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Abstract. A sensor comprised of an electronic circuit and
a hybrid single and dual heat pulse probe was constructed
and tested along with a novel signal processing procedure
to determine changes in the effective dual-probe spacing
radius over the time of measurement. The circuit utilized
a proportional–integral–derivative (PID) controller to control
heat inputs into the soil medium in lieu of a variable resis-
tor. The system was designed for onboard signal process-
ing and implemented USB, RS-232, and SDI-12 interfaces
for machine-to-machine (M2M) exchange of data, thereby
enabling heat inputs to be adjusted to soil conditions and
data availability shortly after the time of experiment. Sig-
nal processing was introduced to provide a simplified single-
probe model to determine thermal conductivity instead of re-
liance on late-time logarithmic curve fitting. Homomorphic
and derivative filters were used with a dual-probe model to
detect changes in the effective probe spacing radius over the
time of experiment to compensate for physical changes in
radius as well as model and experimental error. Theoretical
constraints were developed for an efficient inverse of the ex-
ponential integral on an embedded system. Application of the
signal processing to experiments on sand and peat improved
the estimates of soil water content and bulk density compared
to methods of curve fitting nominally used for heat pulse
probe experiments. Applications of the technology may be
especially useful for soil and environmental conditions under
which effective changes in probe spacing radius need to be
detected and compensated for over the time of experiment.

1 Introduction

The heat pulse probe (HPP) is widely used to determine the
thermal conductivity (Abu-Hamdeh, 2001; Abu-Hamdeh and
Reeder, 2000; Jin et al., 2017; Li et al., 2016; Liu et al., 2007;
Ochsner and Baker, 2008; Penner, 1970; Yun and Santama-
rina, 2008), thermal diffusivity, and heat capacity (Bristow,
1998; Ham and Benson, 2004; Kluitenberg et al., 1993; Liu
et al., 2007; Ochsner et al., 2001; Zhang et al., 2014) of soil.
HPPs have been used to measure the thermal conductivity
(Morin et al., 2010; Sturm and Johnson, 1992) and density of
snow (Liu and Si, 2008); a review is presented by Kinar and
Pomeroy (2015). For soils, HPP measurements provide in-
puts for mathematical models used to determine volumetric
water content (Basinger et al., 2003; Bristow, 1998; Bristow
et al., 1993; Ham and Benson, 2004; Heitman et al., 2003;
Li et al., 2016; Song et al., 1998) and water flux (Hopmans
et al., 2002; Kamai et al., 2008; Mori et al., 2003; Wang et al.,
2002). A comprehensive review of HPP sensors used to mea-
sure water flux is given by He et al. (2018). Installed into
a tree trunk (Green et al., 2003) or plant stem (Miner et al.,
2017), HPPs can measure sap flow rates. Multifunctional
HPPs can simultaneously measure soil thermal and electri-
cal properties to determine soil water retention and hydraulic
conductivity (Bristow et al., 2001; Mori et al., 2003; Valente
et al., 2006). Data from HPPs can be used to drive predictive
mathematical models for water transport (Liu and Si, 2008;
Saito et al., 2006; Trautz et al., 2014) and snowpack evolution
(Ochsner and Baker, 2008). These models are also useful for
civil and geological engineering applications (Ochsner et al.,
2001), as well as for prediction of runoff (Yang and Jones,
2009), agricultural productivity (Pearsall et al., 2014; Sturm
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and Johnson, 1992), climate change, and avalanche hazards
(Morin et al., 2010).

HPPs can be broadly classified into two different types:
single-probe (SP) (De Vries, 1952; Li et al., 2016) and dual-
probe (DP) (Bristow et al., 1993; Campbell et al., 1991;
Ham and Benson, 2004) devices. The SP consists of a single
heater needle that is inserted into the geomaterial. A temper-
ature measurement sensor (i.e., a thermistor) placed inside
the heater needle is used to determine the change in temper-
ature as the needle releases thermal energy. The DP consists
of two needles that are inserted into the geomaterial: one of
the needles functions as a heater, whereas the other needle
measures the change in temperature of the geomaterial at an
offset distance to the heated needle. The DP has an advantage
over the SP since the SP can only be used to determine ther-
mal conductivity, whereas the DP can be used to determine
the thermal conductivity and diffusivity of the geomaterial
(Bristow et al., 1994).

An assumption nominally made in conjunction with DP
sensors is that the radius is constant during each measure-
ment. If the DP radius changes after the probe is inserted
into the geomaterial or over the time of measurement due to
heating and cooling, HPP determination of thermal proper-
ties will be inaccurate (Kluitenberg et al., 1993; Mori et al.,
2003). The measured thermal conductivity is not sensitive
to changes in DP probe spacing radius, whereas the HPP-
determined heat capacity and thermal diffusivity exhibit high
sensitivity to radius changes (Kluitenberg et al., 2010; Liu
et al., 2007). This creates challenges in estimating the mois-
ture content of frozen soils wherein thawing and freezing
occur and has required recalibration of individual probes
(Zhang et al., 2011).

Most HPP researchers utilized commercially available off-
the-shelf (COTS) hardware (i.e., a datalogger) to collect data
(Bristow, 1998; Bristow et al., 1994, 2001; Kamai et al.,
2008; Li et al., 2016), although recently custom electronic
circuits have been proposed. Valente et al. (2006) interfaced
a multifunctional soil probe to a processing circuit. Dias
et al. (2013) used an NPN transistor as a heat source for an SP
device. The temperature of the transistor was determined us-
ing a circuit and transistor circuit theory. Sherfy et al. (2016)
used an NE555 timer circuit to control the duration of the
heating pulse. Miner et al. (2017) and Ravazzani (2017) de-
veloped Arduino-based HPP sensors utilizing currently es-
tablished DP theory. Liu et al. (2013), Wen et al. (2015),
and Liu et al. (2016) showed that two or more thermistors
placed inside the temperature measurement needles of a DP
device can be used to determine probe deflection. Multiple
thermistors are required to determine probe deflection, and
the method cannot be used to calculate a time series of small
changes in the probe spacing radius that occur during the
time of measurement when the heater needle increases in
temperature.

A self-calibrating heat pulse probe (SCHEPP) system is
described that consists of a custom electronic circuit and

novel inverse models for the SP and DP. The HPP used for
SCHEPP is a hybrid of the SP and DP designs. SP and DP
forward models are combined and used to determine changes
in the effective probe spacing radius during the time of mea-
surement. This effective radius compensates for model error
and, similar to a calibrated probe spacing radius, does not di-
rectly coincide with the actual probe spacing radius. Another
inverse model is also introduced that allows for the determi-
nation of thermal conductivity without the need for an SP
model late-time approximation (see Sect. 2.2.1 for the ratio-
nale).

2 Materials and methods

Diagrams of the SCHEPP system HPP are shown as Figs. 1a
and 2a. A loop of nichrome wire is placed inside a heater
needle, along with a measurement thermistor. Another mea-
surement thermistor is placed inside a temperature-sensing
needle situated at an offset distance to the heater needle. Fig-
ure 2a shows that SCHEPP uses a hybrid SP and DP device.
A proportional–integral–derivative (PID) controller is used
to precisely control and maintain heat inputs in lieu of a vari-
able resistor. Circuit theory is used to determine the resis-
tance of the nichrome heating wire inside the heater needle
during a measurement. This eliminates the need to use a pre-
viously measured estimate of the heater wire resistance. The
heater wire resistance is directly measured over the time of
an experiment. Figure 1b is a conceptual diagram that shows
relationships between the models and measurement methods.

