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Abstract. To promote the sharing and reutilization of geoan-
alytical data, various geoanalytical databases have been es-
tablished over the last 30 years. Data models, which form
the core of a database, are themselves the subjects of in-
tensive studies. Data models determine the contents stored
in the databases and applications of the databases. However,
most geoanalytical data models have been designed for spe-
cific geological applications, which has led to strong het-
erogeneity between databases. It is therefore difficult for re-
searchers to communicate and integrate geoanalytical data
between databases. In particular, every time a new database
is constructed, the time-consuming process of redesigning
a data model significantly increases the development cy-
cle. This study introduces a new data model that is uni-
versally applicable and highly efficient. The data model is
applied to various geoanalytical methods and correspond-
ing applications, and comprehensive analytical data contents
together with associated background metadata are summa-
rized and catalogued. Universal data attributes are then de-
signed based on these metadata, which means that the model
can be used for any geoanalytical database. Additionally, a
multi-dimensional data mode is adopted, providing geologi-
cal researchers with the ability to analyze geoanalytical data
from six or more dimensions with high efficiency. Part of
the model is implemented with the typical database system
(MySQL) and comprehensive comparison experiments with
existing geoanalytical data model are presented. The result
unambiguously proves that the data model developed in this
paper exceeds existing models in efficiency.

1 Introduction

Geoanalytical data include measurements of major and trace
elements, rare Earth elements (REEs), isotopes, and struc-
tures and morphology of geological samples analyzed by
various analytical instruments and techniques such as ICP
(inductively coupled plasma), LA-ICP-MS (laser ablation
inductively coupled plasma mass spectrometry), ICP-MS
(inductively coupled plasma mass spectrometry), EPMA
(electro-probe microanalyzer), SIMS (secondary ion mass
spectroscopy), SEM (scanning electron microscope), TEM
(transmission electron microscopy), XRF (X-ray fluores-
cence), and XRD (X-ray diffraction). Geoanalytical data ef-
fectively reflect the material composition, internal structure,
external characteristics, interaction, and evolution history of
the Earth and represent the most important support for geo-
logical researchers in their aim to understand the Earth and
exploit its resources for the survival and development of hu-
man society. Enormous financial, material, and human re-
sources have been invested into the geological surveys and
geoanalysis required to acquire more comprehensive and
abundant geoanalytical data. Over time, tremendous volumes
of geoanalytical data have been created, and these volumes
continue to increase at a high rate. It is of paramount im-
portance that these data are curated effectively and that ad-
equate background information, such as sample description,
sampling information, and analysis information, is included,
so that geological researchers can utilize the data according
to their requirements. This will also facilitate the reutiliza-
tion of the precious geoanalytical data. In addition, with the
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accumulation of large volumes of data, statistical analysis
and data mining can be conducted on these data to provide
a more comprehensive and advanced scientific understand-
ing of the Earth. Hence, a variety of geoanalytical databases
aimed at managing, sharing, and reutilizing geoanalytical in-
formation has been constructed and used as advanced tools
in geological studies. The analysis and comparison of exist-
ing geoanalytical data models, as well as the development
of improved models, are therefore a worthy and significant
study to be conducted. Over the last decades, several stud-
ies of geoanalytical data models have been conducted. As
early as 1977, Jeorge Van Trump and colleagues described
a data model for environmental geochemical surveying and
mineral resource exploration in the United States of America
(Jr and Miesch, 1977). Lehnert et al. (2000) suggested a data
model for the storage of global geochemical data of rocks.
Their data model provides a complete summary of essen-
tial geochemical data contents and a robust structure with a
relational database management system (RDBMS). Numer-
ous databases such as GEOROC (Geochemistry of Rocks
of the Oceans and Continents), NAVDAT (the North Ameri-
can Volcanic and Intrusive Rock Database), and PetDB (the
interactive web-based Petrological Database of the Ocean
Floor) have since been constructed based on this model, and
it is used by geological researches worldwide. In particular,
PetDB has been used for a considerable amount of high-
impact research such as Nature (Brandl et al., 2013; Carbotte
et al., 2013; Cheng et al., 2016; Dick and Zhou, 2014; Helo
et al., 2011; Hoernle et al., 2011; Kamenov et al., 2011; Kel-
ley, 2014; Samuel and King, 2014; Schlindwein and Schmid,
2016; Straub et al., 2009) and Science (Cottrell and Kel-
ley, 2013; Greber et al., 2017; Joy et al., 2012; Kelley and
Cottrell, 2009; Mcnutt et al., 2016). A limitation of exist-
ing geoanalytical data models is their specificity to particu-
lar applications or geological domains and their focus on the
description and curation of only a certain portion of geoan-
alytical data. For example, RU_CAGeochem is specifically
focused on major and trace element concentrations and Sr,
Nd, and Pb isotopic ratios of American volcanic rocks (Carr
et al., 2014). Another database is focused on lead isotopes
of copper ores from the southeastern Alps (Artioli et al.,
2016). Many other examples of similarly specific geoanalyti-
cal databases and associated models exist (e.g., Artioli et al.,
2016; Hellström, 2016; Lopes et al., 2014; Siegel et al., 2012;
Strong et al., 2016). The consequence of this development is
that each database exists as a separate island, and it is difficult
for researchers to communicate and integrate geoanalytical
data between databases. In particular, every time a database
is constructed, a data model has to be redesigned. This con-
sumes considerable amounts of time and prolongs the de-
velopment cycle. In addition, the vast majority of models
are designed based on relational models, which focus on the
construction of relations between different data categories.
When users query and utilize the geoanalytical data from
different dimensions, these types of models utilize compli-

