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Abstract. A new modified elementary Levenberg–
Marquardt Algorithm (M-LMA) was used to minimise
backpropagation errors in training a backpropagation neural
network (BPNN) to predict the records related to the Chi-
Chi earthquake from four seismic stations: Station-TAP003,
Station-TAP005, Station-TCU084, and Station-TCU078
belonging to the Free Field Strong Earthquake Observation
Network, with the learning rates of 0.3, 0.05, 0.2, and
0.28, respectively. For these four recording stations, the
M-LMA has been shown to produce smaller predicted
errors compared to the Levenberg–Marquardt Algorithm
(LMA). A sudden predicted error could be an indicator
for Early Earthquake Warning (EEW), which indicated
the initiation of strong motion due to large earthquakes. A
trade-Off decision-making process with BPNN (TDPB),
using two alarms, adjusted the threshold of the magnitude
of predicted error without a mistaken alarm. With this
approach, it is unnecessary to consider the problems of
characterising the wave phases and pre-processing, and
does not require complex hardware; an existing seismic
monitoring network-covered research area was already
sufficient for these purposes.

1 Introduction

Optimal weight and bias calculation using backpropagation
correction in a neural network is commonly known as a back-
propagation neural network (BPNN; Fukushima, 1980). The
traditional Levenberg–Marquardt Algorithm (LMA; Leven-

berg, 1944) determines the desired minimum error by locat-
ing the minimum of a multivariate function of an independent
variable, expressed as the sum of the squares of nonlinear
real-valued functions. While the traditional LMA serves as a
backpropagation correction to train a BPNN, it cannot update
two independent variables simultaneously, i.e. weight and
bias. The process of updating the weight and bias simultane-
ously is called the parallel distributed processing (PDP; Fin-
sterle and Kowalsky, 2010). Such previous processing of the
LMA is not like the operation of a biological neuron, because
a biological neuron operates using PDP (Ferrier, 1876). How-
ever, LMA has become a popular method for general nonlin-
ear least-squares problems when encountering rank-deficient
nonlinear least squares – for example, Texas Hold’em and
Telltale Texas Hold’em – which have badly behaved data
and bad databases. When ill-conditioned data are encoun-
tered, the global minimum could be easily accessed after a
single completed iteration using LMA (Eslamian, 2014). In
this study, a new modified elementary Levenberg–Marquardt
Algorithm (M-LMA) with PDP is employed to determine the
desired minimum error in the backpropagation correction al-
gorithm of the BPNN to predict records of stations belonging
to a seismic monitoring network by implementing an adap-
tive learning rate, wherein the learning rate was varied de-
pending on the convergence of the objective function. Re-
lated to this topic, Naveen et al. (2010) used a type of clas-
sical LMA for inverse problems. Chen (2016) also used an-
other type of classical LMA with line search for nonlinear
equations. He corrected the computation style of the clas-
sical LMA, wherein at every iteration both an LMA step
and two additional approximating LMA steps were com-
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puted in order to save the Jacobian calculation and employ
line search for the step size. Their results were very effi-
cient and saved many Jacobian calculations. These methods
have modified the classical LMA, but their performances did
not employ PDP. An earthquake early warning (EEW) sys-
tem is a warning issued whenever an earthquake is detected.
The Japan Meteorological Agency (JMA) proposed an EEW
system, assisted by a combined system of accelerometers,
seismometers, communications, computers, and alarms de-
vised for regional notification of a strong earthquake while
it is in progress (Wu and Teng, 2002; Allen and Kanamori,
2003; Wu and Kanamori, 2008). Wu and Teng (2002) em-
ployed the Rapid Earthquake Information Release System
(RTD) and virtual subnetwork (VSN) system hardware for
EEW. The VSN system must wait for S-wave records from
remote stations, and therefore introduces problems for a clear
indication of the S wave. Allen and Kanamori (2003) used
data from previous earthquakes during the installation of the
Earthquake Alarm System (ElarmS) to serve the function of
an EEW in southern California. However, in cases where data
from previous earthquakes was not assembled correctly, the
effectiveness of the EEW system was compromised. Wu and
Kanamori (2008) reported that some parameters are neces-
sary for EEW, e.g. the magnitude and strength of shaking in
the initial P wave. Unfortunately, obtaining a clear indication
of the initial P wave is not trivial, similar to those outlined
by the work of Wu and Teng (2002). Failure to derive the ini-
tial P wave could affect the ability to conduct EEW for the
records of nearby recording stations. Pre-processing, such as
filtering out noise, could perhaps be used to assist in charac-
terising the initial P wave; however, this might also require
complex additional equipment.