2.1 Forward models

Assuming that the heater needle is an infinite line source in
an infinite medium, the “late-time” change in temperature
101(t) of the heater probe SP device is given by Eq. (22a)
of Blackwell (1954):

101(t)=
q

4πk
log(t)+B+

1
t
((C) log(t)+D), t > 0. (1)

In Eq. (1) above, q is the rate of energy transferred per unit
length of the probe, k is the thermal conductivity of the ge-
omaterial, B, C, and D are constants, and the natural loga-
rithm is utilized. The assumption of an infinite line source in
an infinite medium is valid if the heater needle has a small di-
ameter and the geomaterial is of sufficiently large dimension
to be isotropic and homogeneous throughout so that the heat
pulse does not interact with dissimilar boundaries (i.e., a con-
tainer in which the soil is placed) over the time of the mea-
surement (Kluitenberg et al., 1993, 1995; Liu et al., 2007).
For t � r2

n/α, where rn is the radius of the needle and α is
the thermal diffusivity of the medium, the last term in Eq. (1)
can be neglected (Bristow et al., 1994; Li et al., 2016). In this
paper, Eq. (1) as a forward model is taken subject to the con-
straint that 101(t) > 0 since negative values are not physi-
cally reasonable within the context of the model.
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Figure 1. (a) Conceptual block diagram of the HPP system. The set point q and the PID controller ensure a constant input of heat into the
soil over the length of the heater needle. The PID controller modulates heat inputs by changing the output of a variable DC voltage source,
and the feedback path is shown. A Kelvin-connection sense resistor measures the current through the nichrome heater wire. A reduction
in voltage over the sense resistor element is 1E, and the ground-referenced output voltage through the nichrome wire is Ekn. The heater
needle temperature sensor and offset needle temperature sensor circuits are also shown. A constant voltage source of 2.5 V is connected to
a half-bridge. One element of the bridge is a thermistor with a nominal resistance of 10 k� specified at a temperature of 20 ◦C, and the other
is a precision resistor with a fixed resistance. (b) Conceptual diagram showing relationships between models and heat pulse probe (HPP)
measurements for the hybrid single and dual probe. Each model in the diagram is described in the associated text. Model text in bold indicates
signal processing introduced in this paper. The r(t) indicates a time-variable effective radius.

Assuming an infinite line source in an infinite medium for
a DP device, the change in temperature γ1(r, t) sensed at a ra-
dial distance r from the heater needle is as follows (Kluiten-
berg et al., 1993).

γ1(r, t)=

{
1T1(r, t), t0 < t ≤ th
1T2(r, t), t > th

(2)

1T1(r, t)=
−q

4πk
Ei

(
−r2

4αt

)
, t > 0 (3)

1T2(r, t)=
q

4πk

[
Ei

(
−r2

4α (t − th)

)
−Ei

(
−r2

4αt

)]
, t > 0 (4)

α =
k

ρc
(5)

The thermal diffusivity of the medium is α, the density is ρ,
and the specific heat capacity is c. The exponential inte-
gral function is Ei. The current through the nichrome wire

is turned on at time t0 and turned off at time th. Therefore,
t0 < t ≤ th is referred to as the heating period and t > th as
the cooling period. Calibration to determine a radius using
least-squares curve fitting will yield an effective radius that
is representative of differences between the sensing system
and the ideal model described above. This initial radius is
referred to as rinitial and is taken as a constant.

2.2 Inverse models

2.2.1 Thermal conductivity

Curve fitting using Eq. (1) can be conducted for the section
of the heating curve where t � r2

n/α. However, the late-time
approximation with t � r2

n/α increases the time of measure-
ment and necessitates that the 1/t term is negligible. When
t < r2

n/α and for suitable t such that the model of Eq. (1) is
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Figure 2. Diagrams showing the system and microcontroller. (a) The circuit operation is controlled by a 32 bit microcontroller clocked at
300 MHz by a PLL. The microcontroller and associated transceiver circuity implement M2M communications whereby data and system
operation can be exchanged between machines using commands sent over USB, RS-232, or SDI-12. The microcontroller acts as a state
machine that samples data from the AFE and stores the data in SDRAM where signal processing is conducted. The circuit is powered by
a nominal 12 V DC supply that is reduced to 3.3 V by a DC–DC switcher. The HPP is a hybrid SP and DP design comprised of a heater
needle and a sense needle. The effective distance between the needles as a function of time is r(t). (b) Picture of the circuit. (c) Soil column
used in the experiment. (d) Experimental setup. (e) Image of needle probe prototype.

valid, the constants {k,B,C,D} are difficult to directly de-
termine using curve fitting by optimization whereby multi-
ple values can be found to appropriately fit the same model
of Eq. (1).

Given these disadvantages, this section introduces
a method, the signal processing SP model, which uses signal
processing to reduce the time series associated with Eq. (1)
to a simpler model. Least-squares curve fitting is used with
a modified version of Eq. (1) and the total SP dataset during
heating. Errors introduced during the earlier time of heating
are acceptably small, particularly when signal processing has
modified the SP dataset as a time-domain signal and k is ob-
tained by a least-squares curve fit.

Equation (1) is subjected to Hadamard (point-by-point)
multiplication by t to obtain

102(t)= t [101(t)]=
qt

4πk
log(t)+Bt + (C) log(t)+D.

(6)

The Hadamard multiplication to produce Eq. (6) is a type
of homodyning process whereby later-time values of101(t)

are assigned greater-magnitude weights than earlier-time val-

ues. Taking the numerical time derivative is similar to the ap-
plication of a high-pass filter (Hamming, 1983; pg. 118). The
resulting equation is

103(t)=
d
dt
102(t)=

q

4πk

[
log(t)+ 1

]
+B +

C

t
. (7)

Homodyning again by t yields

104(t)= t [103(t)]=
qt

4πk

[
log(t)+ 1

]
+Bt +C. (8)

Taking the numerical time derivative again,

105(t)=
d
dt

[104(t)]=
q

4πk

[
log(t)+ 2

]
+B. (9)

To reduce noise associated with the derivative operation
when working with actual data, a Butterworth low-pass fil-
ter with zero-phase filtering and a cutoff frequency of 0.3 Hz
is applied to the numerical sequence associated with Eq. (9).
The cutoff frequency was chosen to ensure stability of the
inverse model within the context of the data used for the ex-
periments reported in this paper. Given a known q, curve fit-
ting is applied to the filtered sequence associated with Eq. (9)
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to determine k without the need to also determine {C,D} at
time t < r2

n/α, where the model of Eq. (1) is still valid. Once
the thermal conductivity k is determined by the signal pro-
cessing, curve fitting using Eq. (1) with a starting value of
the determined thermal conductivity is used to estimate pa-
rameters for the application of the SP forward model.

The late-time SP model is used for comparison with the
signal processing SP model described above. A linear sec-
tion of the 101(t)− log(t) curve is identified as the time td
that is 1 s after the time when the second numerical deriva-
tive of the 101(t)− log(t) curve is approximately equal to
zero. The time td is identified using a signal processing zero-
crossing detector, and the 1 s delay is introduced to ensure
that the curve is approximately linear. Curve fitting using
Eq. (1) with C =D = 0 is then used to determine k from the
linear section of the 101(t)− log(t) curve (Li et al., 2016).

