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Abstract. This study is the first trial to apply the method
of filtered back projection (FBP) to reconstruct three-
dimensional (3-D) bulk density images via cosmic-ray
muons. We also simulated three-dimensional reconstruction
image with dozens of muon radiographies for a volcano us-
ing the FBP method and evaluated its practicality.

The FBP method is widely used in X-ray and CT image re-
construction but has not been used in the field of muon radio-
graphy. One of the merits of using the FBP method instead
of the ordinary inversion method is that it does not require
an initial model, while ordinary inversion analysis needs an
initial model.

We also added new approximation factors by using data
on mountain topography in existing formulas to successfully
reduce systematic reconstruction errors. From a volcanic per-
spective, lidar is commonly used to measure and analyze
mountain topography.

We tested the performance and applicability to a model of
Omuroyama, a monogenetic scoria cone located in Shizuoka,
Japan. As a result, it was revealed that the density difference
between the original and reconstructed images depended on
the number of observation points and the accidental error
caused by muon statistics depended on the multiplication of
total effective area and exposure period.

Combining all of the above, we established how to evalu-
ate an observation plan for volcanos using dozens of muon
radiographies.

1 Introduction

1.1 Muon radiography and its principles

Muon radiography is a method that can be used to make a
map of the inner bulk density structures of large objects such
as volcanoes, archeological targets, and so on, using sec-
ondary cosmic-ray muons. These muons are generated by
the interactions between high-energy primary cosmic rays
(the main component is proton) and nuclei in the atmosphere.
The flux, energy spectrum, and the zenith angle dependence
of secondary cosmic-ray muons have been well researched
(e.g., Dorman, 2004; Honda et al., 2004; Patrignani et al.,
2016; Nishiyama et al., 2016). Their behavior including en-
ergy loss in various materials has also been investigated
(Groom et al., 2001). Therefore, when we assume “density
length”, which is the integral of multiplication of density and
material thickness, we can evaluate the number of penetrat-
ing muons. Muon detectors have been developed in the field
of particle physics and cosmic-ray physics. To make a bulk
density map, we need to measure not only the counts of pen-
etrating muons from the target, but also the direction. For
example, nuclear emulsion films (Morishima et al., 2017),
hodoscope by scintillating plastic bars (Jourde et al., 2013,
Ambrosino et al., 2015), glass resistive plate chambers (Am-
brosino et al., 2015), the multi-wire proportional chambers
(Oláh et al., 2018) are capable of doing that. By implement-
ing these muon detectors around the target, we can obtain
the penetrating muon flux for each direction from the de-
tector; then by comparing to the initial muon flux, we also
obtain the attenuation of muons for each directions. By us-
ing the topographic data of the target, it is possible to derive
the two-dimensional averaged bulk density from the muon
attenuation and the path length of the target material.
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The principle of X-ray radiography and muon radiography
is very similar. There are two significant differences between
these two methods: the first is the attenuation length. Typical
X-ray beams can penetrate the material in less than 1 m water
equivalent. Conversely, some muons can penetrate 1 km of
water equivalent because their kinetic energy is very high.
The second difference is the origin of the source. The source
of cosmic-ray muons is completely environmental and we
cannot control the flux while X-ray beams are generated by
accelerating the electron artificially. Typically, the number
of observed muons is much smaller than in ordinary X-ray
radiography.

The first significant result for volcanology was the two-
dimensional bulk density imaging of the shallow conduit
in Mt. Asama by Tanaka et al. (2007a). Several observa-
tions have been made since this research (e.g., Tanaka et al.,
2007b, 2014; Lesparre et al., 2012).

1.2 Three-dimensional bulk density imaging

The internal structure of volcanoes gives important informa-
tion for volcanology. For example, the shape of a shallow
conduit affects the eruption dynamics (Ida, 2007). However,
muon radiography by only one direction makes just a 2-D
image, and this density is the average of material along the
muon path direction. Therefore, if we find some contrast in
the 2-D density image, we cannot distinguish the actual po-
sition of this density anomaly along the muon path direction.
To observe the real conduit shape, it is necessary to obtain
the density image from different directions to reconstruct the
three-dimensional bulk density image.

