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Abstract. Identification of spatial distribution of lithology
as a function of position and scale is a very critical job for
lithology modelling in industry. Wavelet transform (WT) is
an efficacious and powerful mathematical tool for time (po-
sition) and frequency (scale) localization. It has numerous
advantages over Fourier transform (FT) to obtain frequency
and time information of a signal. Initially continuous wavelet
transform (CWT) was applied on gamma ray logs for identi-
fication of lithofacies distribution, and later discrete wavelet
transform (DWT) was applied on density logs to identify the
fracture zones. In this study the data were taken from two
different well sites (well 1039 and well 1043) of the Costa
Rica convergent margin, Central America. The CWT analy-
sis provides four major sedimentary layers terminated with a
concordant igneous intrusion passing through both the wells.
In addition, the wavelet-based fractal analysis (WBFA) tech-
nique was applied on identified sedimentary successions, and
fractal-dimension (FD) values were calculated for every suc-
cession to know the presence and distribution of fractures.
We found that the second and third successions have a high
FD value, whereas the first and fourth successions have a low
FD value. These high values may be due to the presence of
abundant shale content and low-energy environments in the
sedimentary successions.

1 Introduction

Manual interpretations of well log signals, which have very
noisy and highly fluctuations in nature, are quite diffi-
cult and require more experience and sophisticated tech-
niques/software. These difficulties are minimized by a kind

of wavelet transform (WT) method. In our study continu-
ous wavelet transform (CWT) is tested on generated syn-
thetic signals and applied to field data. The analysed results
prove that the CWT is highly suitable in geophysical log sig-
nals, whereas the conventional fast Fourier transform (FFT)
fails in this case because it considers the whole signal in a
stationary form. Though WT provides unambiguous results
in analysing the noisy and non-stationary signals, its effi-
ciency in extracting the information from the signal was seen
through its wavelet coefficients (Liu and Jian, 2010) with
wavelet scalogram.

A number of publication have come to identify the lithofa-
cies boundary using mother wavelet transform and Fourier
transform, amongst other techniques (Chandrasekhar and
Rao, 2012; Coconi et al., 2010; Dashtian et al., 2011; Javid
and Tokhmechi, 2012; Mansinha et al., 1997; Pinnegar and
Mansinha, 2003, 2004; Li et al., 2004, Pan et al., 2008; Zhang
et al., 2011; Singh, 2011; Singh et al., 2010; Stockwell et
al., 1996,2007; Sahimi and Hashemi, 2001; Tokhmechi et
al., 2009a, b; Yue et al., 2004; Zhang et al., 2011). Some other
authors have worked on WT to describe the scaling property
using magnetic susceptibility data (Fedi, 2003), and Bansal
et al., (2010) have determined the presence of fractures using
power law scaling behaviour of magnetic susceptibility and
density variation in continental crust.

In this paper, CWT and discrete wavelet transform (DWT)
are used separately for identifying the lithology using gamma
ray log data of well sites 1039 and 1043 obtained from the
Costa Rica convergent margin, Central America (Expedition
308 scientists, 2005), as shown in the geological and tectonic
map of Fig. 1. The detailed geology and tectonic setting of
the study area were discussed clearly by Case and Holcambe
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Figure 1. Geological and tectonic map of the Costa Rica convergent margin, Central America (modified after Case and Holcambe, 1980).

(1980). Moreover, the fracture zones present in some of the
sedimentary succession of both wells are analysed by DWT.
The DWT-analysed results give a significant linear relation-
ship between the fracture density and identified fractures
from water saturation logs, even though logging datasets do
not reflect clear signals of fracture zones. Additionally, the
wavelet-based fractal analysis (WBFA) technique was ap-
plied, and fractal dimension (FD) was calculated to charac-
terize the roughness of the fractures in some of the identified
sedimentary layers of both well sites 1039 and 1043. The ob-
tained results suggest that the second and third successions
have a high FD value, whereas the first and fourth succes-
sions have a low FD value. These high values may be due to
the presence of abundant shale content and low-energy envi-
ronments in the sedimentary successions. Thus the proposed
DWT technique acts as a microscope to clearly identify and

distinguish the high and low frequency of hidden log signals,
and fractal dimension is highly useful for characterizing the
fracture density and spatial distribution of fracture zones.