2.2.2 Dual probe and variable radius

The inverse model described in this section uses signal pro-
cessing to determine r(t) as an effective radius that changes
over the time of heating and cooling to compensate for model
error and physical changes in the probe spacing. A numerical
value for rinitial is required as an estimate of the initial probe
spacing radius. Changes in the effective probe spacing r(t)
are determined over time and used to obtain an α that is rep-
resentative of these changes. This is the signal processing DP
model.

Thermal conductivity, k, is determined using a mea-
sured q and the inverse signal processing model presented in
Sect. 2.2.1 for the SP. The thermal conductivity is not directly
determined from the DP model using curve fitting since the
effective radius r(t) can change over time.

The k is used with a known q to algebraically remove the
q/4πk term from Eq. (2) to obtain γ2(r(t), t) as an expres-
sion written only in terms of Ei. The inverse of the exponen-
tial integral is determined using the procedure in Appendix A
suitable for an embedded system.

From the inverse, we determine

γ3 (r(t), t)=
−(r(t))2

4α
, (10)

γ4 (r(t), t)=−γ3 (r(t), t)=
(r(t))2

4α
. (11)

The square root function transforms Eqs. (11) and (12) be-
low. To ensure the application of the square root function
with real numbers, the numerical implementation must en-
sure γ4 (r(t), t) > 0.

γ5 (r(t), t)=
[
γ4 (r(t), t)

]1/2
=

r(t)

2α1/2 (12)

Taking the logarithm of Eq. (12) results in Eq. (13) below.
Applied to each element of the corresponding sequence, this
operation is analogous to homomorphic filtering (Oppen-

heim et al., 1976).

γ6 (r(t), t)= log(γ5 (r(t), t))= log(r(t))− log
(

2α1/2
)

(13)

Taking the time derivative of Eq. (13) is once again similar to
the application of a high-pass filter that suppresses the con-
stant log

(
2α1/2) term. When Eq. (14) is expressed as a dis-

crete sequence sampled at a frequency of fs the derivative is
approximated using a backward-difference method (Eq. 15).

γ7 (r(t), t)=
d
dt
γ6 (r(t), t)=

d
dt

log(r(t)) (14)

The derivative is computed using a backward difference:

d
dt
γ (r(t), t)≈

ai−1− ai

1t
. (15)

In Eq. (15) above, ai = log(r (ti)), where the index i denotes
the element of a discrete sequence and 1t is the time step
calculated by 1t = 1/fs. To reduce numerical error at small
time t values, the inverse model described in this section is
applied with a time step 1t such that the numerical inverse
of Ei(x) can be successfully computed (Sect. 2.5).

The solution of Eq. (15) requires a boundary condition
ab = log(r (tinitial)), where tinitial is the time at which the
probe spacing radius is rinitial. For application to actual data,
we assume that the probe spacing is the calibrated rinitial at
tinitial = tp+ ta, where tp is the time at which the curve as-
sociated with γ1(r, t) is at a maximum and ta is an addi-
tional time delay that compensates for a nonideal system.
For this system, the additional time delay was chosen such
that 0 s≤

∣∣tp∣∣≤ 2s. Selection of a peak time is a similar idea
to the temperature maximum method (Bristow et al., 2001)
whereby the calibrated rinitial is used at the time of peak tem-
perature change. The additional time delay ta is chosen to ap-
proximately coincide with the integer-valued time durations
of moving-average windows (Sect. 2.5). The input data are
trimmed appropriately. This selection of boundary condition
is supported by tests on actual soil performed in this paper
and a sensitivity analysis that justifies the selection of the ad-
ditional time ta (Sect. 3.3).

After r(t) is determined, the α is determined by taking
the average of γ8 (r(t), t) over time. Evaluation of Eq. (16)
will thereby yield a curve that is a straight line with a slope
that is approximately zero when α is approximately constant
over the time of heating and cooling. The r(t) is an effective
radius that is also affected by temperature drift and deviation
of the physical system from an ideal model. Since r(t) is an
effective radius, it will not directly coincide with an actual
probe spacing radius.

γ8 (r(t), t)=
(r(t))2

4γ4 (r(t), t)
≈ α (16)

2.3 Measurement of soil water content and density

The heat capacity k and thermal diffusivity α are determined
using an inverse model as described in the previous sec-
tions of this paper. Neglecting the contribution of air, the
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volumetric heat capacity of soil Ch is calculated by Kluiten-
berg (2002):

Ch = θmCm+ θoCo+ θwCw. (17)

Rearranging Eq. (17) and solving for volumetric water con-
tent yields the following.

θw =
1
CW

[Ch− (θmCm+ θoCo)]

Ch = k/α

Cm = cmρm

Co = coρo (18)

In the equations above, Cm, Co, and Cw are the volumetric
heat capacities of mineral content, organic content, and wa-
ter; θm, θo, and θw are the associated volume fractions; and
Ch is the total volumetric heat capacity of the soil. The cm
and co are the specific heat capacities of the mineral and or-
ganic content, and the ρm and ρo are the associated densities.
Experiments in which numerical values of θw < 0 or θw > 1
are not valid and indicate improper contact between the probe
and the soil medium. The θw is numerically constrained to be
within the range 0≤ θw ≤ 1. The mineral content of the soil
θm is known, and the organic content θo can be easily deter-
mined from laboratory testing or an organic carbon soil map
of a geographic area. For implementation using a microcon-
troller, θm and θo are stored in flash (non-volatile) memory,
and these values change based on the geographic location of
the soil. The density of the soil is determined by volume frac-
tions:

ρ = θmρm+ θoρo+ θwρw. (19)

In Eq. (19) above, the constituent densities and heat capaci-
ties are known. The θw is determined using Eq. (18).

2.4 Circuit theory and PID control

Figure 1 shows a conceptual block diagram of the system.
Thermistors in half-bridge configurations are used to deter-
mine the temperatures of HPP needles.

The heat input into the soil by the heater probe is

P = I 2Rw, (20)

q =
P

`
. (21)

In the above Eqs. (20) and (21), the electrical power is P , the
total resistance of the nichrome heater wire isRw, and ` is the
length of the heater needle. Given a measured voltage drop
1E over a four-terminal Kelvin sense resistor with known
resistance Rs, the current though the heater wire is calculated
using Ohm’s law:

I =
1E

Rs
. (22)

For a current I through the heater wire and sense resistor,
the output voltage is measured as Ekn by an analog-to-digital
converter (Fig. 1). Using Kirchhoff’s voltage law for this cir-
cuit, the resistance Rw of the nichrome wire is determined at
each sampling time step by

Rw =
Ekn−1E

I
. (23)

To set a constant q, a proportional–integral–derivative (PID)
controller (Ang et al., 2005) is utilized. The variable voltage
source is adjusted at each discrete time step by a digital-to-
analog-converter (DAC). Since 1E and Ekn are measured
at each discrete time step at a sampling rate of fs, Eqs. (20)
to (23) are used with the feedback loop shown in Fig. 1 to en-
sure that the q remains close to a set-point value during the
time of experiment. The use of the PID controller requires
a higher sampling rate fs than a nominal HPP experiment
to adjust the output q. The PID controller thereby ensures
that the soil can heat up in a controlled fashion and considers
resistance changes in the nichrome wire in lieu of using an
assumed resistance. Figure 2a is a block diagram indicating
how the system incorporates a microcontroller and commu-
nication interfaces.