Tanaka et al. (2010) attempted to observe the target from
two directions in Mt. Asama. Nishiyama et al. (2014, 2017)
conducted a 3-D density analysis in the Showa-Shinzan lava
dome, combined with gravity observation data, which is also
sensitive to density. Jourde et al. (2015) evaluated this joint-
inversion method between muon radiography and gravity,
and they observed and conducted 3-D density analyses by
using three-point muon radiography and gravity data (Rosas-
Carbajal et al., 2017). These previous studies required prior
information on internal density distribution because of insuf-
ficient observation data, and they were performed using the
inversion technique.

In this study, we propose the application of a 3-D den-
sity reconstruction analysis method using filtered back pro-
jection (FBP), which does not require prior information. In
the FBP method, it is possible to obtain a 3-D density distri-
bution from many projection images only without using the
inversion technique (Deans, 2007). This method is applied to
X-ray-computed tomography (CT), so it is possible to apply
to muon radiography data in principle. However, muon radio-
graphy differs from X-ray CT in three points. First, there is a
constraint on the number of observation points and position.
In X-ray CT, there are hundreds of observation points, and
each position is controllable. However, for muon radiogra-

Figure 1. A schematic of radon transform and the definition of pa-
rameters x, y, z, X, Z, β and D.

phy, we can only use several dozen points, and the positions
are limited because of topography. Second, the cosmic-ray
muon attenuation flux is not a simple exponential. Therefore,
the influence of muon statistical error depends on the results
of 3-D density, which is not trivial. Third, in the case of muon
radiography, typically the amount of signal is much less than
for X-ray because the source of cosmic-ray muons is com-
pletely environmental. Therefore, it is important to study the
features of the FBP method in the case of realistic observa-
tions with various numbers of muon radiographies. So we
should consider not only the reconstruction error of the FBP
method, but also how the error of muon statistics propagates
to the final image.

2 Method

The radon transform is used to obtain projection images from
all directions with respect to a density distribution. In muon
radiography, this corresponds to acquiring observation data
on density length from all directions. For three dimensions,
the radon transform p(X,Z,β) of an object with density
ρ(x,y,z) is given by the following:

p(X,Z,β)=

∫
ρ

(
−D sinβ +

t
√

1+X2+Z2

(X cosβ + sinβ),D cosβ +
t

√
1+X2+Z2

(X sinβ − cosβ),Z)dt, (1)

where x, y and z are the positions in a 3-D volume; X and
Z are the tangents of azimuth and elevation angle values, re-
spectively; β is the observation point position at a counter-
clockwise angle with respect to the y axis; and D is the dis-
tance between the observation point and the origin. Figure 1
shows the geometric definition for these parameters.

In a 3-D case, if observation data are cone-beam data and
observation points only exist on the circumference, a com-
plete inverse radon transform does not exist. Therefore, ap-
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proximation is needed. Feldkamp (1984) proposed one of the
best methods to approximate a solution with a small eleva-
tion angle in two dimensions. This approximation is written
as follows:

ρ (x,y,z)=
1
2

2π∫
0

dβ

XM∫
−XM

dX
D

L2
2

√
1+X2+Z2

p(X,Z0,β)h(X0−X), (2)

where Z0 = z/(D− x sinβ − y cosβ), L2 =

√
1+Z2

0(D+

x sinβ − y cosβ), X0 = (x cosβ + y sinβ)/L2 and h(X) are
a Ram–Lak filter (Ramachandran and Lakshminarayanan,
1971). A feature of this method is that it does not require
the shape or initial model of the object. However, when there
is a density change in the vertical direction, the accuracy of
the approximation decreases. In many examples of volcanic
muon radiography, we obtain the shape of the volcano by us-
ing other methods; therefore, the influence of changes in the
shape can improve the accuracy of the approximation. To es-
timate the elevation angle, we use the ratio of the path length
of the observed muon q (X,Z0,β) to the approximation of
qh (X,Z0,β) (see Fig. 2), which can be written as follows:

p′ (X,Z,β)=
qh (Xm,z,βn)

q (Xm,Z0n,βn)
p (X,Z,β), (3)

where p′ (X,Z,β) is the approximation of the density length
for the inverse radon transform. Finally, the reconstruction
calculation formula can be written as follows:

ρ (x,y,z)=

N∑
n=1

δβn

M∑
m=1

δXm

(
1−

Xm

D(βn)
δDn

)
(4)

D(βn)

L2
2

√
1+X2

m

p(Xm,Z0n,βn)

q (Xm,Z0n,βn)
qh (Xm,z,βn) h(X0−Xm) ,

where m, n is the index of X, β, respectively. We name this
the “path length normalization approximation”.

