation of the declination
1Di (reduction to the first measurement). The natural varia-
tion1Di from the first measurementD1 are known from the
variometer. Additionally a correction 1Ai is needed if the
magnetometer reading Si is not exactly zero (KringLaurid-
sen, 1985). Assuming subsequently that D1, I1 and all mea-
sured angles are given in degrees, the corrected horizontal
circle readings are

AXi = ϕi −1Di −1Ai

= ϕi −1Di −
360◦

2π
Si

H
with

Xi ∈ {W ↑,W ↓,E ↑,E ↓}; i = 1 . . . 4.

The Xi ∈ {W ↑,E ↑,W ↓,E ↓} denotes the four possible
horizontal telescope orientations perpendicular to the mag-
netic field. The telescope looks towards the indicated direc-
tion (W or E). The arrow (↑ or ↓) indicates whether the sen-
sor is on the upper or lower side of the telescope. The exact
orientations are found by adjusting the telescope horizontally
to a small magnetometer readings Si , ideally to zero. Even-
tually D1 is determined as the mean value of AXi plus 180◦.

D1 =
1
4
(AW↑+AW↓+AE↑+AE↓)+ 180◦. (1)

Using this declination value D1, the telescope is now di-
rected into the magnetic meridial plane. The inclination I1 is
determined using the four telescope orientations within the
meridial plane, where magnetometer readings are null:

I1 =
1
4
(VN↑+VS↓−VS↑−VN↓)± 90◦. (2)
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In Eq. (2) the+ and− signs apply to the northern and south-
ern hemispheres, respectively.

VXi = ξi −1Ii −1Vi ; Xi ∈ {N ↑,S ↓,S ↑,N ↓}

= ξi −1Ii −
360◦

2π
Si

F
; i = 5 . . . 8

Just as above, 1Ii are corrections for field variations after
the first measurement. The 1Vi values account for non-zero
magnetometer readings Si . These I measurements, as well as
theD measurements, can principally be taken in any order. A
sequence is preferable, reaching each orientation by inverting
the theodolite around just one axis.

Eight correct measurements are needed to apply Eqs. (1)
and (2). If data from just a single orientation are corrupted,
the entire measurement set is usually discarded, including the
good data. Repeating this set of eight measurements several
times at the observatories is good practice. We will show later
that our method allows a single corrupted theodolite orienta-
tion to be discarded without needing to lose the rest.

Figure 1 gives a graphic presentation of all possible tele-
scope orientations of a DI flux theodolite. The ordinate axis
gives a reading of the vertical circle of the theodolite. Val-
ues of the abscissa are geographic headings (readings of the
horizontal circle corrected using an azimuth mark). The four
colours indicate the cardinal direction of the heading of the
telescope. The faded colours indicate orientations requiring
a zenith eye piece. The arrows indicate whether the sen-
sor is above or below the telescope as in Eqs. (1) and (2).
Dashed lines give orientations with null magnetometer read-
ing S. These lines are specific to each observatory (indicated
for each line) and depend on its local declination and incli-
nation (Niemegk (NGK): DNGK = 3.6◦, INGK = 67.5◦; Hy-
derbad (HYD): DHYD =−0.4◦, IHYD = 24.3◦ and Tatuoca
(TTB): DTTB =−20.1◦, ITTB = 0.5◦). At a given observa-
tory useful measurements are close to these lines. Blue and
red marks indicate measuring orientations. Orientations from
conventional DI measurement schemes are given on the left
panel. D measurements are in red; I measurements are in
blue. These orientations depend on the observatory. The
right panel shows orientations of a new scheme presented in
Sect. 2.3 as carried out at NGK.

2.3 A new scheme for absolute measurements, easy,
precise and less error prone

The new scheme allows us to take DI measurements using
a simplified and less error-prone method. Advantages with
respect to the conventional methods are as follows:

– No need to calculate the magnetic meridian.

– The method tolerates imperfect levelling of the tele-
scope.

– The measurement scheme facilitates adjusting the
theodolite. Throughout the entire measurement proce-
dure only the adjustment wheels for the horizontal circle

are used to adjust the magnetometer reading to a small
value.

– There is no need for telescope orientations along the
magnetic meridian. This avoids orientations requiring
a zenith eye piece at observatories close to the magnetic
equator.