2.5 Determination of temperature change curves

The sampled temperature inside the heater needle is denoted
as 0(t), and the sampled temperature inside the second nee-
dle at an offset distance from the heater needle is denoted as
T (t). The sampled temperatures 0(t) and T (t) are low-pass
filtered using a fifth-order Butterworth filter with a cutoff fre-
quency of 10 Hz applied as a zero-phase filter to reduce noise.
The Butterworth filter was chosen since it is maximally flat
in the passband, and the zero-phase filtering ensures that time
shifts are minimized to ensure accurate application of the in-
verse models described in this paper using the collected data.

For the DP model calibration to find an initial r0 us-
ing curve fitting, the sampled temperatures are processed
by a moving-average filter over 1 s windows to further re-
duce noise before curve fitting. Alternately, for the DP in-
verse model (Sect. 2.2.2), a moving-average filter is used to
obtain an equivalent sampling rate of 12 Hz to ensure that
the Ei(x) inverse can be accurately computed using floating-
point number representations.

The respective averaged initial temperatures of the needles
before heating are determined as 0av and Tav. Therefore, the
temperature changes are calculated as 10(t)= 0(t)−0av
and 1T (t)= T (t)− Tav after the application of any initial
filtering. The temperature changes are used for the applica-
tion of inverse models related to Eqs. (1) and (2).

2.6 Determination of heat inputs

Heat inputs into the soil are determined during the time of
experiment and calculated using Eq. (21). When the current
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is applied and travels through the heater wire, there is a short
time delay (� 1s) before the set point q is attained when
the heater needle increases in temperature. The interval of
the time series for a constant calculated q during the time
of experiment is determined using a step detection algorithm
(Carter et al., 2008) based on the Student’s t test (Ebdon,
1991; pp. 61–64) with a null hypothesis at a significance level
of 1 % and a window size of 31 elements. The significance
level and window size are dependent on the implementation
of the sampling system and are thereby chosen to detect the
step within the context of this experiment. To find an estimate
of a constant value of q, the time series is averaged over the
plateau of the step. The time series location of the step as-
sociated with a constant q is found by application of a slid-
ing mean filter with a window size of 31 elements applied to
a time series of electrical power P used for the computation
of q using Eq. (21). The mean filter is applied to a binary
sequence created by mapping non-rejection of the null hy-
pothesis to binary 0 and rejection of the null hypothesis to
binary 1. The plateau is coincident with a sequence of zeros
away from the edges of the step. The edges of the step are
indicated by nonzero elements in this sequence surrounded
by zeros. The window size is appropriate for the sampling
system described in the context of this paper.

2.7 Apparatus

A custom electronic circuit board was designed and con-
structed for the SCHEPP system (Fig. 2a and b). The circuit
board was placed into an enclosure box and connected to the
HPP by a cable and mating circular connectors. The HPP
body was epoxied into a circular hole cut in the bottom of
a cylindrical polyvinyl chloride (PVC) container of 10.0 cm
diameter and 10.5 cm height that held 825 cm3 of soil. The
HPP needles thereby protruded into the soil column formed
by the PVC container (Fig. 2c).

Figures 1 and 2a graphically show the different subsys-
tems of the PCB (Fig. 2b). In the analog front end (AFE),
a two-channel 24 bit ADC with a precision 10 k (0.01 %,
± 5 ppm ◦C) resistor half-bridge for each channel and a 2.5 V
voltage reference (2 ppm ◦C, ± 0.02 % voltage error) was
used to determine the resistance of the thermistors inside
each needle. The resistance of a thermistor was related to
temperature by the Steinhart–Hart equation (Steinhart and
Hart, 1968).

The variable voltage source was constructed from a DC–
DC switcher for efficiency and thereby reduced power con-
sumption in lieu of a linear regulator. The DC–DC switcher
could be turned off for an output voltage of 0 V or turned
on and adjusted from ∼ 0.49 to ∼ 8.965 V using a DAC that
injected current into the feedback loop of the switcher. With
design criteria including a heater needle length of `= 3.0cm
and a nichrome wire resistance of Rw ≈ 34�, the heater
output was limited by software to be within the range of
q ≈ 0.24 to q ≈ 79 Wm−1. The precision sense resistor was

chosen as Rs = 0.01� (0.1 %, ± 15 ppm ◦C) to reduce the
voltage drop over this circuit element and to ensure that
the output voltage could be accurately adjusted. This resis-
tance is smaller than the 1� current sense resistor nomi-
nally used in other HPP experiments (Bristow et al., 1994;
Li et al., 2016; Liu and Si, 2011, 2008; Valente et al., 2006;
Zhang et al., 2011). Moreover, the precision sense resistor
had a Kelvin terminal connection for precision and was phys-
ically large to reduce self-heating by current flow. The volt-
age drop over a sense resistor was determined by a precision
difference amplifier and a 16 bit ADC, allowing for a 1 LSB
step size of 2.5 µV. The output voltage Ekn (Fig. 1) was also
measured by a 16 bit ADC and amplifier, resulting in a 1 LSB
step size of 1.25 mV.

A 32 bit microcontroller with a system clock of 300 MHz
was used to control the HPP experiment and perform
floating-point calculations (Fig. 2a). The system clock had
to be set at 300 MHz to allow the microcontroller to sam-
ple all ADCs in the system at fs = 120Hz and also perform
floating-point calculations associated with this application.
The system clock speed is provided here to provide a starting
point for engineering of similar designs. The DAC used to
control the output voltage was also updated at the same sam-
pling rate with the PID controller output. The 120 Hz sam-
pling rate enabled functioning of the PID controller feedback
loop and allowed for digital filtering for signal processing.

The microcontroller had an integrated USB transceiver for
communication with a computer. RS-232 and SDI-12 inter-
faces were also integrated into the system for communica-
tion with a computer or datalogger as machine-to-machine
(M2M) interfaces. SDRAM stored data from the experiment
and provided temporary memory for heap allocation of ar-
rays and data structures. Code for the microcontroller was
written in the C programming language.

A command-line serial port interface permitted changing
the duration of the experiment, the set-point q value, and
the time of heating. For each experiment, the microcontroller
monitored the maximum temperature rise at the heater nee-
dle and terminated the experiment if the temperature rise ex-
ceeded the maximum operating temperature of the thermis-
tors.

The mechanical construction and design of the HPP used
for this paper have been reported and rationalized in other
papers (Li et al., 2016; Liu and Si, 2008, 2010). The nee-
dles of length `= 3.0cm were constructed from stainless-
steel tubing (1.28 mm o.d. and 0.84 mm i.d.) and filled with
thermally conductive epoxy. The sense thermistor was placed
in the geometric middle of each needle to prevent edge ef-
fects associated with heat conduction, and the needles were
filled with thermal epoxy (Saito et al., 2007). The nominal
spacing between the heater needle and the sense needle was
6 mm. During laboratory testing of SCHEPP (Fig. 2c and d),
the experiment was initiated by a laptop computer connected
to the circuit’s USB port, and communication was conducted
over the USB interface.

https://doi.org/10.5194/gi-9-293-2020 Geosci. Instrum. Method. Data Syst., 9, 293–315, 2020



300 N. J. Kinar et al.: Signal processing for in situ detection

Table 1. Quantities utilized for sand and peat HPP experiments.