Artificial neural networks could be used for the EEW;
Gentili and Michelini (2006) designed automatic picking
of P- and S-wave phases using artificial neural networks
for EEW by training the network using 342 earthquakes
recorded by 23 different stations (about 5000 traces). Pre-
processing was necessary for this method, and a failure could
affect the ability of an EEW if the traces have high noise.
Böse et al. (2008) developed a method for EEW called Pre-
SEIS (Pre-SEISmic) based on single-station observations ap-
plied to the Istanbul Earthquake Rapid Response and EEW
System (IERREWS). A two-layered feedforward neural net-
work was used to estimate the earthquake hypocenter loca-
tion, its moment magnitude, and the expansion of the evolv-
ing seismic rupture that could lead to clear alert maps before
the arrival of seismic waves. However, when the estimated
errors of the hypocenter location, moment magnitude, and
the expansion of the evolving seismic rupture were large, the
EEW as a whole would become uncertain due to the com-
plicated faults. Arjun and Kumar (2009) estimated the peak
ground acceleration (PGA), which could enhance the ability
of EEW by including seismic data from the earthquakes with
magnitudes greater than 5.0; however, earthquake magnitude
and hypocentral distance must be determined as precisely

as possible. The processing was also complicated. Kuyuk et
al. (2014) designed a network based on the EEW algorithm
for California called ElarmS-2. This algorithm had compli-
cated processes and the P-wave parameters must be trig-
gered. An artificial neural network was only processed with
clearly identified P-wave parameters.

For a special work, Wu et al. (2013) developed a robust au-
tomated decision process called the earthquake probability-
based automated decision-making (ePAD) framework. The
ePAD framework was used to broadcast a warning of the pre-
dicted location and magnitude shortly before an earthquake
hits a site as part of the EEW in California: CISN ShakeAl-
ert System. The ePAD framework is a robust automated de-
cision process; however, the location and magnitude shortly
before a large earthquake must be predicted, and then the
ePAD framework would make an action decision – these pro-
cesses were complicated. Moreover, probability in the ePAD
framework represents a log-normal distribution, which has
an exceedance probability and therefore ground motion pa-
rameters, e.g. return periods (Peres and Cancelliere, 2016)
and intensities require determination. However, these param-
eters are uncertain and difficult to identify (Pavlenko, 2017;
Yazdani et al., 2018). However, return periods were changed
recently due to some factors, e.g. global changes (Brown et
al., 2008; Read and Vogel, 2015), and therefore the return
period, as an estimated parameter for EEW was already un-
certain. The aim of this paper is to determine whether the
EEW can be improved with a better real-time and online per-
formable training method in BPNN than the past works as
stated previously. The microseismic data in the records are
firstly used as training data for the BPNN model; in each
station shown, the behaviour of microseismic data at each
station records the ray tracing path, allowing for the predic-
tion of upcoming signals. When the large predicted errors are
presented, then it is expected that the behaviour of the micro-
seismic data has changed because of this model reflecting the
pattern of microseismic data.

