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Abstract. A method for the combined processing measure-
ments of the projections and the absolute magnitudes of geo-
magnetic field intensity vectors, based on mathematical tech-
nology of local approximation models, is proposed. The ap-
proach realized in this paper, based on the proposed method,
provides an increase in quality of the measurements of the
projections of the geomagnetic intensity vector. An algorithm
for the two-stage combined processing of the measurements
of projections and absolute magnitudes of geomagnetic field
intensity vectors is developed. The operation of the combined
processing algorithm was tested on models and observatory
measurements. The estimates of the combined processing al-
gorithm errors were obtained using statistical modelling. The
reduction of the root-mean-square error values was achieved
for the estimates of the projections of geomagnetic field in-
tensity vectors.

1 Introduction

In this article, a method and an algorithm for combined pro-
cessing measurements of the components (projections and
the absolute magnitudes) of geomagnetic field intensity vec-
tors is proposed. The approach realized in the paper, based
on the proposed method, provides an increase in quality of
the measurements of the projections of the geomagnetic in-
tensity vector. The considered measurements are carried out
by INTERMAGNET observatories equipped with systems of
vector and scalar magnetometers; the definitive type data are
used, containing systematic errors equal to zero (Mandea and

Korte, 2011; INTERMAGNET, 2018). The measurement er-
rors of vector and scalar magnetometers are represented by
random, normally distributed errors with zero expectation
and a predetermined variance. As usual, the measurement er-
rors of the projections of geomagnetic field intensity vectors
are significantly larger than the ones of the absolute vector
magnitudes performed by the mentioned measurement de-
vices. The formulation of the problem of reducing the noise
root-mean-square (RMS) error values in the geomagnetic
field intensity projection measurements is due to combined
processing of the values of all its components.

In the following research, the following steps are outlined:

1. A method for combined processing of the measure-
ments of projections and absolute magnitudes of geo-
magnetic field intensity vectors is formulated, based on
formation of the sequences of piecewise-constant local
models followed by their weighted averaging;

2. A two-stage algorithm for combined processing of the
measurements of projections and absolute magnitudes
of geomagnetic field intensity vectors is developed;

3. Testing of the algorithm on model and observatory data
is performed;

4. The estimates of the algorithm errors, calculated using
statistical modelling, are presented; the reduction of the
RMS noise errors for the estimates of the geomagnetic
field vector projections is proved.

The material in this research paper is intended for specialists
(magnetologists) engaged in digital processing of geomag-
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netic field measurements. The need to reduce noise errors in
estimates of the projections of the geomagnetic field inten-
sity vectors measured by vector magnetometers arises in a
number of technical and scientific applications. For instance,
technogenic disturbances can affect the geomagnetic obser-
vatory hardware, affecting vector and scalar magnetometers
differently: as a rule, the noise errors from vector magne-
tometers occurring due to such interference are greater than
the noise errors from scalar magnetometers. The decrease in
noise errors from vector magnetometers is necessary, e.g. for
calculation of the gradients of the projections of the geomag-
netic field intensity vectors in the navigation problems.

Nowadays the reduction of errors for vector magnetome-
ters (with certain assumptions) is achieved using optimiza-
tion of the calibration from scalar magnetometers (Merrayo
et al., 2000; Olsen et al., 2003) or refinement of calibra-
tion characteristics (Soborov et al., 2008) based on special
mathematical processing. In the measurement systems con-
sidered in this paper, in fact, parallel measurements are per-
formed; a possible algorithm providing the decrease in errors
for such measurements can be formed based on Kalman fil-
ters (Shakhtarin, 2008). However, due to the peculiarities of
this problem, the construction of the resulting non-linear fil-
ters is associated with certain problems due to the inaccura-
cies of linearization and the accepted hypothesis concerning
the type of initial intensity vector function. In other research
(Soloviev et al., 2018), joint processing of vector and scalar
magnetometer measurements aimed at improving the cali-
bration accuracy of the so-called baseline, which only indi-
rectly provides the considered reduction in errors. The com-
bined processing of measurements of projections and abso-
lute magnitudes of geomagnetic field intensity vectors pro-
posed in this paper is significantly free from the mentioned
problems.

