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Abstract. Soil CO; efflux is the second-largest carbon flux
in terrestrial ecosystems. Its feedback to climate determines
model predictions of the land carbon sink, which is crucial to
understanding the future of the earth system. For understand-
ing and quantification, however, observations by the most
widely applied chamber measurement method need to be ag-
gregated to larger temporal and spatial scales. The aggrega-
tion is hampered by random error that is characterized by
occasionally large fluxes and variance heterogeneity that is
not properly accounted for under the typical assumption of
normally distributed fluxes. Therefore, we explored the ef-
fect of different distributional assumptions on the aggregated
fluxes. We tested the alternative assumption of lognormally
distributed random error in observed fluxes by aggregating
1 year of data of four neighboring automatic chambers at a
Mediterranean savanna-type site.

With the lognormal assumption, problems with error struc-
ture diminished, and more reasonable prediction intervals
were obtained. While the differences between distributional
assumptions diminished when aggregating data of single
chambers to an annual value, differences were important on
short timescales and were especially pronounced when ag-
gregating across chambers to plot level.

Hence we recommend as a good practice that researchers
report plot-level fluxes with uncertainties based on the log-
normal assumption. Model data integration studies should
compare predictions and observations of soil CO; efflux on
a log scale. This study provides methodology and guidance
that will improve the analysis of soil CO; efflux observations
and hence improve understanding of soil carbon cycling and
climate feedbacks.

1 Introduction

Instantaneous measurements of soil CO, efflux, such as those
made with automated respiration chambers, have gained im-
portance for understanding ecosystem carbon dynamics in
recent years (Phillips et al., 2016). Poor understanding of
the feedbacks of this flux to global change introduces large
uncertainties in the predicted terrestrial carbon sink and the
projection of the earth system (Friedlingstein et al., 2014).
Hence, observations and associated uncertainty estimates
at the ecosystem scale have the potential to better resolve
model structural uncertainty and predictive ability (Vargas
et al., 2010). Among measurement device enclosure types
and configuration, chambers represent the most widely used
approach for measuring pedon-scale soil CO, efflux (Liv-
ingston et al., 20006).

Derivation of ecosystem-scale CO; efflux, however, in-
volves aggregating data across several chambers and across
time. This aggregation poses problems in data analysis. Flux
measurements from several chambers, which are typically
representative of an area below 1 m?, need to be aggregated
to the plot level of hectares in order to compare them with
ecosystem respiration inferred from eddy-covariance-based
net land—atmosphere carbon fluxes (net ecosystem exchange,
NEE) (Laville et al., 1999; Christensen et al., 1996; Held
et al., 1990; Reth et al., 2005). Problems are indicated by the
widespread finding of higher values for aggregated soil CO»
efflux than NEE (Barba et al., 2018). Theoretically, upscaled
soil respiration should always be smaller than ecosystem res-
piration and NEE, because soil respiration is only a part of
ecosystem respiration, and NEE is always smaller than or
equal to ecosystem respiration (but also see Janssens et al.,
2001).
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One challenge is spatial heterogeneity paired with a
limited number of measurement locations, which together
constrain the precision of the plot-level aggregated flux
(Rodeghiero and Cescatti, 2008). Stronger spatial corre-
lations or stronger correlations of soil CO; efflux with
other more easily measurable spatially distributed variables
could help with upscaling. However, the differences between
chambers a few meters apart can be as great as between dis-
tant chambers (Giasson et al., 2013), and correlation with
soil moisture or plant activity is not sufficiently strong and
changes across seasons (Leon et al., 2014; Féti et al., 2016).

A second challenge is posed by a large component of ran-
dom error. It originates from intrinsic fine-scale process vari-
ation such as microbial metabolic pathways, gas diffusion, or
microbial population dynamics and, to a smaller extent, from
instrumentation error and flux calculations (Lavoie et al.,
2015; Pérez-Priego et al., 2015). Random error is usually
assumed to be normally distributed with constant variance;
however, violation of this assumption poses problems for
analysis and aggregation across space and time. A first prob-
lem is the increasing variance with increasing flux, which vi-
olates the assumption of homoscedasticity of variance, which
is the base of many statistical tests. A second problem is the
occurrence of strong tails, i.e., higher probability of large ab-
solute errors (Savage et al., 2008; Cueva et al., 2015; Lavoie
et al., 2015) compared to the normal assumption. This is of-
ten associated with hot spots and hot moments, i.e., locations
or times where large fluxes occur on a small scale (Leon
et al., 2014; Vargas et al., 2018). To overcome these prob-
lems, Savage et al. (2008) proposed using the Laplace distri-
bution. Whether this proposal is applicable depends on how
the data will be used. For instance, model data integration
studies can use the Laplace assumption by using a cost func-
tion that is based on the median absolute deviation rather than
the squared difference (Richardson et al., 2006). However,
other statistical methods still rely on the normal assump-
tion. For instance, using mixed-effects models (Pinheiro and
Bates, 2000; Zuur et al., 2009) in aggregating measurements
across several chambers requires the normal assumption for
a random effect to represent grouping in the data.

The error distribution model becomes important for stud-
ies of model data integration, inverse modeling, and data
assimilation (Zobitz et al., 2011; Wutzler and Carvalhais,
2014). In such studies one has to specify a cost function
that usually depends on the likelihood of the observations
given their uncertainties and the model prediction. The re-
sults of such studies often depend strongly on the choice
of the cost function (Schoups and Vrugt, 2010; Vrugt and
Sadegh, 2013). Using a cost function based on squared dif-
ferences corresponds to the normal assumption, while a cost
function based on the median absolute deviation corresponds
to the assumption of error terms following a Laplace distri-
bution (Richardson et al., 2006). A cost function based on the
squared difference of log-transformed predictions and obser-
vations corresponds to the lognormal assumption.
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In this study, we tackle this second challenge of analyzing
and aggregating flux data associated with random error. We
evaluate the assumption of random error being lognormally
distributed as an alternative to the assumption of additive ran-
dom error from a normal or Laplace distribution.