2 Mathematical background

2.1 Wavelet transform

Wavelet transform is a mathematical tool that can be
used to analyse both stationary and non-stationary signals
(Daubechies, 1990, 1992) and expand time series into time
frequency space. Therefore, this method can find localized
intermittent periodicities. For analysing stationary or non-
stationary signal, a proper mother wavelet has to be sub-
stituted and the operation of continuous wavelet transform
(CWT) proceeds as the convolution between time series of
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our interest. The Discrete wavelet transform (DWT) is very
useful in the case of noisy data. It compresses the data by re-
ducing noise and improves the resolution, whereas the appli-
cation of CWT prefers to extract the lithological feature from
data. As it exposes the signal to high- and low-frequency fil-
ters to form approximate and detailed coefficients, it traces
out the abrupt changes in the signal. Basically, in geophysical
well logs the abrupt change corresponds to its own individ-
ual parameter changes, which provide us more information
about the subsurface stratigraphy. This methodology pertain-
ing to DWT allows us to locate the high-frequency changes
immersed in the log which cannot be identified manually. For
example, a gamma ray log is a good lithology indicator, but
in certain conditions it fluctuates highly in nature. This na-
ture sometimes perturbs its evaluation. Apart from lithology
identification, DWT provides an advantage in analysing the
fracture identification. Choice of mother wavelet is an im-
portant factor for analysing the non-stationary signal. Here
we have applied and tested a kind of mother wavelet on well
log signals to select the optimum wavelet tools, in which the
Coiflet 4 wavelet provides better results.

In this method, our analysis is based on linearity between
the logarithm of wavelet coefficients (logσ ) and scale. Re-
gression coefficients R2 for all log signals from each well
have been calculated, and a linear fit was obtained for the
Coiflet 4 wavelet. The wavelets do not give a significant
change in wavelet coefficients to identify stratigraphy bound-
ary. Thus the Coiflet 4 wavelet is best for analysis of this well
log data.

2.1.1 Continuous wavelet transform

The concept of continuous wavelet transform can be ex-
plained by a basic equation given below:

W (a,b)=
1
an

∫
∞

−∞

f (x)ϕ

(
x− b

a

)
dx, (1)

where f (x) is the time series of our interest; ϕ(x) is the
mother wavelet; a is the scaling parameter, which is the in-
verse of frequency; b is the translation parameter directly
proportional to time; and n is the normalizing parameter,
which is equal to 1 (say). The scaling parameter “a” is de-
fined in terms of frequency as

F =
Fc

a ·1
,

and the variance of wavelet coefficients follows a power law
relation with the scale is defined as

v = xh.

Here F is the frequency and Fc is the centre frequency
of the wavelets, 1 is the sampling interval, v is the vari-
ance of wavelet coefficients, x is the scale, and h is the
holder/wavelet exponent.

The holder/wavelet exponent provides the measure of
roughness/smoothness. If the holder exponent values are
high, it accounts for smoothness, whereas low holder expo-
nent values emphasize more roughness. After obtaining the
holder exponent, it can be substituted in the equation given
below to obtain the fractal-dimension value:

2D = 5−h,

where D is the FD that is computed using the holder expo-
nent and the variance of wavelet coefficient known as WBFA.

2.1.2 Discrete wavelet transform

A one-dimensional discrete wavelet transform has been car-
ried out in this task as per the datasets, which are discrete
and one-dimensional. For the construction of DWT, one sets
a = 2j and b = 2jk, where j and k are both integers. One-
dimensional DWT is given by the following equation:

Dj (k)= 2−
j
2

∫
∞

−∞

f (t)ϕ
(

2−j t − k
)

dt, (2)

where f (t) is the time series of our interest and k =

1,2,3, . . ., n, where n is the discrete data array of maximum
size. Time series data of our interest are decomposed to ap-
proximate and detailed coefficients, providing both lower-
and higher-frequency information.