2 A method for combined processing of measurements
of projections and absolute magnitudes of
geomagnetic field intensity vectors

Let H1 (T i), H2 (T i), H3 (T i), and H0 (T i)=√
H 2

1 (T i)+H
2
2 (T i)+H

2
3 (T i) be the initial functions

for the projections and absolute magnitudes of the geomag-
netic field intensity vectors; we assume that Y1 (T i), Y2 (T i),
Y3 (T i), and Y0 (T i) are their values registered by vector
and scalar magnetometers, i = 0,1, . . .,Nf− 1; the sampling
interval T = 1 s; 1 s measurements from INTERMAGNET
observatories are analysed in this study. For n= 0, . . .,3,
we represent the noise errors of the measurement values
Wn (T i) in the form of uncorrelated, normally distributed
random values with zero mathematical expectations and
some variances. Such a representation of errors is, to a large
extent, valid for cases of large technogenic noises that can
occur when geomagnetic measurements are carried out.
We consider, with some assumptions, that the spectrum of

random components for the functions of the geomagnetic
field is concentrated almost entirely in the low-frequency
domain, and the spectrum of random measurement errors is
concentrated in the high-frequency domain.

We assume that the measurements, the initial functions,
and the errors are related by linear additive dependences:

Yn (T i)=Hn (T i)+Wn (T i) , n= 0, . . .,3.

Using the specified observation values Yn (T i), we demand
the determination of the estimates Y ◦1 (T i), Y

◦

2 (T i), and
Y ◦3 (T i), where i = 0,1, . . .,Nf−1, that would be close to the
initial functions of the intensity vector projections. We per-
form the combined processing for the projections and magni-
tudes of the geomagnetic field intensity vectors in two stages.

At the first stage, on the main interval with the points
i = 0,1, . . .,Nf− 1, we introduce the N -point sliding local
intervals with limiting points N1j , N2j , and the sliding step
Nd as well as the quantity of sliding intervals m0.

N1j =Nd (j − 1) , N2j =N1j +N − 1,

j = 1, . . .,m0. (1)

To simplify the considerations, we require the relations of
multiplicity mN =Nf and Ndmd =N ; here, if m and md are
integers, then m0 =md(m− 1)+ 1.

For a sliding interval with a number j , we define the
model functions of a form YM1

(
c1j ,T i

)
, YM2

(
c2j ,T i

)
, and

YM3

(
c3j ,T i

)
; here, cnj is the vectors of model parameters,

n= 1, 2, 3. These model functions can be, in particular, poly-
nomial, piecewise constant, piecewise linear, etc. The size of
local intervals determines the approximation errors. At small
N there will be large fluctuation errors, and at large N there
will be large systematic approximation errors.

Based on the above-defined measured values, models, and
the maximum likelihood method (Kramer, 1975), we define
the local functional S(cjYj ) which determines the measure
of closeness for local measurements and models, similar to
Getmanov (2013) as the sum of the four functionals:

S0
(
c1j ,c2j ,c3j ,Y0j

)
=

N2j∑
i=N1j

Y0j (T i)−

√√√√ 3∑
r=1

Y 2
Mr

(
crj ,T i

)2

Sn
(
cnj ,Ynj

)
=

N2j∑
i=N1j

(
Ynj (T i)−YMn

(
cnj ,T i

))2
,

n= 1,2,3,

S
(
cj ,Yj

)
= S0

(
c1j ,c2j ,c3j ,Y0j

)
+

3∑
n=1

Sn
(
cnj ,Ynj

)
. (2)

Here, cTj = (c
T
1j c

T
2j ,c

T
3j ) and Y Tj = (Y

T
1jY

T
2j ,Y

T
3j ) are the pa-

rameter and value vectors related to the j th local interval.
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Taking into account the assumption of errors in measure-
ments, we carry out the identification of the optimal esti-
mates of the model parameters c◦j using the solutions of the
sequence of optimization problems for local functionals:

c◦j = arg
{
S(cj ,Yj )

}
, j = 1, . . .,m0,

c◦T = (c◦T1 ,c◦T2 ,c◦T3 ). (3)

We perform the construction of sliding local models in an
obvious way by assuming n= 1, 2, 3, and j = 1, . . .,m0.