The lognormal distribution describes measurements with
a more or less skewed distribution. It is defined as a continu-
ous probability distribution of a random variable whose log-
arithm is normally distributed. Such distributions often arise
when values are not negative, such as the usual case with
soil CO, efflux that is mainly driven by autotrophic and het-
erotrophic respiration (but see Fa et al., 2016, and Roland
et al., 2013, for exceptions in alkaline low-organic-matter
soils). While the combination of complex additive processes
or the sum of random numbers leads to normally distributed
observations, a combination of multiplicative processes or
the product of random numbers leads to lognormal observa-
tions (Limpert et al., 2001) . With the lognormal assumption,
log-transforming observations allows further analysis using
the normal assumption.

The objectives of this study are, first, to demonstrate that
using the lognormal assumption leads to improved analysis
of soil CO, efflux and, second, to help readers to apply the
lognormal assumption to their own data.

Using observed fluxes of four automated soil CO, efflux
chambers of a Mediterranean tree—grass savanna ecosystem,
we compare the results of the lognormal approach to two tra-
ditional assumptions of normally or Laplace distributed ran-
dom error. We show that the lognormal approach diminishes
several problems: the lognormal approach leads to more rea-
sonable prediction intervals of aggregated fluxes while keep-
ing continuity of expected values with previously published
aggregated fluxes. Finally we discuss assumptions and the
implications of our findings.

2 Methods
2.1 Study site and measurement

Data were collected at the ES-LMa FLUXNET site near
Majadas de Tiétar, Extremadura, Spain (39°56'25.12" N,
5°46/28.70” W). In May of 2015, 16 semi-automated soil ef-
flux measurement chambers were installed in a stratified ran-
dom sampling design (Rodeghiero and Cescatti, 2008; Gi-
asson et al., 2013; Phillips et al., 2016) grouped into differ-
ent treatments and canopy positions. The chambers are an
in-house-developed stainless-steel design, connected to a LI-
820 (LI-COR, Lincoln, Nebraska, USA) measuring in a half-
hourly cycle. During this cycle one chamber at a time would
close for a 3 min measurement duration. While there were
16 chambers in all, only data from four chambers in the open
grassland stratum within the control plot are used for the pur-
poses of this paper. The aggregate across these four cham-
bers, here, is referred to as the plot-level estimate, although it
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only represents the open grassland and four chambers are not
enough to capture the full spatial variability. Fluxes and their
variance were computed from CO; concentration time se-
ries using the RespChamberProc R package (Sect. 2.8) by
estimating the initial slope of concentration increase. These
fluxes (plotted in Supplement 1) and associated variance are
the input data for this study. They are denoted by Rs; and
ogi in this paper. Data used in this paper range from Novem-
ber 2015 to November 2016. Additional details about the site
can be found in EI-Madany et al. (2018).

2.2 Distributional assumptions

Each measurement has uncertainty, and this uncertainty can
be characterized by a density distribution. For similar envi-
ronmental conditions, observed fluxes (Rs) scatter around a
basic flux (Rp). The noise originates from both instrumenta-
tion error (IE) and process variation (PR), a stochastic com-
ponent intrinsic to the measured soil system. While the non-
systematic component of IE is usually well described as a
normally distributed random variable, PR can be described
by a normal or Laplace distribution (Eq. 1),

Rs = Rp + €pr,add + €IE (1a)
€pR,add ~ norm (0, opR adq) or ~ Laplace(0, b) (1b)
g ~ norm(0, o1g), (o)

or alternatively with the lognormal distribution Eq. (2):

Rs = RB €pR,mult + €IE (2a)
€PR,mult ™~ lognorm(—az/Z, (TL2) (2b)
R =log(Rs) ~ log(Rp) + log(epr,mult) (2¢)

where € are error terms and opr add, b, and o, are scale pa-
rameters of their respective distributions. €pr myit 1S assumed
to be lognormally distributed with an expected value of 1.
€ig is usually small compared to Rp €pr muic (Lavoie et al.,
2015), and hence approximation (Eq. 2c) allows analysis
of log-transformed observations. If variance of IE increased
with flux magnitude, too, it could also be modeled by a log-
normal distribution; however, studies on chamber measure-
ment error did not show such an increasing pattern (Kutzbach
etal., 2007, Fig. 8), (Pérez-Priego et al., 2015, Figs. 3 and 4).

Equations (1) and (2c) are extreme cases of a hierarchical
model that accounts for both types of error (Appendix B).
The lognormal model (Eq. 2c¢) is sometimes applied without
further consideration when log-transforming observations to
counteract heteroscedasticity (e.g., Pennington et al., 2020).

2.3 Estimating random error

Error terms are the difference between observed fluxes and a
true basic flux. The true flux is unknown but can be estimated
by the average flux under similar environmental conditions.
A simple method of estimating the absolute error terms is
daily differencing, excluding days with and after rain events
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(Savage et al., 2008). This daily differencing method (Eq. 3),
also called the paired-observation approach, assumes that
records 24 h apart represent similar environmental conditions
and hence differences in the observed flux (Eq. 3) can be
used to estimate the random error. It includes both the non-
systematic component of IE and PR (Sect. 2.2).

€= (Rss— Rs124) /N2 3)

An alternative method is the lookup table approach (LUT).
It is commonly used in the marginal distribution sampling
method (Reichstein et al., 2005), a method used for filling
gaps in data from eddy covariance sensors (Wutzler et al.,
2018). When applied to soil CO; efflux observations in this
study, similar environmental conditions were determined by
the hour of the day (&1 h), temperature (3 °C), soil mois-
ture (+5 %), and a time window. The time window size was
increased from +1 to £3, 12, and 24 d until there were at
least five valid measurements to average across.