cated joints between different tables to query the target data,
which decrease efficiency as the amount of data increases.
However, the exploration of such data models including the
background items has laid a solid foundation for later study
of advanced geoanalytical data models. At present, the devel-
opment of various new techniques provides us with the op-
portunities to design more comprehensive and advanced geo-
analytical data models. In this study, we introduce a novel,
universal, and efficient geoanalytical data model. First, we
provide an overview of geoanalytical methods and applica-
tions to summarize the geoanalytical data available. Then,
we design universal data attributes based on these data and
develop a multi-dimensional data model. Finally, we evalu-
ate the model to validate its efficiency.

2 Overview of geoanalytical data contents

In recent years, many new geoanalytical methods and in-
struments have been developed, creating novel kinds of data
(Linge et al., 2017). A truly universal data model should
have the ability to accommodate all kinds of geoanalytical
data. In addition, the data model should be capable of mak-
ing all stored data readily available for reutilization by ge-
ological researchers. In order to develop a model with such
capabilities, a comprehensive set of geoanalytical data, to-
gether with related background information required for re-
utilization of the data, was summarized and categorized, as
outlined below. First, analytical techniques and their appli-
cations were studied to comprehensively summarize geoana-
lytical measurement data. This process is outlined in Fig. 1.
Because of the great diversity of analytical methods and ge-
ological applications, Fig. 1 only shows a few examples to
indicate the method adopted in this paper. The five cate-
gories (namely, bulk analysis; microanalysis; isotope analy-
sis; morphology, structure, and valence analysis; and organic
analysis) were divided according to the analytical technique
used. In this way, data from each category were categorized
according to analytical instruments (e.g., SEM, SNM, and
EPMA for microanalysis). In the next step, the data were
grouped according to geological applications. The compre-
hensive list of geoanalytical measurement data items used
in the present study, compiled from a thorough literature re-
view, is presented in Fig. 2. In the case of bulk analysis, most
measurements ultimately provided major, trace, and ultra-
trace element concentration data. Microanalysis can yield
data of elemental concentrations in a microregion, as well as
structural information of geological samples acquired by sec-
ondary electron and backscattered electron techniques, com-
monly stored as image files. For geochronology and stable
isotopic analysis (GSI analysis), most measurement data are
isotopic ratios. For morphology, structure and valence analy-
sis (MSV analysis), the most common measurement data are
image files such as X-ray photoelectron spectroscopy (XPS)
spectra or XRD patterns. Organic analysis is a new analyt-
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Figure 1. Process of summarizing the geoanalytical data contents.