Sand Description

ρ = 1987kgm−3 Total density of sand and water mixture

θw = 0.40 Volumetric water content

θo =
M0mT
ρoVT

= 9.2× 10−3
= 0.92% Maximum fraction of organic content

M0 = 7.5× 10−3
= organic mass fraction from incineration

mT = 1.31kg= total mass of soil (kg)
ρ0 = 1300kgm−3

= density of soil organic matter (kgm−3)
VT = 8.25× 10−4 m3

= total volume (m3)
θm = 0.55 Volumetric mineral content of sand

Co = 2.5× 106 Jm−3 K−1 Volumetric heat capacity of organic content (Van Wijk and De Vries, 1963)

Cm = 1.9× 106 Jm−3 K−1 Volumetric heat capacity of mineral content (Van Wijk and De Vries, 1963)

Peat

ρ = 535kgm−3 Total density of peat and water mixture

θw = 0.22 Volumetric water content

θo = 0.30 Organic matter fraction

θm = 0.01 Volumetric mineral content

Co = 1.0× 106 Jm−3 K−1 Volumetric heat capacity of organic content

Cm = 1.1× 106 Jm−3 K−1 Volumetric heat capacity of mineral content

Sand and peat

ρo = 1300kgm−3 Density of organic matter

ρm = 2900kgm−3 Density of mineral content from parent material

2.8 Data collection

Following Campbell et al. (1991), calibration was conducted
to find rinitial using a 5 gL−1 agar gel solution. The thermal
conductivity k of the agar gel was taken to be the same as the
thermal conductivity of water (Saito et al., 2007). Reported
values for thermal conductivity (Ramires et al., 1995) and
heat capacity (Wagner and Pruß, 2002) of water were used.

For all experiments, the temperature of the probe needles
was measured for 1 s at a sampling rate of fs = 120Hz be-
fore electrical current was applied to the nichrome wire. This
initial temperature measurement for each trial was averaged
over the 1 s period.

The agar gel was washed out using distilled water, and the
cylindrical container was packed with soil. Two types of soil
were used for the HPP tests: sand and peat. These soils are
indicative of the physical extent of soil thermal properties.
The soils were collected from field sites near Fort McMur-
ray, Alberta. The sand contained small amounts of bitumen
as representative of the Alberta Oil Sands area. Two indepen-
dent laboratory analyses with incineration at 1100 ◦C were
conducted on the sand, finding the total carbon content to
range between a mean of 0.44 % and 0.75 % by mass. The
soil properties are summarized in Table 1.

The water content for the sand was chosen so that the sand
was saturated, whereas the water content for the peat was
chosen so that the soil would remain as wet as possible (Ta-
ble 1). Due to the absorbent characteristics of the peat soil,
it was not possible during the time of the laboratory experi-
ment to completely saturate the pore spaces of the soil col-
umn. However, the volumetric water content θ for both soils
was chosen to ensure adequate contact between the probe and
the soil and also to reduce air gaps that can increase thermal
contact resistance and decrease the accuracy of the measure-
ment (Liu and Si, 2010). These air gaps can occur in drier
soils with lower water contents. Since comparisons are re-
quired to be made between heat pulse probe and gravimetric
measurements for testing the in situ calibration procedure de-
scribed in this paper, the presence of air gaps represents an
additional source of error that was controlled.

Since the soil dried out over the time of multiple experi-
ments, some additional water was added between successive
days to ensure that the volumetric water content θ was close
to the target value. Between trials, the top of the container
was covered with a cap to reduce evaporation of water from
the soil. Changes in water content occurred over the time of
the experiment due to evaporation since the cap did not create
a hermetic seal between the top of the container and the soil
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Table 2. Heat pulse strengths, time of heating and cooling, and total time for each experiment conducted on sand and peat. The experiment
identifier is an alphabetical letter that identifies the experiment set. “No.” indicates the total number of experiments conducted per set.

Trial number Experiment Heat pulse Time Total time Number of Days between No.
for sand identifier strength of heating (th) of experiment (tT) repetitions last trial

(Wm−1)

1 A 45 8 s 3 min 5 0 1–5
2 B 45 8 s 3 min 5 1 6–10

C 45 11 s 3 min 5 11–15
D 55 20 s 3 min 5 16–20

Trial number for peat

1 E 20 89 s 3 min 5 0 21–25
2 F 20 89 s 3 min 5 1 26–30
3 G 20 89 s 3 min 5 1 31–35

column. Table 1 shows quantities used for the application of
HPP forward and inverse models to peat and sand.

Experiment sampling durations, q heat inputs, and heat
durations are summarized in Table 2. Trial numbers of each
experiment refer to groups of experiments conducted tempo-
rally close together.

The heat pulse strength and time of heating were chosen
to minimize interaction of the heat pulse with the container
boundaries. Due to the short time span over which each ex-
periment was conducted in a laboratory setting, explicit cor-
rection was not applied for changes in ambient temperature
(Young et al., 2008; Zhang et al., 2014). Between each exper-
iment, the temperature of the soil column returned to a level
that approximated the initial temperature before the probe
was heated again for the next trial. All experiments were con-
ducted at room temperature (∼ 20 ◦C).

Numerical comparisons were made using the root mean
squared difference (RMSD) and mean bias (MB). The
RMSD indicates the overall differences between two
datasets. The MB indicates whether the model underpredicts
or overpredicts relative to the observations.

3 Results

3.1 Synthetic experiments

Synthetic heating curves were constructed using Eqs. (1)
and (2) to serve as a forward model and provide a test of
the signal processing. The SP and DP curves are shown as
Figs. 3 and 4 and were generated using the model inputs
given in Table 3. For the DP, the assumed change in probe
spacing radius is shown for a linear increase (Fig. 4b), de-
crease (Fig. 4e), and Brownian random-walk-scaled so that
the numerical values are between a starting and ending ra-
dius (Fig. 4h).

The time-variable radius is r(t), and the associated curve
is shown on the plots as a DP variable radius. The DP fixed

Table 3. Synthetic SP and DP model inputs.

SP model

q = 45Wm−1

k = 5.2Wm−1 K−1

B = 0.016
C = 0.203
D = 0.402

DP model

q = 45Wm−1

k = 5.2Wm−1 K−1

θm = 0.59
θo = 9.2× 10−3

θw = 0.40
6mm≤ r(t)≤ 11mm

radius curve is calculated using the first element of the r(t)
used for a particular DP variable radius curve. The fixed ra-
dius is taken to be constant over the time of heating and cool-
ing.

For the SP, Fig. 3a shows the forward model and the re-
construction of the forward model by the inverse model pro-
posed in Sect. 2.2.1. The numerical difference between the
forward and inverse models is shown by Fig. 3b and is on the
order of 1× 10−7. This difference occurs due to discretiza-
tion of the numerical derivatives and floating-point round-off
error from the homodyning process. The simplified model
given by 105(t) is shown by Fig. 3c and demonstrates the
reduction of terms from the original model (Eq. 1). Figure 3d
is the numerical difference between the forward and inverse
models associated with105(t). The numerical difference re-
mains small over the time of heating.

Figure 4 demonstrates the heating and cooling curves for
a DP model with fixed radius and variable radius. The as-
sumed time-variable radius r(t) is given along with the appli-
cation of the inverse model proposed in Sect. 2.2.2. The first
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Figure 3. Synthetic example of SP signal processing. (a) Forward model and reconstruction of the forward model by the inverse model.
(b) Numerical difference between the forward and inverse models. (c) Forward model 105(t) from the signal processing compared to the
theoretical model of 105(t). (d) Numerical difference between the forward model 105(t) and the theoretical model.