In this situation, it is possible that these errors record
the initiation of strong motions due to a large earthquake.
Therefore, this method could be used as part of the EEW
when the EEW is not validated for proximal receiver sta-
tions, e.g. some mistaken wave phases using other methods,
and the installation of additional seismic monitoring network
is unnecessary (Wu and Teng, 2002; Allen and Kanamori,
2003; Gentili and Michelini, 2006; Böse et al., 2008; Wu and
Kanamori, 2008; Kuyuk et al., 2014). The seismic receiver
stations belong to an existing seismic monitoring network
called the Free Field Strong Earthquake Observation Net-
work, and the P-, S-, and surface-wave phases in their records
may be identified (Central Weather Bureau, Taiwan, CWB;
Shin et al., 2002). Identifying the wave phase is unnecessary
when using the method in the study, as previous stated; ex-
pectedly, a certain anomalous predicted error may be an indi-
cator of the initiation of strong motions due to a large earth-
quake. The study examines the Chi-Chi earthquake, which
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on 21 September 1999 (Taiwan standard time, TST), caused
by a slip on the Chelungpu fault with corresponding param-
eters shown in Fig. 1. In this figure, four corresponding seis-
mic records of the stations are used by the BPNN for pre-
diction. These records are ground accelerations because they
are the primary concept used to define the seismic intensity
scales, which are used to represent the degree of seismic haz-
ard. Therefore, these records are used for EEW. Two corre-
sponding distant stations are close to Taipei City, and two
stations are close to the epicentre. For the two far stations,
one is Station-TAP003 with the record shown in Fig. 2a. This
station is located at the coordinates (25.08◦ N 121.45◦ E),
and another seismic station (Station-TAP005) is located at
(25.11◦ N 121.50◦ E). For the two closer stations, Station-
TCU084 is recorded in Fig. 2c at the coordinates (23.88◦ N
120.90◦ E). The other, Station-TCU078, is very close to the
epicentre, and its record is shown in Fig. 2d at coordinates
(23.81◦ N 120.84◦ E). The sampling rate of the records of
these four stations is 200 Hz.

2 Modified elementary Levenberg–Marquardt
Algorithm (M-LMA)

Lin (2017) performed the BPNN to predict the Physionet
EMG signals. In that study, a modified M-LMA served as
the backpropagation correction when training the BPNN. In
this section, a newer modified M-LMA, called a modified el-
ementary M-LMA, is introduced with the concept of an area
element (surface element) to extend the simulation, e.g. for
some surface problems instead of using line element in LMA,
which is a function of an independent variable as stated pre-
viously. This algorithm is a modified version of the M-LMA
used in Lin’s study (2017). The algorithm can be transformed
to a backpropagation correction in BPNN and is expected to
have smaller predicted errors, following Lin’s study (2017).
In three-dimensional space, represented by three Cartesian
coordinates (Descartes, 1667), a function of F is composed
of two independent variables x and y. For simulated sur-
face problems, the function F generates Zi = F(xi,yi), i =
1,2. . .. The initial codomain is i = 1; Zt = F(xt,yt) is de-
fined as a target output (Rumelhart and McClelland, 1986).
When xo and yo best satisfy the surface function to minimise
εT ε, the error is ε = Zi−Zt; δxy can be defined as an area el-
ement when simulating a surface. Therefore, a Taylor-series
expansion in two variations (δx and δy) approximates F as
follows;

F(x+ δx,y+ δy)≈ F(x,y)+ Jaδxy, (1)

where Ja is defined as the Jacobian matrix with ∂F (x,y)
∂xy

; a
series of (x1, y1), (x2, y2), and (x3, y3) is produced and
converges toward a local minimiser Zo

= F(xo,yo), called
an optimised output, so that ‖Zk −F(x+ δx,y+ δy)‖ ≈
‖ε− Jaδxy‖ can be estimated. When ε− Jaδxy is orthog-
onal to the column space of Ja and J Ta (ε− Jaδxy), I is de-

fined as an identity matrix. A formula is proposed to import
a parameter of r as follows:

δxy(rI)+ J Ta Jaδxy = J
T
a ε. (2)

Finally, Eq. (2) becomes

(Ir +Ha)(δxy)= J
T
a ε. (3)

Here, Ha = J
T
a Ja is defined as the approximated Hessian

matrix and rI= Ir , where r is the learning rate. In BPNN,
if the learning rate is too high, the system will either oscillate
about the true solution or it will diverge completely. If the
learning rate is too low, the system will take a long time to
converge on the final solution. In this study, based on the con-
cepts in this section, the parameters x and y can serve as the
weight and bias that can be simultaneously optimised with
PDP in a BPNN (Fukushima, 1980) because of the concept
of an area element, for a specially designated area element
δxy used to simulate a optimised surface. Therefore when an
x value is altered by a y value due to a specially designated
relationship, real simultaneity can be achieved to simulate
optimised area elements δxy (Abbena et al., 2006).

This means when an area element δxy is designated, then
the x,y values related to δxy are simultaneously designated.
Finally, an optimised surface is obtained from these ele-
ments. When simulating a surface with BPNN and LMA,
which is a function of a variable (Lin, 2017), it serves as a
backpropagation correction tool. A supposed initial x value
is offered and is updated by a weight. The bias updates the
y value. Both update processes are independent; without the
concept of an area element, these processes are not simul-
taneous. In this situation, a simulated surface is obtained
through simulating two nonlinear real-valued curves. One
corresponds to the weight-updated x value, another corre-
sponds to the y value, which has been updated by bias. There-
fore, LMA is not a PDP for simulating a surface.

3 Results

The results of many theoretical researches and engineering
works regarding simulations have shown that using a two
hidden layer network, with a small number of neurons in
each layer, can replace a large number of neurons in a hid-
den layer network (Wagarachchi and Karunananda, 2014).
The basic mathematical framework of an artificial neural net-
work was already introduced in section 2 of the study by
Lin (2017). Using the previously mentioned network frame-
work, microseismic data, from the four stations stated in
Sect. 1, serves as training data to build the new BPNN mod-
els after testing with different learning rates between 0 and
1, with an increment of 0.01, from which the magnitude of
upcoming microseismic data will be predicted. The M-LMA
introduced in Sect. 2 is used as the algorithm of backpropa-
gation correction. For comparison, the LMA was simultane-
ously used as the algorithm of backpropagation correction.
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Figure 1. The figure shows the position of Chelungpu fault (No. 11) on a map of Taiwan. Slip on this fault caused the Chi-Chi earthquake,
which occurred at 01:47:15 on 21 September 1999 (TST), at a depth of 8.00 km, with a Richter magnitude (ML) of 7.3. The epicentre was
at the coordinates (23.85◦ N, 120.82◦ E; Orange-coloured spot near the Chelungpu fault for No. 11). The four corresponding positions of the
research stations are shown by a dark blue coloured spot (Station-TAP003), baby blue coloured (Station-TAP005) spot, red coloured spot
(Station-TCU084) and dark red coloured spot (Station-TCU078) in this figure. Station-TCU078 is very close to the epicentre.

For both algorithm backpropagation, the initial weights and
the initial biases were set to random variables (Nguyen and
Widrow, 2009), and then feature scaling was performed (Bo
et al., 2006; Xie et al., 2016). Using feature scaling, the vari-
ables were in the range of 0 and 1 because the value of the
sigmoid function, called the activation function, which was
used to train the BPNN in this study, was in the range of 0 to
1. Randomly distributing the weights between 0 and 1 helped
prevent biases toward any particular output. If initialisation
was non-random, the network would consistently and pre-
maturely connect to certain outputs that were undermining
the training. The 1000 epochs were given for sample signals
in the seismic records (Sinha et al., 2010). The vertical com-
ponent of an earthquake was the most dangerous because the
earthquake forces mostly acted on the centre of gravity of
the sliding soil mass, and the influences of vertical ground
motions were on the seismic-induced displacements of the
structures (Sawicki et al., 2007; Zhao et al., 2017). There-
fore, these four vertical components, taken from the records,
were predicted by the previously mentioned parameters and
framework as a BPNN, using two hidden layers with 10 neu-
rons in each layer to update the weight and bias to minimise
backpropagation errors; these learning rates were found to be
the best for minimising backpropagation errors. In this situa-