3 Results and discussions

3.1 Application to synthetic data

A synthetic signal is generated using a sinusoid function
(sin2πf t) with three different frequencies: 3, 5, and 10 Hz.
The CWT is applied on a generated synthetic signal without
noise and also on signals with 25 % Gaussian white noise.
The result obtained using signal without noise and with noise
are shown in Fig. 2a and b, respectively. As the signal is
free from noise, thus possessing only its own frequencies, the
mathematical tools did not pose any difficulty, and the infor-
mation required is derived without any ambiguity. When the
same signal is analysed by the above-mentioned techniques
after mixing noise, it provides large differences in the results,
which are shown in Fig. 2b. The CWT provides an accept-
able picture in analysing the non-stationary as well as the
same non-stationary signal mixed with noise. CWT removes
the ambiguity not only by forming wavelet modulus max-
ima but also through its wavelet coefficients. Also it provides
a picture of the time–frequency localization in interpretable
form. An advantage pertaining to wavelet transform is that
the wavelet coefficients record more reliable information of
the signal even if it is noisy. Thus CWT proves to be a good
tool for identification of lithology in well logs, and it can be
useful in all circumstances to derive information in the sig-
nal.
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Figure 2. (a) The continuous wavelet transform (CWT) using syn-
thetic time series data and (b) the CWT of synthetic noisy time se-
ries data.

Generally, porosity logs are used for this approach, and
the fluctuating nature of the porosity logs can be correlated
with both pores distribution and the fracture (major as well
as several microfractures) as well. DWT differentiates both
fractures and the characteristics of the pores in the detailed
coefficients (Sahimi and Hashemi, 2001). For demonstration
of the techniques, we have generated two types of synthetic
well logs: (i) assuming a well site is fractureless and (ii) as-
suming a well site is fractured. Now wavelet detail coeffi-
cients (WDCs) for both well site are calculated as shown
in Fig. 3. The highly differentiable features/signals are ob-
served in Fig. 3d. We observed from WDC analysis that will
be containing highly differentiable features in terms of spikes
or local maxima as shown in Fig. 3d. The noisy data points
pertaining to the uniform distribution constitute both low
and high values in comparison with surrounding data points.
DWT differentiates these particular locations by means of a
spike irrespective of the magnitude of the data points which
are replaced. As DWT works as low- and high-frequency fil-
ters, detailed and approximate coefficients are produced.

Figure 3. (a) Synthetic well log data over the fractureless well site,
(b) discrete wavelet detail coefficient (DWC) of the fractureless
well site, (c) synthetic well log data over the fractured well site,
and (d) DWC of the fractured well site.

3.2 Application of field data: Costa Rica convergent
margin, Central America

The Costa Rica convergent margin in Central America is a
subduction zone due to the convergence of the Cocos and
Caribbean plates. Figure 4a shows the bathymetry map, and
Fig. 4b shows the location of well sites and the seismic depth
section of the study area. The seismic-migration section over
the region shows well sites 1039, 1040, and 1043 (Fig. 4b).
In our study, gamma ray and density log data are taken for
analysis from the well sites 1039 and 1043, whereas the
site 1040 is omitted because it does not pass through cer-
tain major litho-units. Conventional techniques such as fast
Fourier transform fail to provide the time–frequency local-
ization (Pan et al., 2008). In order to solve these problems,
the wavelet transform is applied to find out the proper time–
frequency localization. Our study is confined to mainly three
parts: (i) lithological/lithofacies identification using gamma
ray logs by CWT because the gamma ray signals exhibit
sharp spikes which are predictable due to the presence of in-
terbedded ash layers as shown in Fig. 7a and b; (ii) spatial
distribution of fracture identification using density logs by
using DWT (Fig. 8b); and (iii) fracture density estimation by
fractal dimension using WBFA, which reflects the presence
of fractures in lithofacies (Table 1). Finally the analysed re-
sults were correlated with available core samples (Expedition
308 scientists, 2005). Well site 1039 is taken as the reference,
and lithology identified through wavelet transform is corre-
lated with site 1043.