3 Simulation

In this section, we describe the specific components of the
simulation calculation. The simulation calculation is divided
into the following four steps:

1. parameter setup

2. simulation calculation of the observed muon counts

3. reconstruction calculation using data created in step 2

4. calculations for evaluating the reconstruction results.

Figure 2. Path length schematic and the approximation difference
between the Feldkamp approximation and the path length normal-
ization approximation. In the Feldkamp approximation, the approx-
imation density length is p′ =D/D′×p. In path length normaliza-
tion, the approximation density length is p′ = qh/q ×p.

3.1 Parameter setup for target and detector

We simulated and reconstructed the density structure of
Omuroyama, which is located in Shizuoka, Japan. We chose
this volcano for two reasons. First, this volcano is easily ob-
servable from all directions because there are no large struc-
tures around the surrounding muon shields in a topographical
view. Second, there are no occurrences of muon radiogra-
phy for these large scoria hills. Omuroyama is a large scoria
hill. We base the internal structural model of the large scoria
hill on observations at the time of its formation (Luhr and
Simkin, 1993). However, there are currently no direct exam-
ples of these observations.

Figure 3 shows the contour map of the Omuroyama model
used in the simulation. We assume that the x axis is in the
east–west direction, the y axis is in the north–south direction
and the origin is the summit.

We configure the internal density distribution similarly to
a checkerboard with a side length of 100 m and a density
of 1000 and 2000 kg m−3. We presume that the first internal
density distribution is defined as the original image and is
expressed as ρori(x,y,z).

The field of view was set from −2 to 2 (−63.4 to 63.4
in degrees) horizontally and 0 to 1 (0 to 45 in degrees) ver-
tically, and the angular resolution was set to 0.04 (2.3 in
degrees) in tangent. The observed muon statistics affect the
density reconstruction error: the number of muons observed
is proportional to the effective area of the device S and the
exposure period T . The total effective area and exposure pe-
riod ST of all muon devices was set as 1000 m2

· days. For
example, when the number of observation points is 16, each
ST per point is 1000/16= 62.5 m2

· days.
All observation points were assumed to be on the circum-

ference of radius D = 500 m placed at the center (x,y)=
(50 m, 50 m) of the mountain. The position of the observa-
tion points on the circumference is equal to the rotation an-
gle from the reference line. The position β(rad) of the ob-
servation point is defined counterclockwise from the straight
line parallel to the y axis and passes through the center
(x,y)= (50 m, 50 m) of the mountain. The value of β, on
which the observation point is placed, must always be 1 at
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Figure 3. (a) Omuroyama digital elevation model (DEM) data from
the Geospatial Information Authority of Japan. (b) The mountain
body model and observation points (when the number of observa-
tion points is 16). Based on the Omuroyama digital elevation model
(DEM) data from the Geospatial Information Authority of Japan.
All areas with altitudes of 420 m or less are adjusted to an altitude
of 420 m. The resolution is 5 m. The coordinate origin is at the sum-
mit (34.903056◦ N, 139.094444◦ E). Observation points are located
on the circumference with a radius of 500 m centered on a point that
was moved x= 50 m and y= 50 m from the summit.

β = 0, with the rest arranged at equal intervals along the cir-
cumference. For example, for the 16-observation-point case,
the position of the observation point is βn = 2π

16 n (n= 0, 1,...,
15). Figure 3 also shows the observation point arrangement
when there are 16 observation points.

Figure 4. An example of theoretical muon count simulation: (a) the
observation state at observation point A; (b) the theoretical muon
count observation at that time.

3.2 Simulation calculation of muon count observation

The simulation calculation of the observed number of muons
is mainly performed with the following procedures.

1. Calculate the density length p(X,Z,β) from
ρori (x,y,z) for each observation direction viewed
from the observation point.