tion during training processing, the weights and biases would
be updated, in which the neurons of BPNN were learning
through updating the weights and biases as a PDP. The target
output was defined as the size of the present signal at a last
time point in the part of microseismic data of the records.
The predicted error was defined as “target output subtracting
expected output”. Therefore, the present time of the expected
output, which was the predicted signal, was prior to the up-
coming real signal. An expected output with a minimised
predicted error was trended to build a BPNN model after
training. Finally, when a BPNN model was used to predict
the upcoming real signal, the designed instrument, includ-
ing the hardware and software, were controlled to validate
the present time of the predicted outputs between the two
real seismic signals. Therefore, in this study, the computing
speed of the designed instrument must be fast and stable to
achieve this goal, which usually depended on the selected
epoch in software (Sinha et al., 2010); for example, Mat-
lab programme and hardware or computer conditions such
as temperature of the CPU.

Figure 3a shows the predicted results of LMA and M-
LMA with the same learning rate of 0.3 for records from
Station-TAP003. The predicted results of M-LMA were bet-
ter, with smaller predicted errors, compared to the results of
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Figure 2. (a) This figure shows the vertical component of the Chi-Chi earthquake. The unit of the record is gal (cm s−2. This was recorded
by Station-TAP003 (25.08◦ N 121.45◦ E). (b) This figure shows the vertical component at Station-TAP005 (25.11◦ N 121.50◦ E) related
to the Chi-Chi earthquake. (c) This figure shows the vertical component at Station-TCU084 (23.88◦ N 120.90◦ E) related to the Chi-Chi
earthquake. (d) This figure shows the vertical component at Station-TCU078 (23.81◦ N 120.84◦ E) related to the Chi-Chi earthquake.

LMA. Simultaneously, M-LMA was also shown to have bet-
ter training with the microseismic data in the BPNN in or-
der to produce a better BPNN model, and its processing was
more similar to a biological neuron network with the PDP.
Usually when the predicted errors were too large, then the
predicting was lost, resulting in incorrect predicted upcoming
data. Therefore, the results of the M-LMA were more mean-
ingful and a significance was given for the predicting, when
any anomalous output occurred, e.g. sudden amplified out-
put with larger predicted error at approximately 9.5 s, prior
to the strong motion at about 15 s, with a warning time of
5.5 s. It should be a good idea to use larger predicted errors
as the predictors prior to the strong motion. Figure 3b pre-
sented the predicted results of the LMA and M-LMA, based
on the records from Station-TAP005 using the best learning
rate of 0.05 for both methods. The predicted results of the
M-LMA were superior to those of the LMA, with smaller
predicted errors. A sudden amplification in the output with

large predicted errors occurred at approximately 9 s, which
was nearly simultaneous with the start of strong motion and
the first strong motion alert. Supposedly, the larger predicted
error amplitudes, beginning from about 22 s, were seriously
dangerous and a second strong motion alarm was sent, with
a warning time of 13 s. Therefore, when predicting a record,
the results of predicting must be similar to the larger am-
plitudes of predicted errors to avoid an erroneous secondary
alarm. With this concept, a decision-making process using a
suitable threshold of predicted error magnitudes at each sta-
tion of the existing seismic monitoring network was neces-
sary as second alarms from different stations. A decision-
making process called “trade-off decision-making process
with BPNN (TDPB)” was performed. In this study, the past
records of the Chi-Chi earthquake were examined by TDPB,
and then the thresholds were subjectively determined.