– We feel that, after some practice, the new method (in-
cluding the optional measurements) needs slightly less
time than the conventional, but even without gaining
time, the resulting six measured orientations lead to
a statistically firmer result than the four conventional
ones.

– Repeating the new method with different tilt angles α
(explained subsequently) allows systematical errors to
be assessed.

Our scheme uses the procedure known from D measure-
ments in the conventional DI scheme. The only difference
is that the telescope is not necessarily oriented horizontally.
A defined vertical angle ξ off the horizontal plane is used in-
stead. The new scheme is just a repetition of the following
two steps:

1. Set vertical circle to a certain value ξ .

2. For the given ξ value (vertical circle), adjust the mag-
netometer reading S to 0 (or a small value) using the
horizontal circle (coarse and fine adjustment). Note the
readings of both circles, magnetometer reading S and
time of S measurement.

Subsequently we will we call the second step “adjust S hori-
zontally”.

The first four orientations of the new scheme are identical
to conventional D measurements. Using the procedure de-
fined above, the new scheme reads as follows:

1. Set ξ to 90◦ with the telescope pointing towards east.
Adjust S horizontally.

2. Invert the telescope, set ξ to 270◦, telescope pointing
towards west. Adjust S horizontally.

3. Turn telescope to east, set ξ to 270◦, telescope pointing
towards east. Adjust S horizontally.

4. Invert the telescope, set ξ to 90◦, telescope pointing to-
wards east. Adjust S horizontally.

The next measurements are taken with the telescope tilted
by a certain angle α and −α off the horizontal plane. The
choice of α is not critical, but it must be lower than 90◦− I .
Otherwise an orientation with S being null cannot be found.
The angle α should not be too small in order to get orienta-
tions close enough to the magnetic N and S directions. At
Niemegk the inclination is I ≈ 67.5◦, and α = 20◦ is a good
choice.
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Bildunterschrift

Figure 1. Graphic presentation of possible telescope attitudes of a DI flux theodolite. (a) Dashed lines give orientations with null magne-
tometer reading S. These lines are specific to the observatories of Niemegk (NGK), Hyderbad (HYD) and Tatuoca (TTB). Useful sensor
orientations at a given observatory are close to this line. The marks represent measurements at these observatories according to the conven-
tional scheme. Note the different ϕ values due to different local declination. (b) Measurements taken at the Niemegk Observatory using the
new scheme.

5. Set ξ to (90◦−α) with the telescope pointing towards
north-north-east. Adjust S horizontally.

6. Invert telescope, set ξ to (270◦−α) with the telescope
pointing towards south-south-west. Adjust S horizon-
tally.

a. Optional: invert telescope, set ξ to (90◦−α) with
the telescope pointing towards north-north-west.
Adjust S horizontally.

b. Optional: invert telescope, set ξ to (270◦−α) with
the telescope pointing towards south-south-east.
Adjust S horizontally.

7. Set ξ to (90◦+α) with the telescope pointing towards
south-south-east. Adjust S horizontally.

8. Invert telescope, set ξ to (270◦+α) with the telescope
pointing towards north-north-west. Adjust S horizon-
tally.

a. Optional: invert telescope, set ξ to (90◦+α) with
the telescope pointing towards south-south-west.
Adjust S horizontally.

b. Optional: invert telescope, set ξ to (270◦+α) with
the telescope pointing towards north-north-east. ad-
just S horizontally.

In steps 1 to 4 there is no need to set ξ exactly to values of
90 and 270◦. Values close to these can also be used but have
to be noted, of course. It is a matter of personal preference,
because more effort is used when setting ξ to a given value
than when reading and noting an exact arbitrary value. The
latter is slightly more effort, but reading a value results in
more precise data than when setting it.

The right panel of Fig. 1 shows the distribution of data
points of the new scheme.

3 The general method for arbitrarily orientated
telescope orientations

As explained above, the eight orientations of the standard DI
scheme are used due to practical reasons. There is no prin-
cipal reason to take the measurements at exactly the orienta-
tions as in the conventional scheme. Theoretically only five
measurements are needed for the five unknown quantities:
declination D1, inclination I1, the two angles of misalign-
ment δ and ε and the magnetometer offset Soff.