Figure 4. Synthetic example of DP forward and inverse models. (a, d, g) DP temperature change 1T with a fixed and variable radius.
(b, e, h) Known change in r(t) as a variable radius. The forward and inverse model (reconstruction by signal processing) is shown. (c,
f, i) Numerical difference between the forward and inverse models. Each row of Fig. 4 corresponds to a numerical experiment with an
associated change in r(t) given in the second column (b, e, h).
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Figure 5. Example signal processing for sand showing (a) the measured and modelled SP heating curves; (b) the measured and modelled DP
heating curves along with the detected peak time; (c) the detected change in effective radius r(t) from the signal processing. The effective
radius r(t) as obtained from signal processing compensates for model error, experimental error, and physical changes in the spacing of the
heater needles.

Table 4. Comparisons for sand example.

Quantity and units Signal processing Heating and Late-time SP
SP and DP cooling DP

k
(

Wm−1 K−1
)

3.67 6.41 5.21

α
(

m2 s−1
)

1.23× 10−6 2.09× 10−6 NA
θw 0.46 0.48 NA

ρ
(

kgm−3
)

2065 2083 NA

PD for signal Numerical PD for heating Numerical
processing SP difference signal and cooling difference for

and DP (%) processing SP DP (%) heating and
and DP cooling DP

θw −15 −0.06 −19 −0.08
ρ (kgm−3) −4 −78.3 kgm−3

−5 −95.9 kgm−3

row of Fig. 4 (a–c) is for a linear increase; the second row
of Fig. 4 (d–f) is for a linear decrease; and the third row of
Fig. 4 (g–i) is for the Brownian random walk. The difference
between the forward and inverse models is on the order of
1×10−15 for all changes in probe spacing radius (Fig. 4c–i),
indicating that for a synthetic model the error is mostly as-
sociated with floating-point calculations and that the inverse
model is accurate.

3.2 Soil data

Since the signal processing SP and signal processing DP
models are applied together, hereafter these will be referred
to as the signal processing SP and DP model. The late-time
SP model is described in Sect. 2.2.1. The heating and cooling
DP model refers to the nominal curve fitting using Eq. (2).

Figure 5 provides an example of the models applied to
sand (Table 4). The peak time corresponding to tp+ta is indi-
cated as a vertical line in Fig. 5b. Changes in effective radius

r(t) determined by signal processing are shown as Fig. 5c.
The rapid fluctuations in the effective radius r(t) occur due
to temperature drift, model error, and experimental error. The
signal processing thereby compensates for these effects using
r(t) as an effective radius. Table 4 shows that the quantities
found using all models have the same orders of magnitude
and indicates that the signal processing SP and DP model is
more accurate than the heating and cooling DP model com-
pared to the gravimetric values used for the laboratory exper-
iment.

Figure 6 shows the signal processing SP and DP model ap-
plied to peat (Table 5). Compared to the sand example given
above, the thermal conductivity k and diffusivity α are lower
for the peat, demonstrating that the peat takes longer to warm
up during the time of experiment. The heating and cooling
curves are thereby distinctively different between sand and
peat. However, in the same manner as the sand example, the
quantities found using all models are of similar orders of
magnitude. Figure 6c shows that there are fewer rapid fluc-
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Figure 6. Example signal processing for peat showing (a) the measured and modelled SP heating curves; (b) the measured and modelled DP
heating curves along with the detected peak time; and (c) the detected change in effective radius r(t)from the signal processing. The effective
radius r(t) as obtained from signal processing compensates for model error, experimental error, and physical changes in the spacing of the
heater needles.

Table 5. Comparisons for peat example.

Quantity and units Signal processing Heating and Late-time SP
SP and DP cooling DP

k (Wm−1 K−1) 0.81 0.99 0.64
α (m2 s−1) 3.18× 10−7 3.73× 10−7 NA
θw 0.42 0.45 NA
ρ (kgm−3) 841 868 NA

PD for signal Numerical PD for heating Numerical
processing SP difference signal and cooling difference for

and DP (%) processing SP DP (%) heating and
and DP cooling DP

θw −92 −0.202 −104 −0.2
ρ (kgm−3) −57.1 −306 kgm−3

−62 −333 kgm−3

tuations in the effective radius r(t) determined for peat com-
pared to sand. Moreover, the change in effective radius is less
pronounced for peat compared to sand due to smaller temper-
ature drift associated with lower k and α. Also, in a similar
fashion to sand, the percentage difference (PD) and numeri-
cal difference demonstrate that the signal processing models
introduced in this paper are more accurate than the nominal
models.

Figure 7 shows the thermal conductivity k and diffusiv-
ity α for the sand and peat determined for the experimen-
tal trials. For the sand, the nominal heating and cooling DP
model provides estimates of k that are mostly higher than the
signal processing SP and late-time SP models. The late-time
SP model provides estimates of k that are intermediate be-
tween the other two models. The signal processing SP model
produces the lowest estimates of k. However, the estimates
of k made by all three models are the same orders of mag-
nitude and remain relatively constant over experiments con-
ducted on each soil type. The thermal diffusivity estimates
provided by the heating and cooling DP model are slightly

higher than the estimates provided by the signal process-
ing SP and DP model for sand (Fig. 7c), whereas for peat
(Fig. 7d) the thermal diffusivity for both models is approxi-
mately similar.

Results corresponding to Figs. 7 an 8 are shown by Ta-
bles 6 and 7. These tables show the RMSD, MB, and PD,
and the results of these calculations are discussed below.

Figure 8 shows the determined values of water content θw
and density ρ. Overall, for the sand and peat experiments,
the nominal heating and cooling DP model has a higher-
magnitude RMSD, MB, and PD compared to the signal pro-
cessing SP and DP model introduced in this paper, indicating
that the determination of the effective r(t) by signal process-
ing improves estimates of θw and ρ.

For all sand experiments, the signal processing SP and DP
model reduces the θw RMSD by 0.10 (10 %), the MB by 0.33
(33 %), and the PD by 4.2 % compared to the nominal heat-
ing and cooling DP model. For all peat experiments, the cor-
responding reduction for θw is 0.07 (7 %) for the RMSD, 0.41
(41 %) for the MB, and 12.3 % for the PD.
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Figure 7. Thermal conductivity k and thermal diffusivity α for each of the experiments. (a) Thermal conductivity for sand. (b) Thermal
conductivity for peat. (c) Thermal diffusivity for sand. (d) Thermal diffusivity for peat.

Table 6. RMSD, MB, and PD comparisons for θw.

Soil type and No. θw θw θw θw θw θw
experiment RMSD RMSD MB MB PD PD
identifier heating and signal processing heating and signal processing heating and signal processing

cooling DP SP and DP cooling DP SP and DP cooling DP SP and DP

Sand A 1–5 0.16 0.04 0.35 0.05 −17.4 −2.42
Sand B 6–10 0.12 0.08 0.24 0.16 −11.9 −7.84
Sand C 11–15 0.12 0.09 0.26 0.19 −12.9 −9.29
Sand D 16–20 0.05 0.01 −0.11 0.0055 5.51 −0.275
Peat E 21–25 0.4 0.35 0.81 0.67 −73.8 −61.3
Peat F 26–30 0.07 0.04 0.16 −0.0298 −14.7 2.71
Peat G 31–35 0.07 0.04 0.15 0.08 −14 −6.99

SAND ALL NA 0.23 0.13 0.73 0.4 −9.18 −4.96

PEAT ALL NA 0.42 0.35 1.13 0.72 −34.2 −21.9

For the density ρ of sand, the signal processing SP and
DP model reduces the RMSD by 102kgm−3, the MB by
338kgm−3, and the PD by 0.85 %. For the density ρ of peat,
the signal processing SP and DP model reduces the RMSD
by 94 kgm−3, the MB by 407 kgm−3, and the PD by 5.1 %.