A third alternative is modeling the base flux by its rela-
tionship with ancillary observations, such as temperature. We
tried modeling the CO, efflux temperature relationship with
varying basal respiration (Gomez-Casanovas et al., 2013; Re-
ichstein et al., 2005). However, cross-validation showed that
this approach did not achieve good results for Rs at the
Majadas site, because correlation with temperature is gen-
erally weak at water-limited sites (Vargas et al., 2018; Rey
et al., 2011). Moreover, during dry periods small precipita-
tion events caused respiration pulses without observed con-
current increases in soil moisture at 5 cm soil depth, where
soil moisture sensors were located.

When using the lognormal assumption, daily differencing
was applied to the log-transformed observed fluxes, whereas
for the LUT approach the difference between observed and
mean flux was computed with the log-transformed values

log(epr,mui) = R —1og(Rs,LuT).
2.4 Estimating correlations in random error

The aggregation across time (Sect. 2.6) must take into ac-
count correlations among individual observations, because
subsequent measurements are usually autocorrelated.

The correlation cannot be computed by the uncertainties of
individual fluxes, %21" but requires the estimation of individ-
ual error terms. After estimating the error terms of all half-
hourly fluxes by LUT (Sect. 2.3), we computed the empirical
autocorrelation function from the time series of error terms
using the acf function implemented in R (Venables and
Ripley, 2002). Only the first components of the autocorrela-
tion function can be estimated reliably from the time series.
Hence, we only used those components p; before the first
negative autocorrelation (Zigba and Ramza, 2011) to con-
struct the variance—covariance matrix. Correlation of error
terms farther apart than the maximum number of estimated
components of the empirical autocorrelation function was
set to 0. Other components were Cov(e;, €;) = cor;jo 5 =
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Pli— j|012), where € = €pR adq and € = log(epr, mult) are the es-
timated error terms for the normal and lognormal assump-
tion, respectively, and 012) is the variance across those €.

2.5 Gap filling

Gaps in the flux time series have to be filled before com-
puting the annual aggregated flux. Shorter gaps were filled
using the LUT with a window size up to £24 d (Sect. 2.3).
Longer gaps were filled by fitting a random-forest machine
learning model (Vargas et al., 2018; Zhao et al., 2020) with
predictors “half hour of the day”, global radiation, air temper-
ature, soil temperature, precipitation, vapor pressure deficit
(VPD), mean daily soil temperature, mean daily air temper-
ature, soil moisture, mean soil moisture across chambers,
and day length. Gap filling extrapolated at maximum 5 d into
gaps. The remaining long gaps were treated as missing.

For the plot-level annual aggregation, we estimated the
fluxes during long gaps by the mean flux of the other cham-
bers. Using this mean of the other chambers is not fully sta-
tistically valid, because one should correct for the chamber
offsets that vary slowly across time. However, this was the
best estimate we could get for the dataset used.

2.6 Aggregating fluxes with the normal assumption

We are interested in the value and the uncertainty of the flux
aggregated across time and across the replicate chambers of
the recorded measurement. Across chambers we analyze a
sample of four replicates. Across time, we are concerned
with the propagation of the random variability induced by
the random variations (measurement error and process varia-
tion) of the individual measurements (Eq. 4).

Var(Rs;) = Var(&) ~ Var(€ci,,,) = f (02, p) 4)

The uncertainty of the aggregated value — here, the mean
across several soil CO, fluxes — is the propagated uncer-
tainty of the uncertainty of the single fluxes, ¢; (Eq. la).
While the mean flux can be computed including gap-filled
records, those gap-filled records may introduce systematic
errors but should not contribute to the reduction of average
random uncertainty with more observations (Egs. 5b, 9). The
uncertainty of error terms is provided by uncertainty, 0021., re-
ported with the observed fluxes, but their autocorrelation, p
(Sect. 2.4), requires the estimation of error terms.

If IE is dominating, the error is usually well described by
independent normal distributions with a mean of 0 (Eq. 1c)
with the well-known error propagation rules (Eq. 5).

E[> x| =Y Elx)
SD [Zx,-] = /> sD@)2, (5a)

EF]=Ex]
SD () = %\/smxnz, (5b)
n
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where the bar denotes the mean, SD denotes standard devia-
tion, and »n is the number of elements in sequence x;. In our

case SD(x;) = SD(Ry;) = \/072, .

However, for time series usually one must consider au-
tocorrelation, where successive measurements are not inde-
pendent of each other, i.e., where knowing the random er-
ror of one measurement holds information for predicting the
error of other measurements close in time. One has to add
covariance terms when summing variances. For autocorre-
lated series this leads to formulas dependent on the effective
number of observations (Eq. 8) based on the autocorrelation
function, which describes how strongly errors are correlated
across time lags (Bayley and Hammersley, 1946; Zigba and
Ramza, 2011).

_ Var(x)
Var(¥) = , 6)
Neff
Neff
Var() = o= - Z(x, -7, (7
n
Mot = : ®)

12552 (1= 5 o
where X denotes the mean of a vector of random variable x,
n is the number of records, and p; denote the coefficients
of the autocorrelation function. The autocorrelation function
is usually not known, but its first components can be reli-
ably estimated from the data. We followed Zigba and Ramza
(2011), who recommend using only the components before
the first negative component for k in Eq. (8) instead of all
n — 1 components (Sect. 2.4).

In the studied case, x is the random error in half-hourly
observations with an expected value of 0. One could use the
estimated error terms (Sect. 2.3) for (x; —0), but we used the
original observation uncertainty, o, 2 given with each obser-
vation. Therefore, in Eq. (7) (x; — x)2 is replaced by a - and
(neff — 1) is replaced by negr because the degree of freedom
for computing the mean, x;, was not used. Then Eq. (6) be-
comes Eq. (9).

_ I —
Var(x) = —o; ©))
Neff

Hence, the uncertainty (/Var(x)) declines with ./nefr
Eq. (9) compared to /n with uncorrelated random errors of
observed fluxes (Eq. 5b). Confidence intervals for aggregated
mean fluxes were computed as ¥ £ 1.96SD (x), where SD
denotes the standard deviation.