The general method described below allows measure-
ments at arbitrary telescope orientations to be evaluated. The
number of measurements are arbitrary. Usually it should be at
least five. Even fewer than five measurement can be sufficient
if a priori information about the instrument parameters is
available. The method has a lot of additional advantages. The
quality of each single measurement can be assessed and out-
liers can be identified and discarded. As already mentioned,
the measuring set of the eight orientations for the conven-
tional scheme is usually repeated several times, so that 16 or
even 24 orientations are available. Using all of them in one
joint evaluation leads to a statistically firmer result and better
allows us to identify outliers. Even though actual DI mea-
surements at the Niemegk Observatory are known to be at a
high accuracy level, we show that its accuracy and reliability
could still be improved using the new method. Additionally
the new method gives the observer more insight into sources
of problems with magnetic cleanliness.
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3.1 Theory and numerical approach

3.1.1 Instrument model

The DI-flux instrument model allows the magnetometer
reading S to be calculated as a function of magnetic decli-
nationD, inclination I , total field strength F , readings of the
theodolite orientation ϕ and ξ (horizontal circle and vertical
circle), the misalignment angles of the sensor δ and ε and the
magnetometer offset Soff. The angles δ and ε (misalignment
in ϕ and ξ direction) are also called aberration errors. Crosth-
waite (Crosthwaite, 1994) gave a formulation based on vec-
tor geometry. The following formulation and its derivation
based on spherical trigonometry can be found in (Nilsson,
2010):

S = f (D,I,δ,ε,Soff,ϕ,ξ) (3)
= c ·F · (−sin(I ) · cos(ξ + ε)

+ cos(I ) · sin(ξ + ε) · cos(D−ϕ)
+ cos(I ) · δ · sin(D−ϕ) ) + Soff.

We used the latter, because it facilitated the calculation of
the partial derivatives for D,I,δ and ε, which are needed in
the Gauss–Newton method. The factor c is the scale factor
of the fluxgate magnetometer. It can be c = 1 or c =−1, de-
pending on the orientation of the sensor (c = 1 if S > 0 and
the telescope pointing towards north). A slight deviation of
|c| from 1 can be neglected, as long as S is small (Marsal and
Torta, 2007).

3.1.2 Accounting for field changes during the
measurement by reduction of the first

For each measurement at time ti the variations of the mag-
netic field after the first measurement t1 have to be taken into
account. This reduction of the first measurement is carried
out by projecting the variation in the direction of the magne-
tometer sensor of the ith measurement. Changes in D and I
after the first measurement are assumed small enough, justi-
fying the assumption that the instrument function f is linear
in D1 and I1:

Si = f (D1+1Di,I1+1Ii,δ,ε,Soff,ϕi,ξi) (4)

≈ f (D1,I1,δ,ε,Soff,ϕi,ξi)+
∂f

∂D1
1Di +

∂f

∂I1
1Ii

with 1Di =Di −D1 and 1Ii = Ii − I1.

3.1.3 Declination, inclination and instrument
parameters by solution of a system of non-linear
conditional equations

Each measurement with the DI-flux theodolite consists of
measuring the angles ϕi , ξi and the magnetometer reading Si .
It delivers one non-linear equation for the unknown quanti-
ties D1, I1 and the instrument parameters δ, ε and Soff. Let

p = (D1,I1,δ,ε) be a vector of unknown parameters. The
magnetometer offset Soff is not included. It will be treated
separately as explained in Sect. 3.1.5. For a total number of
N available measurements we get a system of N equations.
Generally the number of equations exceeds the number of
unknowns. Hence the resulting non-linear system is overde-
termined. A solution of this system exists only in the sense
of the least square solution minimizing the sum of squares of
residuals ri :

S1− f (p,Soff,ϕ1,ξ1)= r1 (5)
. . .

SN − f (p,Soff,ϕN ,ξN )= rN ,

with

Si = Sreading,i −
∂f

∂D1
1Di −

∂f

∂I1
1Ii .

The magnetometer readings reduced in the first reading, and
1Di , 1Ii variations of D and I since the first reading. Ad-
ditional conditional equations can be included by seamlessly
adding additional equations. Such equations can be deduced
from a priori information. A priori information stabilizes the
solution, especially if the number of available measurements
are small. If, for example, the collimation angles are known
from former measurements (δapriory and εapriory), and if their
accuracy can be estimated in terms of standard deviations
σδapriory and σεapriory , these a priori information can be ac-
counted for using the following additional equations:

σS

σδapriory

(δ− δapriory)= rN+1 and (6)

σS

σεapriory

(ε− εapriory)= rN+2.