2. Calculate the theoretical muon flux F0(X,Z,β) by us-
ing a previously prepared relationship among the muon
flux, elevation angle and penetration density length.
We used the cosmic-ray muon flux model of Honda et
al. (2004) and the muon energy attenuation of Groom et
al. (2001) for the calculations made here.

3. Calculate the theoretical muon count observation
N0(X,Z,β) by multiplying F0(X,Z,β) the device area
S of the observation period T and the solid angle of spa-
tial decomposition in the observation direction.

Figure 4a shows the observation state at observation point
A in Fig. 3, and Fig. 4b shows the theoretical muon count
observation N0(X,Z,β1) at that time.

It is not suitable to use the muon flux table in the region
of the 10 m water equivalent or less because of small change.
To avoid this region, we did not use these data when the path
length q (X,Z0,β) was 10 m or less.

3.3 Reconstruction calculation

The reconstruction calculation procedure is as follows:

1. Calculate the muon flux F0(X,Z,β) from the muon
number N0(X,Z,β), device shape and observation pe-
riod.
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2. Calculate the observed density length p(X,Z,β) from
F0(X,Z,β), as well as the relationship among the muon
flux, elevation angle and penetration density length.

3. In the path length normalization approximation, calcu-
late path length q (X,Z0,β) and approximation path
length

qh (X,Z0,β) from the shape information.

4. Calculate the density reconstructed image ρrec (x,y,z)

from the density length p(X,Z,β) by using Eq. (4).

4 Simulation results and evaluation

4.1 Systematic error evaluation

We evaluated the systematic error, which is defined as the
density difference between the original and reconstructed im-
ages at two points. First, we compared the differences be-
tween the methods for approximating the elevation angle
(i.e., Feldkamp approximation and path length normalization
approximation). Second, we quantified the relationship be-
tween the observation points and systematic errors.

4.1.1 The relationship between the observation points
and systematic errors

We modeled scenarios with 4, 8, 16, 32, 64, 128 and 256
observation points. The reconstruction results are shown in
Fig. 5. The systematic error δρsys (x,y,z) was defined as
δρsys (x,y,z)= ρrec (x,y,z)− ρori(x,y,z). To evaluate the
systematic error of all the reconstruction results, we calcu-
lated the average of δρsys (x,y,z) over the entire object area
as the average value of systematic error µsys, and the sample
standard deviation δρsys (x,y,z) was defined as the system-
atic error distribution σ sys.

The relationship between the number of observation points
and systematic error deviation σ sys for the entire mountain
body is shown in Fig. 6. As the number of observation points
increases, the systematic error decreases. At an angular reso-
lution of 0.04, there is almost no change at 64 or more points.
At a resolution of 0.02, there is no change with more than 128
points. Therefore, when paying attention to the method of ap-
proximating the elevation angle, there are a number of impli-
cations when the number of observation points is 64 or more.

4.1.2 Comparison of Feldkamp approximation and
path length normalization approximation

We simulated both the Feldkamp approximation and path
length normalization approximation. Figure 7 shows the re-
construction results of both approximations. In the Feldkamp
approximation, the average value of the systematic error µsys

was−0.22×103 kg m−3, whereas it was−0.01×103 kg m−3

for the path length normalization approximation.

4.2 Evaluation of accidental errors

We also evaluated the accidental error δρacc (x,y,z) in the
reconstruction results. This value is the density error caused
by the statistical error of muon count N(X,Z,β1). We as-
sumed that N0(X,Z,β) follows a Poisson distribution. We
generated 500 types of values with errors assigned, accord-
ing to the Poisson distribution (in the following, referred to
as “muon statistical error”) of N0(X,Z,β). This is referred
to as muon count with statistical error N stat

j (X,Z,β) (j = 1
to 500). Here, the index “j” represents the trial of different
seeds of random numbers set toN stat

j (X,Z,β) for everyX,Z
and β.

The accidental error δρacc (x,y,z) was defined as follows:

δρacc (x,y,z)=

√√√√ 1
J − 1

J∑
j=1

{
δρrec
j (x,y,z)− δρrec (x,y,z)

}2
.