Y ◦nj (T i)= YMn

(
c◦nj ,T i

)
, N1j ≤ i ≤N2j ,

Y ◦nj (T i)= 0, 0≤ i < N1j , N2j < i ≤Nf− 1. (4)

At the second stage we introduce the unit functions Ej (T i),
equal to zero outside of local sliding intervals, add them to-
gether to get E(T i), and calculate the sequence of weighting
coefficients R(T i):

Ej (T i)= 1, N1j ≤ i ≤N2j , Ej (T i)= 0,

0≤ i < N1j , N2j < i ≤Nf− 1;

E(T i)=

m0∑
j=1

Ej (T i) , R (T i)= 1/E (T i) ,

i = 0,1, . . .,Nf− 1. (5)

Let us perform the weighting averaging using Eq. (5) for the
sum of the sliding local model sequence (Getmanov et al.,
2015).

Y ◦n (T i)= R(T i)

m0∑
j=1

Y ◦nj (T i) (6)

We calculate the estimates Y ◦n (T i) and i = 0,1, . . .,Nf− 1,
where n= 1, 2, 3, based on linear operations in Eq. (6) cor-
responding to the second stage.

The method of combined two-step processing of the val-
ues of the projections and the absolute magnitudes of ge-
omagnetic field intensity vectors consists of the sequential
execution of the first and second stages in accordance with
Eqs. (2)–(6).

3 An algorithm for two-stage processing of
measurements of projections and absolute
magnitudes of geomagnetic field intensity vectors for
piecewise-constant models

Let us build the local intervals using Eq. (1) and define
the local models on them as piecewise-constant functions
YMn

(
cnj ,T i

)
= cnj , j = 1, . . .,m0, and N1j ≤ i ≤N2j . In

this case it is obvious that the initial functions for geomag-
netic field vector projections must be approximately constant
at local intervals with duration NT . The local interval can be

expanded if we treat piecewise-constant functions as local
models. Let us formulate the equation for local functionals:

S
(
cj ,Yj

)
=

3∑
n=1

 N2j∑
i=N1j

(
Ynj (T i)− cnj

)2

+

N2j∑
i=N1j

(
Y0j (T i)−

√
c2

1j + c
2
2j + c

2
3j

)2
 . (7)

We differentiate Eq. (7) with respect to cnj , equate the deriva-
tives to zero, and get the necessary conditions for an ex-
tremum in the form of a system of three non-linear algebraic
equations as a result:

∂S
(
cj ,Yj

)
∂cnj

=

∑N2j
i=N1j

Ynj (T i)− 2Ncnj

+

cnj
∑N2j
i=N1j

Y0j (T i)√
c2

1j + c
2
2j + c

2
3j

= 0,

n= 1,2,3.

In this case, an exact analytical solution to this system is pos-
sible. Omitting the calculations, we obtain expressions for
local estimates, j = 1, . . .,m0:

c◦nj =
1

2N1+

∑N2j
r=N1j

Y0j (T r)√(∑N2j
r=N1j

Y1j (T r)

)2

+

(∑N2j
r=N1j

Y2j (T r)

)2

+

(∑N2j
r=N1j

Y3j (T r)

)2


∑N2j

i=N1j
Ynj (T i) , (8)

where n= 1, 2, 3, and get the piecewise-constant functions
for local estimates Y ◦n (T i)= c

◦
nj

, N1j ≤ i ≤N2j , Y ◦n (T i)=
0, 0≤ i < N1j , N2j < i ≤Nf− 1, and n= 1, 2, 3, using
Eq. (8) according to Eq. (4); let us present them as the re-
alization of the first stage.

Weighted averaging of sequences of piecewise-constant
local estimates and the calculations of the estimate functions
Y ◦n (T i) for the second stage are performed using Eqs. (5)
and (6).