The factors σS
σεapriory

and σS
σδapriory

are indispensable for the cor-

rect weighting of the a priori information. An estimate of
the deviation σS of the magnetometer readings Si can be de-
termined by empirically investigating the distribution of the
residuals ri .

3.1.4 The first estimate of D and I

In order to converge towards the proper solution, the Gauss–
Newton method needs a good first estimate. Instrument pa-
rameters δ, ε and Soff are small and can always be assumed
to be zero as a first estimate.

The orientation vectors P i of the telescope at each mea-
surement are perpendicular to the magnetic field (neglecting
the fluxgate readings Si). A good first estimate of declination
and inclination can be calculated by fitting a plane to these
vectors

P i =

cos(ϕi)sin(ξi)
sin(ϕi)sin(ξi)
−cos(ξi)

 ; i = 1. . .N. (7)
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The normal vector n̂ on the least square plane fit through
this set of points P i gives a first but already pretty accurate
approximation of the field direction. I is the angle between
n̂ and its projection to the horizontal plane. D is the angle
between the projection to the horizontal plane and north.

3.1.5 Solution of the non-linear system with the
Gauss–Newton method

The Gauss–Newton method is a straightforward extension of
the well-known Newton method from one to more dimen-
sions. It is also referred to as the Newton–Raphson method
(Press et al., 1986). The method works by iteratively improv-
ing the first estimate using a gradient method. The method
requires calculation of the partial derivatives of the instru-
ment model for all unknowns. It is known to have quadratic
converge, which is very fast. However, the convergence is
only guaranteed for an appropriate first estimate.

We are looking for the improvement1p to the estimated p
so that f (p+1p)= S, S being the magnetometer readings.
Linearization of f around p with the Jacobian matrix J(p)
leads to

J(p)1p+ f (p)= S.

With r = S− f (p) as the residuals between the readings
S and the results of the current model f (p) we get

J(p)1p = r,

or by writing the Jacobian matrix J(p), 1p and r explic-
itly we obtain ∂f1

∂D
∂f1
∂I

∂f1
∂δ

∂f1
∂ε

. . .
∂fN
∂D

∂fN
∂I

∂fN
∂δ

∂fN
∂ε



1D

1I

1δ

1ε

=
 r1. . .
rN

 , (8)

with N as the number of available measurements.
The function fi(p) is the instrument model fi(p)=

f (D,I,δ,ε,Soff,ϕi,ξi) of Eq. (3) with the measured values
ϕi and ξi .

In our case Eq. (8) is overdetermined and must be solved
in the sense of minimizing |r|. The normal equations reads

1p =
(
J(p)TJ(p)

)−1J(p)Tr. (9)

In Eq. (8) the instrument offset Soff does not show up. For
the sake of simplicity and numerical stability we separated its
calculation from the other parameters. Soff is just an additive
term in all equations as shown in Eq. (3). Accordingly it can
be calculated after each iteration as the mean value of the
residuals.

3.1.6 Calculating the uncertainty of D,I,δ and ε in
terms of standard deviation σ

The linear relation between1p and r given in Eq. (9) makes
it easy to propagate the uncertainty of r to the results pi .

Figure 2. (a) Dvar and HB +Hvar form a right-angled triangle
with Habs as hypotenuse. (b) The variometer sensor is not per-
fectly aligned with the principal geographic directions. Therefore
Dabs =DB +Dvar.

We assume that the uncertainty of the parameter vector p is
equal to the uncertainty of the last improvement vector 1p
within the Gauss–Newton iteration. If enough measurements
are available, the uncertainty of r can be determined to inves-
tigate the distribution around its mean value. Otherwise the
reading error of S has to be estimated. This approach may
lack mathematical rigour, but we verified the result using nu-
merical Monte Carlo experiments. We rewrite Eq. (9) with a
single matrix G as

1p =G · r with G= (gj,i)=
(
J(p)TJ(p)

)−1J(p)T, (10)

or

1pj =

N∑
i

gj,iri . (11)

Let the ri by uncorrelated and normally distributed with
the variance V (ri)= σ 2

r . Then the pi are also normally dis-
tributed and their variance can be calculated as

V (1pi)=

N∑
i

g2
j,iσ

2
r or σp1 = σr

√√√√ N∑
i

g2
j,i . (12)