Different stations had different thresholds, and the selec-
tions of their suitable thresholds for secondary alarms should
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Figure 3. (a) These two figures show the predicted results of the LMA and M-LMA of the signals shown in Fig. 2a, with a learning rate of
0.3. The predicted errors of the M-LMA are smaller than the LMA. The blue lines indicate the signals in Fig. 2a. The units are gal (cm s−2).
The green lines indicate the outputs of the BPNN. The red lines indicate the predicted errors. (b) These two figures show the predicted results
of the LMA and M-LMA of the signals shown in Figure 2b with a learning rate of 0.05. The predicted errors of the M-LMA are smaller.
The blue lines indicate the signals in Fig. 2b. The green lines indicate the outputs of the BPNN. The red lines indicate the predicted errors.
(c) The predicted results of the LMA and M-LMA of the signals shown in Fig. 2c using the same learning rate of 0.2. The predicted errors of
the M-LMA are smaller. The blue lines indicate the signals in Fig. 2c. The green lines indicate the outputs of BPNN. The red lines indicate
the predicted errors. (d) Predicted results of LMA and M-LMA for the signals shown in Fig. 2d, with a learning rate of 0.28. The predicted
errors of the M-LMA are smaller. The blue lines indicate the signals in Fig. 2d. The green lines indicate the outputs of the BPNN. The red
lines indicate the predicted errors. (e) These two figures show the predicted results of the LMA and M-LMA for the signals shown in Fig. 2d,
with a learning rate of 0.28. However, the records are predicted at 22.5 s, after the beginning of strong motions due to the Chi-Chi earthquake.
The predicted errors of the M-LMA are still smaller. The blue lines indicate the signals in Fig. 2d. The green lines indicate the outputs of the
BPNN. The red lines indicate the predicted errors.
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be calculated after being subject to significant testing in tan-
dem with many stations in the same existing seismic moni-
toring network, and after observing the behaviours of wave-
forms for these records according to the many past earth-
quakes, including related microseismic methods. These sug-
gested methods included nonlinear dynamic aseismic diag-
nosis (Xu et al., 2015; Ouazzani et al., 2017), surveying of
the consideration of local building damages from past events
under different local geological conditions that were evalu-
ated by the earthquake-resistant and seismic coefficients, and
seismic capacity evaluation of existing reinforced-concrete
buildings (Moustafa, 2015).

Figure 3c presented the predicted results of the LMA and
M-LMA from the proximal Station-TCU084 using the best
learning rate for both methods, determined to be 0.2. The
predicted results of the M-LMA had smaller predicted er-
rors. A sudden amplification in the output, with large pre-
dicted error, occurred at approximately 22 s, which was al-
most simultaneous with the start of strong ground motion.
The larger amplitudes beginning at about 34 s could be se-
riously dangerous and the warning time was 12 s. Figure 3d
presents the predicted results of the LMA and M-LMA from
near the Station-TCU078 using a best learning rate of 0.28
for both methods. The predicted results of the M-LMA, sim-
ilar to the other stations, also had smaller predicted errors. A
sudden amplification in the output, with large predicted er-
ror, occurred at approximately 21 s, which coincided with the
start of strong motion. When large amplitudes beginning at
around 27 s met real serious damages, and the warning time
became 6 s. The TDPB was applied to avoid sending a false
strong ground motion alarm, similarly to the aim previously
stated about the decision-making process (Rath et al., 2017).
For example, from the record of Station-TAP005 in Fig. 3b,
a smaller predicted error occurred at about 9 s with the first
alarm of strong motion, and through adjusting the threshold
of the magnitude of the predicted errors, an alarm was sent
at about 22 s, as previously stated, with a second alarm of
strong motion in order to have a warning time of 13 s. When
a sudden predicted error was first presented at a time point,
and no sudden predicted error appears later, it would become
misinformation, resulting in being defined as a “false alarm
(nuisance alarm)” (Rath et al., 2017). The TDPB was suitable
to solve this problem with a second alarm, similar to the pro-
cessing of Iervolino et al. (2007). Therefore, for this topic,
future research is necessary. If the seismic records record
strong ground motion at 22.5 s, without a microseismic data,
larger predicted errors would be found. Therefore, for this
case, the microseismic data were necessary to train a BPNN
model; the EEW was not validated without training micro-
seismic data because the sudden predicted error appeared and
it had no warning time. Figure 3e shows the predicted results
of the LMA and M-LMA on the signals of Station-TCU084
with the same learning rate of 0.28. As previously stated, the
processing of the method in this study was supplemented.
The 1000 epochs were selected for Matlab 2013a in Win-