For gap-filled records the residual error is missing. Hence,
those records do not contribute to the number of effective
observations. However, they are included in computing the
mean aggregated flux.

2.7 Aggregating fluxes with the lognormal assumption

An overview of the properties of the lognormal distribution
is provided in Appendix A.
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For aggregating fluxes across chambers, we first log-
transformed each observed flux, R = In Rs. For the aggre-
gation across replicates, we used the log-transformed values
of the same time from different chambers to compute the pa-
rameters i and o of the distribution (Eq. A4) across cham-
bers. Next, we used the distribution parameters to obtain the
expected value (Eq. A2a) and prediction interval between
quantiles 2.5 % and 97.5 % (Eq. A6).

For aggregating fluxes of a single chamber across time,
we considered the error term in each half-hourly measure-
ment as a realization of a lognormally distributed random
variable. The propagation of the error to the sum of such
random variables (Eq. A7a) requires the distribution pa-
rameters. Hence, these parameters, u; and oy ;, were first
computed from the expected value, i.e., the measured flux,
Rsi, and its variance that was reported together with the
flux, aozl. (Eq. AS). Gap-filled values in the time series com-
plicated the application of Eq. (A7), because they should
contribute to the expected value of the sum but should
not contribute to the reduction in uncertainty with aggre-
gation across many measurements. Hence, we computed
the sum’s scale parameter, og, based on original measure-
ments only, but computed the expected value with the inclu-
sion of gap-filled values (Appendix Eq. A2). Hence, the ex-
pected value of the sum corresponded to the sum of the gap-
filled measured fluxes (Eq. A7a). We provide the R function
estimateSumLognormalSample with the lognorm
R package (Sect. 2.8) to help with this aggregation.

At observations of low fluxes the instrumentation error
component cannot be neglected and the lognormal assump-
tion is violated. Such observations were treated as gap-filled
for most of aggregation scenarios; i.e., they contributed to the
expected value but not to the error propagation for the mean
flux.

2.8 Useful software

For applying these concepts to researchers data, we provide
well-documented code in two publicly available packages for

the R language.

Computing fluxes from series of concentra-
tions measured inside chambers is provided by
the package RespChamberProc (https://doi.
org/10.5281/zenodo.3735807),  available at  GitHub

(https://github.com/bgctw/RespChamberProc, last access:
26 May 2020).

Utilities dealing with lognormally distributed data are
provided with the package lognorm (https://doi.org/10.
5281/zenodo.3735804), available at CRAN (https://cran.
r-project.org/web/packages/lognorm/index.html, last access:
26 May 2020). It includes functions for estimating moments
and mode, estimating parameters from sample or from sum-
mary statistics, and approximating the sum of correlated log-
normals.
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Figure 1. Quantile—quantile plots compare the sample quantiles of
observation error to theoretical distribution quantiles. The closer the
points to the displayed 1 : 1 line, the better the approximation. Both
the Laplace distribution with observations on the original scale and
the normal distribution with log-transformed observations (lognor-
mal assumption) approximated the sample quantiles better than the
normal assumption with observations on the original scale. Here,
only data of chamber 2 are shown; the plots of the other chambers
look very similar.

3 Results
3.1 Distribution and scaling of random errors

The distribution of error terms obtained by daily differencing
had strong tails, while when applying the daily differencing
to log-transformed values, R = In Rg, the distribution of the
resulting error became closer to normal than on the origi-
nal scale (Fig. 1). For large negative outliers the lognormal
distribution approximated error distribution even better than
the Laplace distribution. Moreover, the log transformation
avoided the problematic scaling of random error with flux
magnitude. Standard deviation across random error within
1d scaled with flux magnitude on the original scale (Fig. 2
top) but did not scale on a log-transformed scale (Fig. 2
bottom). Autocorrelation in error terms on a log scale was
stronger than autocorrelation in error terms on the original
scale (Appendix C).

3.2 Aggregation across replicates

We compared the aggregation of half-hourly fluxes across
four neighboring chambers using the lognormal assumption
(Sect. 2.7) versus using the normal assumption (Sect. 2.6).
For periods without extreme fluxes, the aggregated value and
prediction intervals were very similar (Fig. 3). Differences
became more evident with high fluxes after rainfall when
there was larger variability across chambers. The prediction
intervals differed for the following features. First, the upper
prediction interval bound was not as strongly influenced by
high fluxes; second, the lower bound of the prediction inter-
val was usually close to the lowest observed value. Hence,
the lognormal-based lower prediction interval bounds cir-
cumvented negative values.
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Figure 2. On the original scale the error magnitude (standard deviation of error terms across days) scales with flux magnitude (top). Log
transformation avoids this problem (bottom). Columns correspond to different chambers.

3.3 Temporal aggregation of single chamber fluxes

The expected value of the aggregated fluxes across the 48
half-hourly measurements per day was the same across distri-
butional assumptions. It corresponded to the mean of the ob-
served values. The width of the 95 % prediction interval was
similar for most records but differed in a few cases (Fig. 4,
top row).

Instances where the lognormal assumption resulted in
much wider prediction intervals occurred on days with very
low fluxes. In these cases the process variation, which scales
with the flux, is small compared to the instrumentation er-
ror, and the assumption that error is dominated by the mul-
tiplicative component (Eq. 2c) is violated. Those cases need
to be treated differently. One way of counteracting the result-
ing overestimation of uncertainty is setting a gap-filling flag
for the uncertainty estimate of very small fluxes (Fig. 4, sec-
ond row) (Sect. 2.7). This treatment of low fluxes tackles the
overestimation of uncertainty for such periods but also leads
to slightly wider confidence bounds because now a lower
number of observations contribute to the lognormal uncer-
tainty aggregation compared to the normal uncertainty aggre-
gation. The few cases with clearly narrower prediction inter-
vals given the lognormal assumption occurred on days with
limited original measurements and large outliers in estimated
uncertainty of the single measurements. The lognormal ap-
proach was much less sensitive to large outliers and yielded
narrower prediction intervals of the aggregated value. When
constraining the dataset to days with at least 10 original mea-
surements, most of the differences disappeared (Fig. 4 bot-
tom row).