3.1.7 Baseline determination

Absolute measurements are needed to determine the vector
magnetometer offsets and their long-term drift. The dynamic
range of the instrument is often adapted to the natural varia-
tions of the field, which is far smaller than the constant part.
Hence the vector magnetometer is referred to as a “variome-
ter”. A slight drift due to mechanic and electronic instabil-
ities can never be excluded. A very small rotational move-
ment, e.g. in the instrument or its pillar due to temperature,

Geosci. Instrum. Method. Data Syst., 7, 1–9, 2018 www.geosci-instrum-method-data-syst.net/7/1/2018/
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can result in a measurable effect. The variometer orientation
in the geographical reference frame must be taken into ac-
count. Absolute measurements are indispensable for deter-
mining the vector of the geomagnetic field in the geographic
reference frame over long periods of time. The wording “ab-
solute” traces back to Gauss and signifies that absolute mea-
surements are inherently adjusting for first-order instrument
inexactness (e.g. misalignment of telescope and magnetome-
ter sensor).

The offsets are called “base values”. The stability of the
base values is indicative for the stability of the variometer,
for the accuracy of the absolute measurements, and for un-
wanted small scale local magnetic field changes. Thus they
are a measure of the quality of an observatory.

Baseline formulas: traditionally baselines refer to H , D
and Z (not to the field components X, Y and Z). We assume
that the variometer is set up with itsX sensor almost pointing
towards magnetic north, the Z sensor downwards and conse-
quently the Y sensor eastward. Small misdirections are cov-
ered by the base values. For a better comprehensibility, we
will subsequently use the notation Habs, Dabs and Zabs in-
stead of H1, D1 and Z1 in this framework. Baseline values
are calculated by comparing Habs, Dabs and Zabs in the ge-
ographic coordinate system, as they result from the absolute
measurement, to Hvar, Dvar and Zvar as “seen” by the vari-
ometer in its inherent coordinate system (Xvar, Yvar, Zvar).

We use the fact that scalar values Fabs and Habs are the
same in the sensor system and in the geographic system.
The base values HB , DB and ZB are calculated as the differ-
ences between Habs, Dabs and Zabs, stemming from the ab-
solute measurements, and Hvar,Dvar and Zvar, deduced from
variometer measurements. With Habs = F · cos(I ) it is (see
Fig. 2)

(HB+Xvar)
2
+Y 2

var =H
2
abs or (13)

HB =

√
H 2

abs−Y
2
var−Xvar,

DB =Dabs−Dvar =Dabs− arcsin
(
Yvar

Habs

)
(14)

∼=Dabs−
360◦

2π ·Habs
Yvar

and finally

ZB = Zabs−Zvar = Zabs−F · sin(Iabs). (15)

4 Results

4.1 Application of the method for outlier detection in
traditional data sets

The new method data errors, otherwise undetected, can be
identified and discarded, because data from each measured

orientation can be assessed. Figure 3a shows H base val-
ues obtained with the new method (red) in comparison with
H base values obtained conventionally (blue). Two mea-
surements within about half a year of the observatory rou-
tine could be improved. Typing errors in the respective data
sheets could be identified and corrected. They were detected
because they produced residuals off the normal range (out-
liers). The corrected base values are flagged with red circles
in Fig. 3a. Identification of outliers is illustrated in Fig. 3b.
The residuals ri are plotted as a scatter plot over the mag-
netometer readings Sreading,i as introduced in Eq. (5). The
outlier can easily be detected. Outlier identification is more
successful when more measurements are taken. If only a re-
stricted number of measurements are available, a priori in-
formation should be used. This can be instrument parameters
known from other measurements. After identifying an erro-
neous measurement, it is often possible to find the according
typo in the data sheet. If this is not the case, the according
measurement can simply be discarded. The spread in Si di-
rection in Fig. 3b depends on the measuring method used and
gives no information on data quality.

Calculated error bars allow the reliability of each DI mea-
surement to be assessed. An uncertainty of BH less then
0.5nT can be expected. This is the case for the major part
of the red data points shown in Fig. 3a. Furthermore the dis-
tribution of the residuals ri allows the quality of a measure-
ment to be assessed. Figure 3b gives a good example. Undis-
turbed measurements are characterized by residuals ranging
between about −1nT and 1nT with a nice Gaussian distri-
bution. In Fig. 3b the deviation of ri would be in the ex-
pected range if the outlier was discarded. Figure 3a shows
that measurements taken in the first half of April are slightly
less precise than others. In this case it is worthwhile taking
a closer look at the distribution of the residuals. Figure 4a
shows residuals r observed in two routine measurements on
5 April (each measurement taken at 16 orientations). The ob-
served residuals are clearly bigger than normal. The same
behaviour can be observed on 12 April (Fig. 3a). We assume
a problem in the magnetic cleanliness of the operating staff
in the first half of April only.