Figure 8a, b and c show the spatial distribution of the acci-
dental errors. The accidental error did not depend on the lo-
cation in the plane. The accidental error was smaller in a sec-
tion with higher altitude, i.e., a section with a large elevation
angle at observation. Moreover, we saw this trend regardless
of the number of observation points.

We defined the average of δρacc (x,y,z) over the entire
object area as the average systematic error value µacc, and
the sample standard deviation of δρacc (x,y,z) was taken as
the accidental error distribution σ acc. Even if the number of
observation points increased, no significant changes were ob-
served in the accidental error.

5 Discussion

5.1 Limit of systematic errors

In Fig. 6, the systematic error does not converge to zero even
if the number of observation points increases to more than
200. The observation point position β is represented by a
counterclockwise rotation (see Fig. 1 definition of parame-
ters). The interval of β is the angular resolution of the ob-
servation point. Increasing the number of observation points
is equivalent to increasing the angular resolution of β. When
comparing the resolution ofX with the resolution of β for the
64-point observation, the resolution of β is 360/64= 5.6◦,
the angular resolution is 2.3◦ and the resolution of β is lower
than X. However, for 256 points, the angular resolution of β
is 1.4◦, which is higher than the angular resolution ofX. Fig-
ure 6 shows that the systematic error converges near the num-
ber of observation points when the resolution of β exceeds
the resolution ofX. These results indicate that the systematic
error depends on the poor resolutions of both X and β.
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Figure 5. An example of the reconstruction results. All plots were calculated with the results from path length normalized approximation. The
altitude of each section is 490 m. Plots are only from the mountains. (a) Original image: ρori(x,y,z); (b) reconstruction image: ρrec(x,y,z);
(c) systematic error: δρsys(x,y,z); (d) δρsys histogram: the relative frequency of systematic error. The mean of this plot is µsys, and the
sample standard deviation is σ sys.

Figure 6. The relationship between the number of observation
points and the systematic error deviation σ sys.

5.2 Influence of path length on approximation

Why is the average systematic error value different between
the Feldkamp approximation and path length normalization
approximation? For a volcano with a structure similar to
Omuroyama, which is cone shaped with a crater on the sum-
mit, the length of the muon path and the elevation angle tend
to be shorter than the path length estimated in the horizon-
tal plane (see Fig. 2). In the path length normalization ap-
proximation, given that the approximation is made with the
path length as a reference, the difference in path length is not
important in the Feldkamp approximation; however, the dif-

ference in path length is not taken into consideration and is
influenced by the change in the path length. As a result, in
the Feldkamp approximation, the average value of the sys-
tematic error is negative because of the presence of results
with short path lengths.

5.3 Elevation angle dependence of accidental errors

Why does the accidental error δρacc become smaller as the
elevation section increases? The accidental error δρacc oc-
curs as a result of muon statistical error. The muon statistical
error follows a Poisson distribution. As the number of ob-
served muons increases, the muon statistical error becomes
relatively small. Conversely, the muon flux increases as the
elevation angle increases. In a section with high altitude, the
reconstruction calculation uses both data with a large eleva-
tion angle and data with a large number of observed muons,
thus reducing the accidental error.

5.4 Relation between muon counts and accidental
errors

We performed these simulations under the condition that the
total effective area of the observation device is equal. For
a 16-point observation, ST per point is 62.5 m2

· days; for a
32-point observation, the device area S per point is 2 times
greater at 31.25 m2

· days. Nevertheless, the results for the
final accidental error values did not depend on the number
of observation points (see Table 1). In Eq. (4), the opera-
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Figure 7. A comparison of the Feldkamp approximation and path length normalization approximation.

Table 1. The relationship among the number of observation points, systematic error deviation σ sys (kg m−3) and mean accidental error
µacc (kg m−3) on each “z” cross section.