Contrary to the short-term aggregation, distribution of an-
nually aggregated fluxes of each chamber did not differ much
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between the two approaches (Fig. 5). The skewness in the
distribution of uncertainty of annual estimates almost disap-
peared, as seen by the similar distance to upper and lower
prediction interval bounds in Fig. 5.

3.4 Annual plot-level fluxes

The combined temporal annual and cross-chamber aggrega-
tion to the plot level can be done with two alternatives. With
one alternative, temporal aggregation (using either the nor-
mal or lognormal assumption) is done first, and aggrega-
tion across replicates (using the lognormal assumption) es-
timates is done using the annual estimates of each cham-
ber. With the second alternative, the aggregation across
replicates is done first for each half hour across all cham-
bers, and these plot-level fluxes are then aggregated across
time. The latter “replicate-first” alternative yielded lower un-
certainty estimates (standard deviation of 0.005 instead of
0.02gCm~2d~!). The reason is that it neglects any tempo-
rally constant or slowly varying component in the location ef-
fect. However such a component strongly contributes to the
variation across the annual aggregates. This effect is simi-
lar to pseudo replicates, as locations did not change between
successive measurements.

4 Discussion

4.1 Improvement on distributional problems

With the lognormal assumption the distribution of random
error can be inspected on a log scale rather than on the origi-
nal scale. This improves two distributional problems (Savage
et al., 2008). First, the lognormal distribution better approx-
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Figure 3. Observed fluxes for neighboring chambers (symbols) and
aggregated across chambers: expected values (lines) and 95 % pre-
diction interval bounds (shaded areas). Crosses denote gap-filled
values. The lognormal approach avoided negative lower prediction
interval bounds with hot moments, for example with rain events on
4 April.

imates the more frequent occurrence of large errors (Fig. 1).
Second, the heteroscedastic nature of the random error is re-
duced; i.e., on a log scale residual variance does not increase
with flux magnitude (Fig. 2).

Although the increase of variance could be handled alter-
natively by an explicit error model in generalized regression
or flexible cost functions in model inversion (Schoups and
Vrugt, 2010; Toda et al., 2020), the log transformation tack-
les this problem in a basic way.

The increase of variance with flux magnitude also cre-
ated the pattern of apparent Laplace distribution (Fig. 1).
When we inspected the distribution of subsets of flux er-
rors with similar magnitudes (using LUT, Sect. 2.3), we did
not find the Laplace shape. This finding suggests that it is
the superposition of normal distributions with different vari-
ance at different flux magnitudes that leads to the apparent
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Figure 4. The difference in width of the 95 % prediction intervals
for daily aggregates between distributional assumption is shown by
box plots on an absolute scale (a) and relative scale (b). Ranges
differed only for a few cases as indicated by the outliers dots out-
side the (degenerate) boxes. Most of these differences were due to
very low fluxes or days with few original measurements, and they
disappeared when removing problematic observations (see text) as
indicated by the box plots in the second and third row.

Laplace shape. This finding is similar to what Lasslop et al.
(2008) found for random error of NEE that was measured by
eddy covariance. Hence, when the error magnitude is used
in model data integration exercises, we argue against using
the Laplace assumption and against the associated usage of
median absolute deviations (Richardson et al., 2006) when
model predictions are compared to single observations. In-
stead, we recommend using the usual normal-based formula
for the cost function but with log-transformed predicted flux
and log-transformed observed flux.

4.2 Aggregation across chambers

We assumed that, if a lognormally distributed process varia-
tion dominates the observation error of single chambers, then
such a process variation also dominates the differences be-
tween chambers. Hence, we assumed also a lognormal distri-
bution of measurements across several chambers. With only
four replicates, we cannot inspect distributional properties.
However, using the lognormal assumption was especially im-
portant for periods of high variability across chambers, which
occurred at the Majadas de Tiétar site mostly during the dry
summer period, similar to findings of Leon et al. (2014).
Without using the lognormal assumption, prediction inter-
val bounds of plot-level fluxes would include negative values
(Fig. 3).

4.3 Negative fluxes and the lognormal assumption
At the Majadas site, we attribute negative fluxes to measure-
ment error; however, negative fluxes can be real, especially

at sandy alkaline soils with low decomposition, i.e., with
sparse vegetation. There are abiotic causes for these nega-
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Figure 5. Annually aggregated mean flux estimates (symbols) and
their 95 % prediction interval bounds (bars) are of similar width
for normal and lognormal assumption. The x axis denotes different
chamber locations. The aggregation excluded long gaps, which led
to different aggregation periods and differences across chambers.

tive fluxes: carbonate dissolution, soil air shrinkage with tem-
perature and pressure, and CO; dissolution in soil water (Fa
et al., 2016; Roland et al., 2013). However, the soil at the
studied site is not a carbonate soil (inorganic carbon contents
of 0.20 to 0.25 gCkg ™! drysoil), and possible abiotic fluxes
were magnitudes lower than the observed fluxes at Majadas
that are dominated by decomposition of organic material. For
examples, in Fig. 3 the confidence bound includes negative
fluxes as well fluxes higher than 2.5 gCm=2d~!.

Nevertheless, the lognormal assumption is not applicable
at karstic soils with a high proportion of conditions with real
negative fluxes. However, if the proportion of observations
with conditions for negative fluxes is low, these conditions
can be flagged and the observations can be handled similar to
gap-filled records or records where measurement error dom-
inates, which contribute to the expected value but not to the
uncertainty estimate.