Figure 2. Lists of geoanalytical methods and measurement data items.

ical method which is used for the analysis of environmen-
tal geological samples. The most common application of this
method in the geological literature is the analysis of the 16
kinds of polycyclic aromatic hydrocarbons (PAHs) in soils.

Background information describing the analyzed samples
and data quality has to be incorporated, because it is indis-
pensable for proper evaluation, efficient recovery, and sort-
ing of the compiled data. Hence, background metadata are
summarized based on the investigations of the geological re-
searchers and the contents of existing databases (Adcock et
al., 2003; Lehnert et al., 2000). Table 1 lists details of the
background metadata used during the present study. In this
study, the background metadata are divided into three parts:
sample metadata provide geological researchers with infor-

Table 1. Background metadata of geoanalytical data.

Background metadata

Sample metadata sample type, sample name, sample
description

Sampling metadata sampling site description, longitude,
latitude, sampling methods, sam-
pling depth, sampling institution

Quality metadata laboratory name, project name, pub-
lish link, analytical method, analysts
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Figure 3. Multi-dimensional conceptual data model (CDM) for
geoanalytical data.

mation about geological materials, sampling metadata pro-
vide information about environmental conditions in the field,
and quality metadata allow geological researchers to make
an assessment of data quality and usability (Table 1). The
background metadata items listed in Table 1 are the most es-
sential information required for every kind of geoanalytical
measurement data. More specific attributes are not included
in our model.

Geoanalytical data modeling

This section outlines how the novel geoanalytical data model
was designed, utilizing the data summarized above. Despite
their limitations, the currently relational data mode is the
most commonly used pattern for geoanalytical data mod-
els. The relational data mode constructs relations between
each group of data within the database. This means that more
data categories inevitably lead to much more data relations,
increasing storage demands and the time required to query
the database. Compared to such conventional relational data
models (Beynon-Davies, 2004), multi-dimensional models
(MDMs), which are widely utilized during the development
of big data science and data mining, are single subject-
oriented sources for analyzing data based on various dimen-
sions (Niemi and Hirvonen, 2003). Multi-dimensional mod-
eling approaches share characteristics with fast analysis of
shared multi-dimensional information (FASMI). In particu-
lar, MDM offers the advantage of a relatively simple and
straightforward database design, which nevertheless supports
powerful analyses and is relatively well understood by the
end users (Hoberman, 2005). As a modeling framework,
MDM has a conceptual and a logical phase of design, com-
posed of a fact table and several dimension tables (Höpken
et al., 2013). Facts comprise numeric and additive character-
istics of the data, which can be accumulated along multiple
dimensions. Frequently, researchers are interested in analyz-
ing geoanalytical measurement data from different metadata

Figure 4. Logical data model (LDM) of the geoanalytical data
model.

perspectives. Hence, the MDM approach is ideally suited for
the design of geoanalytical data models. Here, the geoanalyt-
ical data are the fact data, and other background information
are dimension data. The use of the MDM modeling frame-
work applied in the present study will allow geological re-
searchers to rapidly analyze geoanalytical data based on nu-
merous metadata criteria.

2.1 Conceptual data model (CDM)

A conceptual data model (CDM) includes the definition of its
universal attributes and a rough design of its structure. It rep-
resents the primary phase of data model design, independent
from the detailed techniques of computer systems. Figure 3
presents the multi-dimensional CDM we developed for geo-
analytical data. Here, with the abstraction of universal con-
cepts present in geoanalytical data, the model becomes more
flexible and universally applicable. The geoanalytical data
are placed in the center of the model, in the form of a fact
table. The associated background information is categorized
and abstracted as various dimensions which are represented
by different axes in Fig. 3. The six dimensions of our CDM
are sample, analysis type, analytical methods, location, time,
and quality. This arrangement allows geological researchers
to analyze geoanalytical data from six different dimensions
or any combination thereof. The marks in each dimension
represent the detailed measurement conditions. The “n” di-
mension is an expansible dimension, which can be added ac-
cording to the specific model application.