4 Testing of the algorithm for combined processing on
model and observatory measurements

4.1 Testing on model data

The developed algorithm for combined processing was tested
on model measurements. Initial model functions for the pro-
jections of the geomagnetic intensity vectorHMGn(T i) were
presented as quadratic functions; the model function for the
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absolute vector magnitude HMG0(T i) was calculated based
on HMGn(T i), n= 1, 2, 3.

HMGn (T i)= a0,n+ a1,nT i+ a2,n(T i)
2,

HMG0 (T i)=

√
H 2
MG1

(T i)+H 2
MG2

(T i)+H 2
MG3

(T i),

and i = 0,1, . . .,Nf− 1. The noise error functions Wn(T i)

and n= 0, 1, 2, 3 were modelled using normally distributed
values with zero mathematical expectation and the variances
σ 2

1 = σ
2
2 = σ

2
3 = σ

2 and σ 2
0 . The model values of the pro-

jections the absolute magnitude of the intensity vector were
represented as sums:

HMn (T i)=HMGn (T i)+Wn(T i),

i = 0,1, . . .,Nf− 1, (9)

where n= 0, 1, 2, 3. The following parameter values
for the model functions were assigned: a0,1 = 30000,
a1,1 = 0.4206, a2,1 =−0.0040, a0,2 = 4300.4,
a1,2 = a1,2 =−0.4252, α2,2 = 0.0043, a0,3 = 4089.5,
a1,3 = 0.5013, α2,3 =−0.0056, and T = 1 s. Model mea-
surement values HMn (T i) were the input of Eq. (8) of the
algorithm for combined processing based on piecewise-
constant models.

The case of local intervals without sliding was consid-
ered, with the number of points N , N1j =N(j − 1) and
N2j =N1j +N − 1, where j = 1, . . .,m and mN =Nf. The
local estimates H ◦nj = c

◦

j , where j = 1, . . .,m, were calcu-
lated, and the sequences of piecewise constant estimates
H ◦Ln(T i), n= 1, 2, 3, corresponding to the first processing
stage, were formed.

For a sliding local intervals case with the number of points
N , the sliding step Nd was selected, as well as the num-
ber of sliding local intervals m0. Local estimates H ◦nj = c

◦

j ,
j = 1, . . .,m0, and the estimates of functionsH ◦nj (T i), where
n= 1, 2, 3 and i = 0,1, . . .,Nf−1, corresponding to the first
processing stage, were calculated. Next, the second stage was
performed where the estimates H ◦Sn(T i) were found.

For testing, the following values were selected: Nf = 96,
N = 12, m= 8, Nd = 1, m0 = 84, σ = 1.0 nT, and σ0 =

0.5 nT. In Fig. 1, the calculation results are displayed for
HMG1 (Fig. 2a) andHMG2 (Fig. 2b),HMG3 (Fig. 2c); dashed
lines with index 1 depict the initial functions for the projec-
tions of the geomagnetic field intensity vector HMGn(T i);
lines with index 2 represent the noised measurements of
the projections of the geomagnetic field intensity HMn(T i);
piecewise-constant lines with index 3 represent the results of
the first stage H ◦Ln(T i); solid lines with index 4 show the
estimates H ◦Sn(T i) – the second-stage results with weighted
averaging.

The performed testing of the processing algorithm on
model data for a number of parameters led to the conclusion
that the second stage of processing reduces the RMS of the
errors of the first stage by 60 %–80 % on average.

4.2 Testing on real observatory geomagnetic data

The developed algorithm was tested using combined pro-
cessing of 1 s sampled geomagnetic measurements from the
INTERMAGNET observatory MBO (Mbour, Senegal). The
measurements were recorded on 2 January 2014, they be-
gan at 01:16:37 UT, and the length of a test fragment was
96 s (Nf = 96). For the processing algorithm,N = 12 and the
sliding step Nd = 1 were assigned.