4.4 Daily temporal aggregation

Further, we explored consequences of aggregating measure-
ments of a single chamber across time using the lognormal
assumption compared to classical aggregation using the nor-
mal assumption. A single chamber measurement represent-
ing a time period can be assumed to be a normal or a lognor-
mal random variable. These assumptions resulted in differ-
ent aggregated uncertainties when aggregating across a few
days (Fig. 4). We argue that the choice of distributional as-
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sumptions depends on the sampling interval, the magnitude
of measurement error, and the autocorrelation length of the
process variation. If measurements are frequent relative to
process autocorrelation length, the uncertainty is dominated
by the instrumentation error (from the measurement device),
which can be assumed to follow a normal distribution. Al-
ternatively, if a single measurement represents a longer pe-
riod, the uncertainty will be dominated by process variation.
While process variation dominates random error at a daily
measurement resolution (Lavoie et al., 2015), we cannot dis-
tinguish between those two cases from our series of half-
hourly measurements.

However, we encountered a problem when fluxes were
very low, where the instrumentation error component be-
comes dominant and the lognormal assumption is violated.
If the lognormal assumption is applied to such cases, time
aggregation leads to overestimation of uncertainty, because
it overestimates the multiplicative error. Those records need
to be flagged similar to gap-filled records before aggregation
using the lognormal approach (Sect. 2.7).

4.5 Annual temporal aggregation

When half-hourly measurements of a single chamber were
aggregated to longer timescales such as to annual aggre-
gates, the differences in uncertainty bounds between distri-
butional assumptions decreased (Fig. 5). There was a ten-
dency towards slightly narrower bounds with the lognormal
assumptions. We argue that this is due to the lognormal ap-
proach being more robust to the influence of few large values.
For chamber 5 the lognormal-based uncertainty is wider, be-
cause there were long gaps during the season of large fluxes,
and hence there was a relatively larger proportion (15 %) of
low fluxes that were excluded from error propagation where
the assumption of dominating process variance was violated.
Moreover, the autocorrelation structure in error terms was
not detected properly on the original scale for this chamber
(Appendix C).

Also the skewness disappeared (Fig. 5). This was a con-
sequence of relative uncertainty decreasing with the number
of aggregated measurements, which led to less skew and to
lognormal distributions which are close to normal (Fig. Al).
This is also in line with the general idea of the central limit
theorem (Lindeberg, 1922), although we could not find a ver-
sion of the theorem that matches the combined non-iid and
non-Gaussian case of single terms for the time series of this
study.

Overall, we suggest using the lognormal assumption for
aggregating across fluxes from replicated chambers but the
normal assumption for aggregating half-hourly observations
of a single chamber across time with number of records ex-
ceeding, say, 40.

When deciding whether to first aggregate across cham-
bers or across time, the ‘“cross-chamber-first” alternative
(Sect. 3.4) wrongly assumes that the cross-chamber aggre-
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gated values are only correlated in time. They are, however,
measured at the same spatial locations and fully correlated in
space. Therefore, whenever measurement locations are fixed
and a plot-level estimate is required, the cross-chamber ag-
gregation should be computed as the last step.

4.6 Process variation

Our finding on the suitability of the model of a multiplica-
tive, lognormal process variation sheds new light on the pro-
cess variation, i.e., the as-yet-unattributed soil processes that
generate random fluctuations in soil CO, efflux observations.
Lavoie et al. (2015) proposed two mechanisms for process
variation. First, a higher diversity of active metabolic path-
ways associated with a wider range of pore-scale respiration
rates at high temperature could result in larger variability
of fluxes. Because higher temperatures are associated with
higher fluxes, this would explain the increase of variance
with flux magnitude. Second, gas diffusion rates might in-
crease due to heat produced during respiration. Similarly, gas
transport processes in soil can change with pore space vary-
ing with soil moisture (Maier et al., 2011).

We propose the alternative hypothesis based on small-
scale spatial heterogeneity and stochasticity of the temper-
ature sensitivity of chemical reactions involved. Metabolic
rates associated with microbial communities differ across
micrometer distances in their temperature sensitivity, and
these metabolic rates in turn largely drive respiration and soil
CO; efflux. Respiration is related to such temperature sensi-
tivity in an exponential manner (Lloyd and Taylor, 1994).
Hence, if variation in temperature sensitivity is normally dis-
tributed, then the log of respiration is normally distributed;
i.e., variation in respiration is lognormally distributed. This
argument is transferable to process variation distribution of
fluxes on the leaf and ecosystem scale.

4.7 Recommendation checklist

To obtain plot-level estimates of soil CO, efflux, one typi-
cally has to aggregate time series of several chambers. For
such cases we recommend the following procedure based on
the experience gained with this study.

— Estimate error terms by daily differencing or, preferen-
tially, LUT.

— Fill gaps in the data and flag gap-filled records.

— Flag low-flux conditions where instrumentation error is
dominating or where real negative fluxes can occur.
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— Aggregate data of single chambers across time. For con-
fidence or prediction intervals, take care of autocorrela-
tion. Use the lognormal assumption if the aggregation
runs over a limited number of observations, less than 40,
say. Take care of flagged values that should contribute to
the estimated flux but should not contribute to the flux
uncertainty (Sects. 2.7 and 4.4).

— For plot-level estimates aggregate the time-aggregated
estimates across several chambers using the lognormal
assumption, as the last step.

In model data integration compare predictions and obser-
vations of soil CO; efflux on a log scale.

5 Conclusions

The presented methodology and tools will help researchers
to better analyze soil CO; efflux measurements using differ-
ent assumptions. The lognormal assumption improves two
error distribution problems: first, the heteroscedasticity, i.e.,
the increase of error terms variance with flux magnitude, and,
second, the strong upper tail. Hence, model data integration
studies should consider comparing model predictions and ob-
servations on a log-transformed scale. For annual aggrega-
tion of high-frequency flux measurements of a single cham-
ber the normal assumption is plausible and the difference in
estimated uncertainty between assumptions is small. We ar-
gue that the lognormal assumption is probably more suitable
than the normal assumption when aggregating over repli-
cated chambers, although we studied only four replicates.
Researchers are encouraged to compute and report the pa-
rameters of the lognormal distribution. Whenever plot-level
estimates are required, cross-chamber aggregation should be
performed as the last step after temporal aggregation. The
lognormal assumption provides a new perspective on the as-
yet-unattributed processes responsible for process variation
in fluxes. It implies that these processes operate in a multi-
plicative rather than in an additive way. The presented argu-
ment of respiration being exponentially related to a fluctuat-
ing temperature sensitivity is also true for leaf and ecosystem
fluxes. Hence we suggest testing whether or not the variabil-
ity of error terms of such fluxes is better described by a log-
normal distribution.
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Appendix A: The lognormal distribution

This section compiles the properties of the lognormal distri-
bution that are most relevant to using the lognormal assump-
tion when aggregating observations.