The number of
observation points 450 m 470 m 490 m 510 m 530 m 550 m 570 m

4
σ sys
× 103 (kg m−3) 1.10 1.05 0.91 0.89 1.23 0.81 0.46

µacc
× 103 (kg m−3) 0.23 0.15 0.11 0.07 0.04 0.02 0.01

8
σ sys
× 103 (kg m−3) 0.74 0.73 0.65 0.59 0.75 0.48 0.36

µacc
× 103 (kg m−3) 0.24 0.16 0.11 0.07 0.04 0.02 0.01

16
σ sys
× 103 (kg cm−3) 0.48 0.50 0.37 0.39 0.45 0.41 0.39

µacc
× 103 (kg m−3) 0.24 0.16 0.11 0.07 0.04 0.02 0.01

32
σ sys
× 103 (kg m−3) 0.35 0.33 0.25 0.27 0.33 0.42 0.37

µacc
× 103 (kg m−3) 0.24 0.16 0.11 0.07 0.04 0.02 0.01

64
σ sys
× 103 (kg m−3) 0.21 0.28 0.18 0.23 0.29 0.39 0.38

µacc
× 103 (kg m−3) 0.24 0.16 0.11 0.07 0.04 0.02 0.01

tor is
N∑
n=1

, where N is the number of observation points, and

the factor pc (Xm,Z0n,βn) corresponds to the number of ob-
served muons. p doubles if N is divided by 2 because the
effective area also doubles. As a result of the calculation,
ρ (x,y,z) in Eq. (4) remains the same for every x, y and
z value (i.e., each voxel). This is why the accidental error is
nearly identical between the four-point observation and 64-
point observation.

This discussion is able to apply for actual observation with
any muon detector type. In the case of an emulsion-type de-
tector, it is easy to divide the effective area S. In the case of
hodoscope-type detectors, we can divide the exposure period
T by moving the detector to another observation point (e.g.,
Tanaka, 2016).

5.5 Evaluation of observation plan

We summarized systematic error and accidental error for
Omuroyama and ST= 1000 m2

· days in Table 1. We can
consider the better conditions of observation from this ta-
ble. In this table, systematic error is larger than accidental
error, excluding the case of 64 points and the 450 m cross
section. When the number of observation points is 4 to 32,
ST= 1000 m2

· days is sufficient, but in the case of 64 points,
it is better to use more STs.

5.6 Limit of this simulation

In this evaluation, the observation points were arranged in a
circular orbit. In the future, it is necessary to study more re-
alistic observation point placements. For example, it is diffi-
cult to put the observation points on the same plane or in the
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Figure 8. (A). Reconstruction results on a z= 490 m cross
section. (a) Original image: ρori(x,y,z); (b) reconstruction
image:ρrec(x,y,z); (c) systematic error: δρsys(x,y,z); (d) acci-
dental error: δρacc(x,y,z).

same interval of β because of topography. We should also
work these cases as a next step.

6 Conclusions

We simulated the systematic error of the 3-D density struc-
ture of Omuroyama volcano by using several muon detectors
via the FBP method with and without information on moun-
tain topography.

(i) Systematic error, which is defined as the density differ-
ence between the original and reconstructed images in
each voxel internal mountain, depends on the angular
resolution of the muon detectors and the number of ob-
servation points.

(ii) By comparing the systematic error with and without in-
formation on mountain topography, the systematic error
deviations are nearly identical. However, the mean value
of systematic error becomes more precise in the former

Figure 8. (B). Reconstruction of results on a y = 150 m cross sec-
tion.

Figure 8. (C). Reconstruction results across z= 490 m and y =
150 m cross sections. The green lines represent the original im-
age (ρori(x,y = 150,z= 490)), the blue points represent the re-
construction results with no accidental errors (ρrec(x,y = 150,z=
490)) and the red error bar indicates the accidental errors
(δρacc(x,y = 150,z= 490)).
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case; i.e., the value is more precise when a new method
of approximation of path length normalization is used.

In addition, we studied the propagation of muon statistics to
the final reconstruction results. By assuming that the multi-
plication of total effective area and exposure period is fixed
and by changing only the number of observation points, the
accidental error caused by muon statistics does not change.
This accidental error depends only on the total muon statis-
tics for all observation points.

Considering the above, we established how to evaluate an
observation plan of dozens of muon radiographies.

7 Future prospects

We assumed that there are tens observation points in this
study. The actual observations, which involve many nuclear
emulsion muon detectors, were executed by Morishima et
al. (2017). Furthermore, Oláh et al. (2018) succeeded in de-
veloping a high-quality and inexpensive multi-wire propor-
tional chamber system. Considering such recent advances,
the CT volcanic observation of volcanoes by using numer-
ous muon detectors will be possible in the near future.
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