In Fig. 2 the test results are shown for H1 (Fig. 2a), H2
(Fig. 2b), and H3 (Fig. 2c). Dashed lines with index 1 de-
pict the observatory measurements of the geomagnetic vec-
tor projections Hn(T i); piecewise-constant lines with index
2 are related to the first processing stage – the functions for
piecewise constant estimates H ◦Ln(T i) without sliding are
displayed; index 3 stands for the line corresponding to the
result of the second processing stage – the estimate with
weighted averaging H ◦Sn(T i) with sliding.

The results of testing the algorithm for combined process-
ing of measurements of projections and absolute magnitudes
of geomagnetic field intensity, displayed on Figs. 1 and 2,
proved their satisfactory performance.

5 Error estimation for the algorithm for combined
processing of measurements

The estimates of errors of the proposed algorithm for com-
bined processing were found using statistical modelling. The
first stage of combined processing was analysed.

The initial functions for the intensity vector projections
were assumed to be constant on a local interval. The values
Hn(k,m,H0,T i)=Hn(k,m,H0), i = 0,1, . . .,N−1, n= 1,
2, 3 were found using the following equations:

H1(k,m,H0)=H0 sinϑm, H2(k,m,H0)=H0 cosϑm sinϕk,

H3(k,m,H0)=H0 cosϑm cosϕk.

Here, H0 is an assigned absolute magnitude value, ϕkϑm
are the azimuthal and zenithal angles, θm =1ϑm, 1ϑ =
2π/M0,m and k are integer parameters,m= 0,1, . . .,M0−1,
ϕk =1ϕk, 1ϕ = 2π/K0, and k = 0,1, . . .,K0− 1.

For all possible values of indices k and m, the realiza-
tions of sequences of model normally distributed random
numbers with zero mathematical expectation Wn,s(k,m,T i)

were formed, where i = 0,1, . . .,N − 1, and n= 0, 1, 2, 3,
and s = 1, . . .,S0 is the number of realization for statistical
modelling. For n= 0, the variance determining the noise er-
ror level for a scalar magnetometer assumed the value σ 2

0 ; for
n= 1, 2, 3, the noise error variances for a vector magnetome-
ter assumed the value σ 2. For Hn(k,m,H0), Wn,s(k,m,T i),
and S0, random realizations were constructed:

Hn,s(k,m,H0, i)=Hn(k,m,H0)+Wn,s(k,m,T i),

i = 0,1, . . .,N − 1, n= 0,1,2,3, s = 1, . . .,S0.
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Figure 1. Results of testing the processing algorithm on model measurement data: 1 – initial model functions, 2 – noised model functions, 3
– first-stage result (piecewise-constant model estimates without sliding), and 4 – second-stage result (estimates with weighted averaging).

Figure 2. Results of testing the processing algorithm on observatory
measurement data: 1 – initial data, 2 – first-stage result ( piecewise
constant model estimates without sliding), and 3 – second-stage re-
sult (estimates with weighted averaging with sliding).

The results of the algorithm implementation for the first
stage – the estimates H ◦n,s(k,m,H0,N,σ,σ0), n= 1, 2, 3,
k = 0,1, . . .,K0− 1, m= 0,1, . . .,M0− 1, s = 1, . . .,andS0
– were calculated depending on the parameters H0,N,σ,σ0.
The error of the processing algorithm ε2

n(k,m,H0,N,σ,σ0)

was found using averaging over the number of realizations
for fixed n,k,, and m:

ε2
n(k,m,H0,N,σ,σ0)=

1
S0

S0∑
s=1

(Hn(k,m,H0)

−H ◦n,s(k,m,H0,N,σ,σ0)
)2
. (10)

The error described by Eq. (10) was averaged over the num-
ber of the absolute geomagnetic vector projections n= 1, 2,
3 and then over different k and m. The final formula for esti-
mating the error was the following:

ε2
f (H0,N,σ,σ0)=

1
K0M0

K0∑
k=1

M0∑
m=1

1
3

3∑
n=1

ε2
n(k,m,H0,N,σ,σ0). (11)

The results of the combined processing algorithm for the first
stage were compared with the results of the operation of a
possible linear filtering algorithm that was separately applied

www.geosci-instrum-method-data-syst.net/8/209/2019/ Geosci. Instrum. Method. Data Syst., 8, 209–215, 2019



214 V. G. Getmanov et al.: The processing of geomagnetic vector projections

to the recordings of vector magnetometer channels. The lin-
ear filtering algorithm in this case was represented by stan-
dard equations:

H ◦1n,s(k,m,H0,N,σ )=
1
N

N−1∑
i=0

Hn,s(k,m,H0, i). (12)

The error estimate ε2
1f(H0Nσ) for the linear filtering algo-

rithm was calculated similar to Eqs. (10) and (11).