Al Distribution, parameters, and statistics

The density of the lognormal distribution is described by two
parameters (Eq. Al).

1 1 ( (lnx—,u)2> (AD)
—_ eX —_——

X o421 P

Traditionally, parameters are given on a log scale, where
the location parameter p describes the magnitude of a ran-
dom variable and the parameter o describes the spread. Their
exponentials u* = e and o* = ¢ describe the distribution
on the original scale, with pu* corresponding to the me-
dian and o* being the the multiplicative standard deviation.
The interval (u*/0*?, u*o*?) denoted by p**/ o*? contains
about 95.5 % of the probability mass.

The first two moments, i.e., the expected value and the
variance, are given by Eq. (A2). The expected value is larger
than the median, u*, because the distribution is skewed to
the left. With decreasing o* the skewness decreases and the
shape of the distribution gets closer to normal (Fig. Al).

flx)=

202

= ( 02) % 2/2
E[X]=X=exp ,u+7 =u‘e (A2a)
Var(X) = 002 = [exp(az) — 1] exp (2,u + 02>

- (e(vz) - 1);2 (A2b)

Equation (A2b) relates the standard deviation to the
relative error, i.e., the coefficient of variation: cv =0,/X
(Eq. A3). A relative error of 5% corresponds to o* = 1.03,
and approximating the lognormal distribution by a nor-
mal distribution worked reasonably well up to o* =1.2
(Fig. A1), corresponding to a relative error of 18 %.

cv=1/e@) —1
o =+/In(cv2+1)

The parameters of the distribution can be estimated by the
log-transformed sample (Eq. A4).

(A3a)
(A3b)

(Ada)
(Adb)

4 =mean (Inx),
6 =SD(Inx),
where mean(x) = X and SD(x) denote the sample mean and

standard deviation, respectively. Alternatively, the distribu-
tion parameters can also be estimated from the mean and
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Figure Al. Density distributions of lognormal distributions (lines)
get closer to normal density (shaded area) as multiplicative standard
deviation o* decreases down to 1.2 for the same pu* = 1.

standard deviation on the original scale, o,, by Eq. (AS)
(Limpert et al., 2001).

fu=log(¥/v/w). (A52)
6 =/In(w), (A5b)
where

w=1+cv? and (A5c¢)
cv = 0, /X is the coefficient of variation. (A5d)

The quantiles of the lognormal distribution are derived
from the quantiles of the normal distribution (Eq. A6).

Glognormal (P U, 0) = ¢fnormal (P344:0) (A6)

For example, the 97.5 % quantile of the standard normal
distribution with @gnorma1(97.5,0,1) = 1.96 directly trans-
lates to the lognormal, giognormat(97.5,0,1) ~ el9. Hence,
a 95 % confidence interval of the normal is within £ 1.960
and that of the lognormal is within et E1969 4150 denoted
w**/ (*)19. Note that this confidence interval is not sym-
metrical, with the upper bound being further away from the
median.

The product of several lognormal random variables is
again lognormally distributed, because the sum of normally
distributed random variables on a log scale is again normally
distributed.

A2 Sum of lognormal random variables

For the sum of several lognormal random variables, to date,
there is no closed formula known. However, it can be ap-
proximated by a lognormal distribution, and the parameters
of this distribution can be found by various methods (Fen-
ton, 1960; Cobb et al., 2012; Lo, 2013; Messica and Messica,
2016; Furman et al., 2020). In this study we use the approx-
imation by Lo (2013), which can be applied to the sum of

https://doi.org/10.5194/gi-9-239-2020



T. Watzler et al.: Soil CO;, efflux errors are lognormally distributed 249

correlated random variables (Eq. A7).

Sy =E [le} = D EIX =) et (AT
i i i

os = l/S_%_ Zcorijaioje“i et
ivj

2
=1/52 corijoi0; E[Xi1le % PE[X;1e ™%, (ATb)

i

s =In(Sy) —0g/2, (ATc)

where S is the expected value of the sum, i.e., the sum of the
expected values of the terms. us and og are lognormal dis-
tribution parameters of the sum, u; and o; are the lognormal
distribution parameters of the added random variables, and
cor;; is the correlation between two added random variables
on a log scale, which for time is computed from estimated
autocorrelation py (Sect. 2.4).

There might be flagged terms that should contribute to the
sum but should not contribute to the reduction of relative
uncertainty with error propagation across many terms. Ex-
amples are gap-filled values or observations where a proper
estimate of the multiplicative uncertainty is missing. In this
case, Sy and os are first computed using only the non-
flagged terms. Next Sy and pus are recomputed using all
terms. Hence, the expected value of the sum equals the sum
of expected values of the terms. The first computation of St
based on the non-flagged terms is lower, and hence the esti-
mate of uncertainty, os, is higher than the computation using
all terms.

https://doi.org/10.5194/gi-9-239-2020

The multiplicative standard deviation, o*, is invariant to
multiplications of the random variable. Hence, it is the same
for the mean as for the sum of several lognormally dis-
tributed random variables. For the mean only the scale pa-
rameter changes compared to the sum as .., = 1g/n or
Umean = s — In(n), where n is the number of aggregated
variables.
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Appendix B: Latent Gaussian model formulation

The observations of CO; efflux of a single chamber can be
formulated as a latent Gaussian model (LGM), a subset of
Bayesian hierarchical models (Rue et al., 2009).