For experiment identifiers A, B, C, and D associated with
sand, the RMSD, MB, and PD magnitudes are lowest for
θw determined from the signal processing SP and DP model
compared to the nominal heating and cooling DP model. The
RMSD, MB, and PD magnitudes are also lower for most sand
estimates of ρ other than experiment identifier D, for which
the RMSD and MB magnitudes are larger than magnitudes

associated with the nominal heating and cooling DP model.
The heat pulse strength and duration were of greater magni-
tude for experiment identifier D, but since ρ is being calcu-
lated as a function of θw this indicates a change in soil con-
stituents (see Eq. 19) in the vicinity of the probe for exper-
iment identifier D and demonstrates sensitivity of the signal
processing to this change.

An increase in water content is apparent for experiment
identifiers E to G associated with peat. The increase in wa-
ter content occurred since the HPP experiments were initially
conducted less than an hour after water was added to the soil
column. Since the soil column was opaque, the infiltration of
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Table 7. RMSD, MB, and PD comparisons for ρ.

Soil type and No. ρ (kgm−3) ρ (kgm−3) ρ (kgm−3) ρ (kgm−3) ρ ρ

experiment RMSD RMSD MB MB PD PD
identifier heating and signal processing heating and signal processing heating and signal processing

cooling DP SP and DP cooling DP SP and DP cooling DP SP and DP

Sand A 1–5 201.24 73.4 447.41 148.1 −4.5 −1.49
Sand B 6–10 157.97 118.88 338.58 256.63 −3.41 −2.58
Sand C 11–15 161.04 134.66 357.81 285.62 −3.6 −2.87
Sand D 16–20 7.5 48.52 −10.4 105.3 0.1 −1.06
Peat E 21–25 621.55 561.12 1332.24 1193.97 −49.8 −44.6
Peat F 26–30 305.03 223.27 682.06 490.22 −25.5 −18.3
Peat G 31–35 301.43 267.96 673.84 596.93 −25.2 −22.3

SAND ALL NA 302.4 200.02 1133.43 795.64 −2.85 −2

PEAT ALL NA 755.13 660.69 2688.13 2281.12 −33.5 −28.4

Figure 8. Water content θw and density ρ for each of the experiments. (a) Water content for sand. (b) Water content for peat. (c) Density for
sand. (d) Density for peat.

water in the column and the associated wetting front could
not be tracked, and thereby localized volumes of water sur-
rounding the HPP caused a rise in water content. Since the
rise is consistent and shown by the heating and cooling DP
model as well as the signal processing SP and DP model for
θw and ρ (Fig. 8b and d), this indicates that both models are
in physical agreement. Lower RMSD, MB, and PD values
for the signal processing SP and DP model indicates that the
signal processing introduced in this paper also improves es-
timates of θw and ρ when the water content changes during
the time interval of experiment identifier E.

For experiment identifiers F and G, the determined θw
and ρ remain approximately constant over time for peat.
Compared to experiment identifier E, a reduction in water
content has occurred due to infiltration over time and some
loss of water due to evaporation. For these experiments, the
RMSD, MB, and PD are lower for the signal processing
SP and DP model compared to the heating and cooling DP
model.

3.3 Sensitivity analysis

To identify the effects of model parameters on the RMSD and
MB of model outputs θw and ρ, a sensitivity analysis (Figs. 9
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Figure 9. Sensitivity analysis for water content θw for sand and peat with respect to the different models. (a) RMSD for changes in the
calibrated initial radius r . (b) MB for changes in the calibrated initial radius. (c) RMSD for changes in the organic volume fraction θo.
(d) MB for changes in the organic volume fraction θo. (e) RMSD for changes in the mineral volume fraction θm. (f) MB for changes in the
mineral volume fraction θm. (g) RMSD for changes in the time delay ta. (h) MB for changes in the time delay ta.

and 10) was conducted over all data collected. The sensitivity
analysis utilized the OAT (one-at-a-time) approach, whereby
one variable at a time is changed, whereas the other model
inputs are held constant (Hamby, 1994). Overall, for a range
of nominal model inputs, Figs. 9 and 10 demonstrate that the
signal processing associated with the signal processing SD
and DP model reduces the RMSD and MB compared to the
nominal heating and cooling DP model. This also indicates
that the signal processing method produces more accurate
estimates than the curve-fitting models nominally used for
heat pulse probe experiments.

For all models and soils used to determine θw and ρ, the
RMSD and MB are lowest when the initial radius rinitial is
close to the calibrated value, indicating the importance of cal-
ibration for all models. If the rinitial is underpredicted, the MB
indicates an overprediction of θw and ρ, whereas an overpre-
diction of r0 indicates an underprediction of θw and ρ.

For sand θw, an organic content θo < 0.1 produces the
lowest-magnitude RMSD and MB, whereas for peat θw,
an organic content close to θo ≈ 0.40 produces the lowest-

magnitude RMSD and MB. This physically approximates the
composition of the sand and peat soils used for these experi-
ments. The MB for sand and peat indicates a model overpre-
diction for θo values lower than these thresholds and a model
underprediction for θo values higher than these thresholds.
A similar effect is also shown for the mineral content θm,
with θm ≈ 0.60 resulting in the lowest-magnitude RMSD
and MB for sand. For peat, θm ≈ 0.15 results in the lowest-
magnitude RMSD and MB.

For sand θw the time delay ta ≈ 1.5s is a good assump-
tion to provide the lowest values of RMSD and MB for the
signal processing SD and DP model for both sand and peat.
For peat ρ the time delay is ta ≈ 0s. The time delay ta is not
a parameter for the nominal heating and cooling DP model,
and a sensitivity analysis is not conducted for ta when using
this model. Applied to peat, the signal processing SD and
DP model is relatively insensitive to the time delay ta due
to the lower thermal conductivity k and diffusivity α relative
to sand that dampens changes in the effective radius r(t) as
determined by signal processing.
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Figure 10. Sensitivity analysis for density ρ for sand and peat with respect to the different models. (a) RMSD for changes in the calibrated
initial radius r . (b) MB for changes in the calibrated initial radius. (c) RMSD for changes in the organic volume fraction θo. (d) MB for
changes in the organic volume fraction θo. (e) RMSD for changes in the mineral volume fraction θm. (f) MB for changes in the mineral
volume fraction θm. (g) RMSD for changes in the time delay ta. (h) MB for changes in the time delay ta.

In the context of the sensitivity analysis, as θo increases for
sand, the RMSD and MB related to ρ also increase. For peat,
a concomitant increase in θo is associated with an increase
in the RMSD and MB, indicating that for ρ it is not possi-
ble to calibrate for θo and an approximation of θo must be
known for model application within the context of these ex-
periments. A mineral content of θm ≈ 0.55 for sand produces
the lowest RMSD and MB related to ρ. As θm increases for
peat, the RMSD and MB also increase, indicating that for ρ
it is once again not possible to calibrate for θm and an ap-
proximation must be utilized.

4 Conclusions

– A novel circuit was designed and tested using a hybrid
SP and DP heat pulse probe (HPP) design. The circuit
utilized a PID controller to precisely control the heat
input into the soil. In lieu of a variable resistor, this en-
abled the heat input q to be changed by a computer or

a datalogger. When deployed at a remote or inaccessi-
ble field site, the HPP heat input can be set to a given
value using the communication interfaces. This enables
the heat input to be appropriately selected for soil type.