The results obtained from CWT prove the lithological suc-
cessions. This result is significant in a certain scale range
only. Since scale is the inverse of frequency, the small scales
correspond to high-frequency components and the large
scales correspond to small-frequency components. Wavelet
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Figure 4. (a) Bathymetry map with an interval of 20 m (b), seismic depth section along with the well site of the study area (after Moritz et
al., 2000).

analysis of a signal on a small scale shows the very small
changes, which may be associated with noise, and analysis
on a large scale shows the outspread view of signal. Multi-
scale analysis has played an important role in computation
of wavelet coefficients (Dimri et al., 2005). The scale is lin-
ear in a particular range determined by log(var(coefficients))
versus log(scale) as shown in Fig. 5.

Those stratigraphic interfaces at site 1039 (Fig. 6) that also
appear at site 1043 were analysed by CWT (Fig. 7) after hav-
ing disruptions in the middle. It is observed that the sedi-
mentary successions at site 1039 over the subducted Cocos

Plate continue through site 1043 without any disruption situ-
ated over the overriding Caribbean Plate. The locations of the
wells and the continuity of the sedimentary successions exist-
ing at both sites were traced by the correlation of the wavelet
scalogram (Fig. 8). The left side of Fig. 8 (site 1039) shows
the upper sedimentary succession of 20 m thickness, which
consists of dark olive green diatomaceous ooze with an ash
layer, and a second sedimentary layer of 64 m thickness (20–
84 m), which consists of dark olive green diatomaceous ooze
with the absence of ash of graded sand. The third sedimen-
tary formation of 76 m thickness (84–160 m) is distinguished
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Table 1. FD values of the appropriate lithology identified, as well as the circled depth range and its appropriate fractal-dimension values,
showing deviation from the reference site 1039.

Lithofacies Depth range Fractal dimension Coefficient of
(m) determination, R2 (%)

Well 1039 Well 1043 Well 1039 Well 1043 Well 1039 Well 1043

Shale with interbedded ash layer 20–80 60–130 1.21 1.22 99.441 99.5988
Shaly sandstone 80–160 130–260 1.36 1.43 99.3234 99.3375
Sandy shale with interbedded ash layer 160–210 260–315 1.26 1.44 99.0514 98.8141
Sandstone 210–330 315–430 1.49 1.39 98.8141 98.791
Gabbroic sill 330–400 430–450 1.20 1.20 99.1356 96.96441

Figure 5. Scale of interest showing variance of wavelet coefficients
versus scale of gamma ray of well sites 1039 and 1043.

Figure 6. Continuous wavelet transform (CWT) using gamma ray
signal and the wavelet coefficient at scale 32 of the gamma ray log
of well site 1039.

by dark olive grey silty clay with an ash layer downward
with increasing calcareous clay and decreasing biogenic sed-
iments, and the fourth layer of 50 m thickness (160–210 m) is
rich in ivory-coloured siliceous nannofossil ooze interbedded
with calcareous clay. Finally the fourth sedimentary layer
varies from 210 to 378 m, consisting of nannofossil ooze with

Figure 7. Continuous wavelet transform (CWT) using gamma ray
signal and the wavelet coefficient at scale 32 of the gamma ray log
of well site 1043.

a minor ash layer and increasing interbedded siliceous ooze
(Expedition 308 Scientists, 2005). On the right side of the
Fig. 8 (site 1043), the thickness of the sedimentary succes-
sion above the décollement is 60 m, belonging to the overrid-
ing plate, which mainly consists of volcanic ash and minor
interbedding of silt and sand. The upper sedimentary layer
of well 1039 is partially present in well 1043, while the sec-
ond layer of well 1039 is present and ranges in depth from
60 to 130 m of well 1043. The third and fourth layers men-
tioned in well 1039 are also identified in well 1043, and these
depth ranges are 130–260 and 260–310 m, respectively. Thus
the analyses suggest that the Cocos Plate is being subducted
under the Caribbean Plate.