Rs =R, +¢€g, (Bla)
In(R,) = Rp + €pr, (B1b)
€ ~ N0, o), (Blo)
epr ~ N(0,0), (B1d)
In(o%) ~ Gamma (aig, bi), (Ble)
In(oc~? ~ Gamma (a, b), (B1f)

where € are normally distributed error terms with shape
parameter o. Their corresponding precisions 1/02 are dis-
tributed by a log-Gamma hyperprior with specified parame-
ters. Ry is the true value of log (soil CO, efflux). It can be
plugged in by the LUT approach, modeled as a linear model
of covariates, or estimated together with the o parameters
given a proper constraint on their covariances in time and/or
space of environmental variables.

Such a LGM can be estimated using INLA (Rue et al.,
2009) (Appendix Eq. B3) or Markov chain Monte Carlo sam-
pling (Metropolis et al., 1953; Gelman et al., 1995; Zobitz
etal., 2011).

Instrumentation error is of magnitude IE = o1, and pro-
cess variation on the original scale is of magnitude PR =
Rp(e? —1). This study deals with two special cases. Since the
lognormally distributed process variation scales with the flux
magnitude, we expect it to dominate at large fluxes, while we
expect the instrumentation error to dominate at low fluxes.

Bl PR<«IE

If the lognormally distributed variation is small compared to
the normally distributed one, it can be neglected. The model
then simplifies to Eq. (B2).

Rs = Rpe + €1B, (B2a)
€l ~ N0, o), (B2b)
In (o75%) ~ Gamma (ag, big), (B2¢)
with Rpe = ¢®8. When assuming a flat prior (ap = —1;

bie = 0), this model corresponds to a classical linear regres-
sion, i.e., the normal assumption.

B2 IE «PR

If the normally distributed variation is small compared to the
lognormally distributed one, it can be neglected. The model
then simplifies to Eq. (B3).

log(Rs) = Rp + €pr
epr ~ N (0,0)

(B3a)
(B3b)
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In (6 %) ~ Gamma (a, b) (B3c)
When assuming a flat prior (@ = —1; b=0), this model
corresponds to a classical linear regression of the log-
transformed values, i.e., the lognormal assumption.

B3 Fitting the LGM using INLA

During periods with similar environmental conditions, we
can model R as a smooth function with time and fit it to-
gether with the magnitudes of the two error types, org and o,
without the need for gap filling before.

We fitted model Eq. (B1) to the data of chamber 2 for a
5d period in April using INLA (Rue et al., 2009) and its
default priors and compared the posterior estimates of the
two standard deviations. While the standard deviations were
both significant and of the same magnitude (o1g: mean =
0.047; ¢g025 = 0.021; g975 = 0.088), the transformation of
the lognormal error to the original scale indicated the devia-
tions due to the lognormal error had a larger effect (Rg(e® —
1): mean = 0.095; g025 = 0.024; g975 = 0.18).

During shorter (~ weeks) periods, we can assume that the
difference between chambers can be modeled as a random
intercept slope in the linear predictor on a log scale, which al-
lows fitting data of all chambers together. A simpler random-
intercept-only model still showed patterns in the residuals.

Compared to the single-chamber fit, the estimate of the
normal error decreased further (og = 0.010), whereas the es-
timate of the lognormal error increased (Rg(e® — 1) = 0.27),
and standard deviation of chambers intercept was larger
(Rp (e’ — 1): mean = 1.0; g025 = 0.55; ¢975 = 1.9).

This indicates that assumption of negligible instrumenta-
tion error compared to the lognormally distributed process
variation (IE « PR) is viable.

In addition to the model with both error terms, we fitted
models with only one of the error terms included and com-
pared models by the deviance information criterion (DIC)
(Spiegelhalter et al., 2002). The lower DIC of the full model
of —5130 indicated a better fit compared to the lognormal-
error-only model with DIC of —1080, which was again better
than the normal-error-only model with a DIC of 555.

As an outlook, we will study if this approach can be ex-
tended to longer periods and adapted to more complex mod-
els with time-varying differences between chambers.
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Appendix C: Autocorrelation in error terms

Autocorrelation between error terms is important for prop-
agation of the uncertainty when aggregating over time
(Sect. 2.6).

The coefficients of the empirical autocorrelation function
of the error terms, pi, have been estimated for each time se-
ries of a chamber across the entire year (Sect. 2.4).

Autocorrelation in error terms on the original scale was
less strong than autocorrelation in error terms on a lognor-
mal scale (Fig. C1). This result had at least two causes. First,
on a normal scale the autocorrelation in process variation
is obscured by the instrumentation error with supposedly
very low autocorrelation. For the lognormal assumption low
fluxes were excluded where the assumption that instrumen-
tation error was small compared to process error was invalid
(Table C1). Second, the process error terms on the original
scale are exponential transforms of the process error terms.
And it is harder to detect autocorrelation in nonlinear models
(White, 1992).
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Figure C1. Empirical correlation coefficients are stronger between residuals on a log-transformed scale (bottom).

Table C1. Number of unflagged observations and number of effective records after accounting for autocorrelation in residuals.

Chamber  npormal  Mlognormal  Meff normal  Meff lognormal

1 8009 4268 2556 2154
2 7733 4137 1890 1632
5 3082 815 2822 550
6 7958 3707 2197 1927
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Code and data availability. The essential functions for dealing
with the lognormally distributed measurements and their aggre-
gation have been implemented in the openly available R package
lognorm (https://doi.org/10.5281/zenodo.3735804;  Wutzler,
2020). The openly available R package RespChamberProc
(https://doi.org/10.5281/zenodo.3735807; Wautzler and
Rademacher, 2020) helps with computing fluxes and uncertainty
estimates from concentration time series. The code generating the
results and figures of this study are available upon request to the
main author.

The data wused for this study are accessible at
https://doi.org/10.5281/zenodo.3735751 (Wutzler et al., 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gi-9-239-2020-supplement.
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