2.2 Logical data model (LDM)

A logical data model (LDM) is a CDM written in uni-
fied modeling language (UML) (Evans et al., 2014). Logi-
cal model design leads to a logical scheme, defining objects,
attributes, and relationships (Chmura and Heumann, 2005).
The LDM scheme can be easily implemented by any DBMS.
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Figure 5. Physical data model (PDM) structure comparison with the Lehnert rock data model.

Figure 6. Comparison of insert and query operations in structured query languages (SQLs).

Figure 4 shows the LDM scheme designed for geoanalytical
data. Each box in the LDM represents an object, and items
in the box are its attributes. The relations between object are
represented with lines. There are three kinds of symbols asso-
ciated with the lines. The short line denotes “1”, the circle de-
notes “0” (which means “maybe”), and the triangle denotes
“many”. Lines and symbols define the relations between ob-
jects. The additional notation foreign key (FK) is added if
the attribute in one object uniquely identifies an attribute in
another object. For example, the sample ID in the geoana-
lytical data object is a foreign key of “sampleid” in the sam-
ple object, because they have the same value. By means of
this foreign key, the data contents of the two objects are con-
nected. For each object, a few extended attributes are added

(Extend_n in Fig. 4). This feature allows developers to add
database-specific attributes to this model, increasing its flex-
ibility and universal applicability.

3 Implementation and evaluation

In order to evaluate the performance of our model, we carried
out a comparison experiment with the widely used Lehnert
rock geochemical data model (Lehnert et al., 2000). In or-
der to conduct the experiment, a physical data model (PDM)
needed to be created with a database management system.
As RDBMS is the most common technique used in geoana-
lytical databases, MySQL, which is a widely used RDBMS,
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Figure 7. Time spent on data insert operations with increasing
amounts of data.

Figure 8. Time requirement for data queries (latitude and longi-
tude).

was adopted to implement the two models. A specific data
item (rock type: andesite; location: Sycamore Hall; latitude:
36.27.12◦ N, longitude: 83.34.12◦ W; institution: Jilin Uni-
versity; method: ICP-MS; SiO2:58.9; FiO2:1.13) was used
as test data and tables related to the data contents were im-
plemented. We analyzed the two models from two perspec-
tives: developers and users. For developers, the comparison
of the PDM structure is shown in Fig. 5, and query op-
eration descriptions are presented Fig. 6. The comparison
clearly indicates that the geoanalytical data model is more
succinct than rock data model and saves time and computer
resources. Three model performance indicators (insert time,
storage space usage, and retrieval time) were evaluated with
the increasing of amounts of data. The results are shown in
Figs. 7, 8, and 9, respectively. Figure 7 shows clearly that
the process of data insertion is considerably faster for the
geoanalytical data model when compared to the rock data
model. Figure 9 shows clearly that the storage space usage
is relatively less than rock data model. In the case of data
query (Fig. 8), the difference in time consumption is even
more striking. With an increasing amount of data items, the
query time of the geoanalytical data model remains very fast

Figure 9. Space usages of the two data models with increasing
amount of data items.

and efficient. In contrast, for the rock data model, query time
costs increased exponentially with the increasing amount of
data items.

4 Conclusions

The geoanalytical data model presented herein is flexible and
appropriate for a broad range of applications to geoanalytical
data. The model has the following general characteristics:

1. Its universality allows the model to accommodate any
type of geoanalytical data for various geological mate-
rials, as well as all significant metadata.

2. The adoption of a multi-dimensional data model frame-
work provides geological researchers with the ability to
analyze geoanalytical data from different dimensions.
In addition to the sample description and location cri-
teria commonly used in existed databases, this model
provides four additional query criteria (method, quality,
time, and analysis).

3. There are minimum data relations between different ob-
jects. Relations between different background metadata
objects have been avoided in order to construct robust
relations between background metadata and measure-
ment data. This increases the model’s efficiency when
geoanalytical data are inserted or queried while simul-
taneously decreasing its space usage.

It is hoped that the design of this model will allow for the uni-
fied construction of geoanalytical databases. The model en-
ables the accumulation and integration of significant amounts
of diverse geoanalytical data. By utilization of the big data
analysis techniques described in our study, geological re-
searchers could analyze geoanalytical data with high effi-
ciency and develop novel methods to conduct Earth science
studies.
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