In order to identify the presence of fractures locations,
the DWT was applied to the density log of both well 1039
and well 1043 as shown in Fig. 9. According to Sahimi and
Hashemi (2001), the DWT gives the scale of WDC that de-
pends on the log signals and smaller fractures which can be
significantly seen. If the scale of WDC becomes large, a sin-
gle fracture or a number of small-scale WDCs indicate series
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Figure 8. Lithology identification using the gamma ray log of well sites 1039 and 1043 by the lines drawn on the scalogram, and the
subduction zone in the areas obtained from the seismic-migration section.

Figure 9. (a) Discrete detailed and approximate coefficients; spikes obtained in detailed coefficients represent the possible fracture zone
at well site 1039. (b) The discrete detailed and approximate coefficients; the spikes obtained in detailed coefficients represent the possible
fracture zone at well site 1043.

of microfractures. The various scales of WDC at both sites of
log signals provide different porosity and fractures at various
depths, which is highlighted by circles in Fig. 9a and b.

Apart from this, FD values of sedimentary successions
identified by CWT were computed as shown in Table 1. The
FD values vary from 1.21 to 1.49 at well site 1039 and 1.20 to
1.44 at well site 1043. The coefficient of determination (R2

in percent) is also calculated for both wells. We observed the
FD and R2 values of both the wells; the sandy layer is the
transitional change between the sandy shale and shaly sand-
stone due to variation in FD values, and this variation corre-
sponds to a gradual transition between different sedimentary
environments here. Hence, the FD values can be used as a
well log attribute. Here the FD values are greater than 1.2,

which may emphasize the presence of high shale content and
low-energy environments in the depth range 210–330 m and
315–430 m in the presence of sandstone over the well sites
1039 and 1043, respectively (Fig. 10 and 11). López and
Aldana (2007) have given an explanation for the waveform
classifier at the Oritupano-A Field, Venezuela, using wavelet-
based fractal analysis as shown in Table 2. In spite of the
presence of sandstone, the FD values exceed 1.2, indicating
the dominance of shale content, and these values are found
to be inconsistent with reference site 1039 and site 1043. The
observations are also made from Table 1; the FD values 1.36–
1.26 at site 1039 and 1.43–1.44 at site 1043 in the depth range
of 80–210 and 130–315 m, respectively, have different values
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Figure 10. Variance of wavelet coefficients versus scale of density
log of well sites 1039 and 1043, which show consistent holder expo-
nent and fractal-dimension values, indicating that the wells contain
a similar sedimentary environment.

Figure 11. FD values of both well sites 1039 and 1043.

while having the same litho-units (Fig. 8). These particular
litho-units may suggest the presence of fracture zones.

4 Conclusions

In this paper, CWT for identification of lithofacies and DWT
for the identification of the fracture zones were applied using
well log data taken from two different well sites (1039 and
1043) of the Costa Rica convergent margin, Central America.
The CWT analysis provides four major sedimentary litho-
facies from the Holocene to the Pleistocene: (i) shale with
interbedded ash, (ii) shaly sandstone, (iii) sandy shale with
interbedded ash, and (iv) sandstone and the last gabbroic
sill from the late Pleistocene to middle Miocene. The traced
CWT wavelet scalogram of both well sites 1039 and 1043
shows the continuity of the sedimentary succession. This
confirms that the Cocos Plate is being subducted under the

Table 2. Ranges of fractal-dimension values.

Fractal dimension Interpretation
dimension

< 0.9 High sand content and high-
energy environment

0.9–1.2 Interbedded sand and shale
> 1.2 High shale content and low-

energy environment

Caribbean Plate. Apart from that, one of new techniques,
WBFA, was applied on every sedimentary layer, and fractal-
dimension (FD) values were calculated, revealing that the
second and third successions have high FD values, whereas
the first and fourth successions have low FD values. These
high values may be due to the presence of abundant shale
content and low-energy environments.

Data availability. The data were taken for study from the public-
domain Integrated Ocean Drilling Program (IODP) site.
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