– Instead of using a 1� sense resistor to infer heat
inputs into the soil, the circuit used a resistor with
a 0.01� nominal resistance. This reduced the voltage
drop across the sense resistor and still allowed the cur-
rent through the nichrome wire to be adequately deter-
mined during the time of experiment, although a differ-
ential amplifier was required to detect the voltage dif-
ference before digitization by an ADC.

– A sampling rate of 120 Hz was required for application
of the PID controller and theory associated with sig-
nal processing related to a hybrid SP and DP heat pulse
probe. The higher sampling rate allowed digital filtering
to be applied.
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– Signal processing was used to determine thermal con-
ductivity using an SP model that did not rely on a late-
time SP approximation. A DP model was used to deter-
mine changes in the effective DP probe spacing radius.

– The DP and SP signal processing models introduced
in this paper improved overall estimates of soil water
content θw and bulk soil density ρ for sand and peat
soils, indicating that the detection of effective changes
in the probe spacing radius using signal processing is
useful to correct for model error and physical changes
in the probe spacing. This improvement is associated
with standard HP and DP probes that are used together
in a novel fashion along with signal processing.

– Further research is required to test the signal processing
models introduced in this paper and to compare the esti-
mates of soil water content θw and bulk soil density ρ to
estimates made using other measurement systems and
technologies. The effective radius calibration has an ad-
vantage for soil types wherein expansion and contrac-
tion of the soil can cause changes in the effective probe
spacing radius r(t).
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Appendix A

To efficiently obtain the inverse of Ei(x), endpoints for
a search interval need to be appropriately selected, particu-
larly when the inverse model runs on an embedded resource-
constrained microcontroller. To ensure numerical continuity
and accuracy between the forward and inverse models, the
same Ei(x) function is used in the inverse of Ei(x) in lieu of
alternative numerical approximations.

Take E1(x)=−Ei(−x), where E1(x)= En(x) with n=
1. Let x > 0 and we need to show

−
1
x1/2 <E1(x) <

1
x1/2 . (A1)

Using 5.1.20 of Abramowitz and Stegun (1964), we need to
show that with x > 0

−
1
x1/2 <

1
2

exp(−x) log
(

1+
2
x

)
<E1(x) < exp(−x) log

(
1+

1
x

)
<

1
x1/2 .

Since exp(−x) > 0 and log
(

1+ 2
x

)
> 0 as x→∞, then

1
2 exp(−x) log

(
1+ 2

x

)
> 0 as x→∞. Therefore, − 1

x1/2 <

1
2 exp(−x) log

(
1+ 2

x

)
. We next show

exp(−x) log
(

1+
1
x

)
<

1
x1/2 .

Algebraic rearrangement yields

1
2

log(x)+ log
(

log
(

1+
1
x

))
< x.

Since x > 0, we need to show

1
2

log(x)+ log
(

log
(

1+
1
x

))
< 0.

By algebraic rearrangement, we find

1+
1
x
< exp

(
1
x1/2

)
.

The right-hand side can be replaced by a power series repre-
sentation:

1+
1
x
<

∞∑
i=0

x−i/2

i!
.

The proof proceeds by contradiction and shows that the in-
equality holds. We assume

1+
1
x
≥ 1+

1
x1/2 + ·· ·

However, this is a contradiction, so inequality Eq. (A1) holds.

From inequality Eq. (A1), the search interval for Ei(x) is[
−1/(Ei(x))

2,0
)

for x < 0. The inverse of Ei(x) is com-
puted using Golden-section search (Kiefer, 1953) on the
bounded interval.

The following shows how endpoints of the search inter-
val for the inverse are selected for the cooling section of the
DP curve using the result given above. Without the q/(4πk)
term, Eq. (4) is of the form

f (x,y)= f (h)= Ei(−x)−Ei(−y). (A2)

Let x = h/(t − th) and y = h/t , where h= (r(t))2/(4α) and
x > 0 and y > 0. Equation (A2) can be rewritten as

f (h)= f (x,y)=−E1(x)+E1(y).

From the above and inequality (A1),

−1
x1/2 −

1
y1/2 <−E1(x)+E1(y) <

1
x1/2 +

1
y1/2 .

Algebraic manipulation yields the following search interval
for t > th:

0< h < (t − th)
[

1+ z
z

1
−E1(x)+E1(y)

]2

z=

(
t − th

t

)1/2

. (A3)

Golden-section search with the inequality Eq. (A3) can cause
numerical underflow when computing f (h) near the right
endpoint of the search interval. In lieu of Golden-section
search, the inverse for the cooling section is computed us-
ing Nelder–Mead optimization with the inequality Eq. (A3)
used as a Box constraint (Box, 1965).
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Appendix B

Acronyms

ADC Analog-to-digital converter
AFE Analog front end
COTS Commercial off-the-shelf
DAC Digital-to-analog converter
DC Direct current
DP Dual probe
HPP Heat pulse probe
MB Mean bias
M2M Machine-to-machine
NA Not applicable
OAT One-at-a-time
PCB Printed circuit board
PD Percentage difference
PID Proportional–integral–derivative controller
PLL Phase-locked loop
PVC Polyvinyl chloride
RMSD Root mean squared difference
RS-232 Recommended standard 232 serial port
SDI-12 Serial digital interface at 1200 baud
SDRAM Synchronous dynamic random-access memory
SP Single probe
USB Universal serial bus
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Symbols and SI units

ai log(r (ti))
α Thermal diffusivity of soil (m2 s−1)
{B,C,D} Coefficients used for the SP model
Ch Volumetric heat capacity (Jm−3 K−1)
{Cm,Co,Cw} Volumetric heat capacity (mineral, organic, and water)
c Specific heat capacity (J kg−1 K−1)
{cm,co} Specific heat capacity (mineral, organic) (Jkg−1 K−1)
10(t) Change in temperature (K) as a function of time for SP
γ (r, t) or γ (r(t), t) Signal processing computation step
d/dt Time derivative
1E Voltage drop over resistive element (V)
Ei(x) Exponential integral function
Ekn Known (measured) output voltage (V)
f (x,y) Function of x,y
fs Sampling rate (Hz)
H r2/4α
{θm,θo,θw} Volume fractions (mineral, organic, and water)
I Current through nichrome heater wire (A)
i Integer index
k Thermal conductivity (Wm−1 K−1)
` Length of heater needle (m)
log( ) Natural logarithm function
N Index number as integer
π ≈ 3.14159
P Electrical power (W)
ρ Density (kgm−3)
{ρm,ρo} Densities (mineral, organic) (kgm−3)
q Energy transfer per time per length of heater needle (Wm−1)
Rs Resistance of sensor resistor (�)
Rw Resistance of nichrome heater wire (�)
r(t) Effective DP radius as a function of time (m)
r DP radius (m)
rinitial Initial DP radius (m)
rn Radius of heater needle (m)
t Time (s)
t0 Start time of heating nichrome wire (s)
ta Additional time delay (s)
tc Time of cooling (s)
td Time at which curve is assumed to be linear (s)
th Stop time of heating nichrome wire (s)
ti Time used to determine initial temperature (s)
tp Time at which curve is at a maximum peak (s)
tT = ti+ th+ tc Total time of experiment (s)
1T (t) Change in temperature (K) as a function of time for DP
1t = 1/fs As the time step (s)
x,y,z Real numbers
| | Absolute value function
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