dows 10 as the software, the computer hardware and seismic
records with the same sampling rate of 200 Hz.

This BPNN approach was well suited, and it was unnec-
essary to consider the problems of characterising the wave
phases and pre-processing, as stated previously. Furthermore,
BPNN is a mature technology, which is expected to develop
rapidly in the future, and does not require complex hardware.
Determining an initial location and magnitude of the event is
unnecessary for this technique. An existing seismic monitor-
ing network, for example, the Free Field Strong Earthquake
Observation Network of the CWB was already sufficient for
these purposes. At each station in the monitoring network,
adjusting the different leaning rates can minimise the pre-
dicted error. Therefore, all of the training records in the mon-
itoring network would cause different station to have differ-
ent learning rates. Finally, these BPNN models were built
using the past microseismic data for sending second alarms
through a decision-making process that belonged to post-
mortem predicting. Therefore the warning time was retrieved
afterwards. As stated previously, future research is necessary
to apply real-time microseismic data to build the correspond-
ing BPNN models. Such a nonlinear dynamic aseismic diag-
nosis may lead to TDPB so that warning time may be sub-
jectively determined as soon as possible. However, this study
has proposed this possibility for the EEW system which is
different from previous works in Sect. 1 with the results of
four stations.

4 Conclusions

M-LMA was determined to be better for predicting the ver-
tical component of the Chi-Chi earthquake, using a learning
rate of 0.3 for Station-TAP003. An anomalous output with
larger predicted error was detected at about 15 s, and a sud-
den amplified output with smaller predicted error occurred at
approximately 9.5 s prior to the strong motion due to the Chi-
Chi earthquake. The warning time was 5.5 s. However, from
the predicted results of the M-LMA with a learning rate of
0.05 related to Station-TAP005, a sudden amplified output
was detected with large predicted error. This occurred at ap-
proximately 9 s, almost simultaneously with the initiation of
strong motion. In this situation, using the TDPB , the large
amplitudes starting at about 22 s had a warning time of 13 s.
For Station-TCU084, which used a learning rate of 0.2, a
sudden amplified output, with large predicted error, occurred
at approximately 22 s, almost simultaneously with the start-
ing of strong motion. When the TDPB was applied to larger
amplitudes at about 34 s, the warning time became 12 s. For
Station-TCU078, with a learning rate of 0.28, a sudden am-
plified output with large predicted error occurred at approx-
imately 21 s. This coincided with the start of strong ground
motion. When the TDPB was applied with larger amplitudes
at about 27 s, and the warning time became 6 s. For these
four recording stations, the M-LMA has been shown to pro-
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duce smaller predicted errors. When predicting the records
for these four stations, the sudden predicted errors, just after
the microseismic data, could be considered as the beginning
of the strong motion. Therefore, this method could serve as
a real-time and online EEW tool, using an existing seismic
monitoring network to assess the occurring risk of strong mo-
tions caused by a large earthquake, and considering the prob-
lems of characterising the wave phases and pre-processing
was unnecessary. Complex hardware was also not required
for the set-up.
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