ε2
1n(k,m,H0,N,σ )=

1
S0

S0∑
s=1

(Hn(k,m,H0)

−H ◦1n,s(k,m,H0,N,σ )
)2

ε2
1f(H0Nσ)=

1
K0M0

K0∑
k=1

M0∑
m=1

1
3

3∑
n=1

ε2
1n(k,m,H0,N,σ ). (13)

The efficiency of the proposed algorithm for combined pro-
cessing of measurements was estimated using the introduc-
tion of a relative decrease factor for the RMS error values
ρ(H0,N,σ,σ0):

ρ(H0,Nσ,σ0)=
ε2

f (H0,N,σ,σ0)

ε2
1f(H0,N,σ )

. (14)

For statistical modelling, the following values have been
assumed: H0 = 10 000 nT, N = 5, M0 = 50, K0 = 50, S0 =

100, σ0 = 0.5, 0.3, 0.1, 0.03, and σ = 0.156, 0.312, 0.625,
1.25, 2.50, 5.00, 10.0. Figure 3 displays the results of the
ρ(H0,N,σ,σ0) calculation depending on log2(σ/σ) and
σ = 0.156. Numbers 1, 2, 3, and 4 indicate the estimates for
σ0 = 0.5, 0.3, 0.1, and 0.03, respectively. The estimates of
the introduced factor made it possible to get an idea of the
effectiveness of the proposed processing.

Analysis of the graphs shows that, for a fixed value σ , the
introduced factor ρ decreases when σ0 decreases, which is
physically understandable. It is also seen that this factor tends
to limit values with increasing σ . For a fixedH0 , an increase
in N leads to a decrease in the factor ρ. The performed sta-
tistical modelling for a wide range of parameters shows that
the estimates for ρ are about 0.15–0.3, which indicates the
efficiency of the proposed combined processing.

6 Conclusions

The proposed method for combined processing of the mea-
surements of projections and absolute magnitudes of geo-
magnetic field intensity vectors and the corresponding two-
stage algorithm developed appear to be satisfactorily work-
able. The testing of the developed combined processing al-
gorithm on model and observatory measurement data proved
its efficiency.

Figure 3. Results of calculation of the relative decrease factors for
the errors: 1 – σ0 = 0.5; 2 – σ0 = 0.3; 3 – σ0 = 0.1; 4 – σ0 = 0.03.

The approach realized in this paper, based on the proposed
method, provides an increase in quality of the measurements
of the projections of the geomagnetic intensity vector, allow-
ing us to eliminate possible unwanted disturbances of artifi-
cial (anthropogenic) origin.

Statistical modelling for the developed algorithm for com-
bined processing of measurements shows that at the first
stage the relative decrease factor of RMS errors can reach
values of 0.15–0.3, and at the second stage the decrease in the
first-stage RMS errors can reach approximately 60 %–80 %.

Further reduction of the RMS noise errors can be imple-
mented based on combined processing using local piece-
wise linear models for the values of projections and absolute
magnitudes of geomagnetic field intensity vectors. The pro-
posed combined processing algorithm can be implemented
for many practically important tasks, in particular, when
optimizing the operation of three-component accelerometer
systems, three-component angular velocity sensors, or other
three-component data arranged in a similar way. The tech-
nique allows for processing of the data with sampling inter-
vals smaller than 1 s.

Code and data availability. The observatory geomagnetic data
used for the tests in our study are available at the INTERMAGNET
website (http://www.intermagnet.org; INTERMAGNET, 2018) as
magnetograms or as digital data files.
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