A systematic error of a specific theodolite (Zeiss Theo 020,
817992) is revealed in Fig. 4b. In this figure the residuals
are plotted over the reading of the horizontal circle ϕ. They
are proportional to the sine of twice the horizontal reading
sin(2 ·ϕ+α). In Fig. 4b measurements with the sensor above
the telescope are plotted in blue. The rest are plotted in red.
The green dots show the differences with respect to the fitted
sin(2 ·ϕ+α) curve. They are plotted to check whether there
is a sin(ϕ+α) dependency, which would indicate a mechan-
ical problem with the theodolite. We found exactly the same
behaviour when re-evaluating data taken 1 year earlier with
the same theodolite. We could produce a similar effect by
sticking magnetically soft material to the alidade of a good
theodolite.

www.geosci-instrum-method-data-syst.net/7/1/2018/ Geosci. Instrum. Method. Data Syst., 7, 1–9, 2018
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Figure 3. Panel (a) shows conventionally measured baseline values of the H component in NGK in blue. The red points show results
obtained with the new method. Calculated error bars allow their quality to be assessed. Red circles show baseline data which could be
improved, because typos in the data sheets could be identified and corrected. Panel (b) gives a scatter plot of residuals ri over magnetometer
readings Sreading,i , clearly showing an outlier.

Figure 4. Panel (a) shows unsystematically increased residuals of a certain measurement. This indicates magnetic cleanliness problems with
the operator. Panel (b) shows residuals which have a sinusoidal dependance of the pointing direction of the alidade (∼ sin(2 ·ϕ+α)). This
indicates a systematic problem with the instrument. Measurements with the sensor above the telescope are coloured in blue; else they are in
red. The green dots show the differences with respect to the fitted sin(2 ·ϕ+α) curve. No sin(ϕ+α) dependency is observed.

4.1.1 Avoiding problematic orientations close to the
magnet equator

In areas of the globe with a small magnetic inclination, i.e.
typically within 2000 km to the north and south of the mag-
netic equator, the conventional DI-flux procedure involves
vertical circle readings at steep telescope orientations. This is
not possible without zenith oculars mounted on the theodo-
lite. The new scheme circumvents this problem if the tilt an-
gle α (see former section) is sufficiently smaller than the in-
clination.

5 Discussion

We have been testing the new method for more than 1 year
at the Niemegk Observatory. A first test was applying the

new numeric evaluation to data produced with the conven-
tional scheme. In case of faultless data, we got exactly the
same result but this time with error bars. We also evaluated
partly corrupted data, which could not be treated convention-
ally. The method can still be used if one or even two out of
eight measurements have to be discarded. Investigation of the
residuals often allowed us to identify and correct typos in the
data sheet. A data set with the vertical reading set to 90 Gon
instead of 100 Gon, produced by a person who was used to
a degree scale, could be evaluated without problems. Fur-
thermore we found that the major advantage in observatory
routine is that several data sets measured on the same day can
be evaluated at once as a single data set. At observatories it
is good practice to repeat measurements several times. Eval-
uating them at once leads to a statistically firmer result and
facilitates the identification of outliers. Investigating the cal-

Geosci. Instrum. Method. Data Syst., 7, 1–9, 2018 www.geosci-instrum-method-data-syst.net/7/1/2018/



H.-P. Brunke and J. Matzka: Numerical evaluation 9

culated error bar allows measuring conditions to be assessed.
As shown in Fig. 3a we could identify a problem in magnetic
cleanliness in the first half of April. Figure 4a shows the re-
spective residuals. Measuring in more than the four principal
directions (see Fig. 4b) reveals properties of the DI theodo-
lite, which otherwise remain hidden. This gives a new per-
spective to assess a DI-flux theodolite. A simpler and less
error-prone measuring scheme was developed.

Code and data availability. The MATLAB source code imple-
menting the method presented above is available from GFZ Data
Services (Brunke, 2017). Test data sets are provided along with the
source code.
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