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Abstract. A global geographic grid system (Global GGS) is
here introduced to support the display of gridded bathymet-
ric data at whatever resolution is available in a visually seam-
less manner. The Global GGS combines a quadtree metagrid
hierarchy with a system of compatible data grids. Metagrid
nodes define the boundaries of data grids. Data grids are reg-
ular grids of depth values, coarse grids are used to repre-
sent sparse data and finer grids are used to represent high-
resolution data. Both metagrids and data grids are defined in
geographic coordinates to allow broad compatibility with the
widest range of geospatial software packages. An important
goal of the Global GGS is to support the meshing of adja-
cent tiles with different resolutions so as to create a seam-
less surface. This is accomplished by ensuring that abutting
data grids either match exactly with respect to their grid-cell
size or only differ by powers of 2. The oversampling of ge-
ographic data grids, which occurs towards the poles due to
the convergence of meridians, is addressed by reducing the
number of columns (longitude sampling) by powers of 2 at
appropriate lines of latitude. In addition to the specification
of the Global GGS, this paper describes a proof-of-concept
implementation and some possible variants.

1 Introduction

It is safe to say that geographic coordinates are by far the
most widely used method for specifying locations on the
Earth’s surface. They are also used commonly to specify
regular grids of height values sometimes called digital ter-
rain models (DTMs) or digital elevation models (DEMs) (Li,
2004). A great advantage of these is compact storage, be-
cause with a geographic grid, individual grid cell locations

need not be stored; instead it is only necessary to specify a
bounding box in geographic coordinates, together with the
number of rows and columns. Given equal spacing, the loca-
tion of an individual grid point can be easily computed. Un-
fortunately, when portrayed on a sphere, grids based on ge-
ographic coordinates suffer from problems at the geographic
poles due to convergence of meridional lines. This results in
oversampling in the zonal direction (along lines of latitude).
The global geographic grid system (Global GGS) proposed
here is designed to retain the advantages of geographic co-
ordinates while minimizing the problems of oversampling at
the poles.

The term geographic coordinates commonly refers to the
use of latitude, longitude and elevation to specify a loca-
tion on Earth. The concept has a very long history, dating to
Eratosthenes of Cyrene in the third-century BCE (McPhail,
2011). The use of degrees to specify angle is similarly an-
cient, dating to the ancient Babylonians. The International
Meridian Conference of 1884 set the 0 longitude meridian
through the Greenwich Observatory in England and stan-
dardized the system that is used today.

The motivation for the gridding system described here
comes from the Nippon Foundation-GEBCO-Seabed 2030
project. Seabed 2030 is an initiative to map the world’s
oceans to a set of specified resolutions by the year 2030
(https://seabed2030.gebco.net/, last access: 28 April 2020).
Four depth bands are defined to be mapped at different
resolutions: depths 0–1500 m at 100 m spatial resolution;
depths 1500–3000 m at 200 m resolution; depths 3000–5750
at 400 m resolution and 5750–11 000 m at 800 m resolution
(Mayer et al., 2018). The most recent gridded bathymetry
covering all of the world’s oceans is the GEBCO 2020 grid
produced by the Seabed 2030 project (GEBCO Compila-
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tion Group, 2020). This grid is based on a depth database
which covers 19 % of the world’s oceans with some sort of
depth measurement, primarily from single and multibeam
sonars, calculated at the above-specified resolutions. How-
ever, it should be noted that the GEBCO 2020 grid itself is a
regular geographic grid with a cell size of 15 arcsec.

1.1 Seafloor mapping

Most of what we know about the 71 % of Earth’s surface that
is covered by ocean waters has come through the mapping
of the seafloor, yet only approximately 19 % of the depths
have been directly measured (GEBCO Compilation Group,
2020). In recent years, multibeam echo sounders have been
developed that have the ability to produce continuous high-
resolution coverage over relatively wide swaths (typically 4–
6 times the water depth) (Theberge, 1989; Wölfl et al., 2019).
This evolution of ocean mapping technology has revolution-
ized our ability to produce bathymetric models and visualize
seafloor bathymetry leading to much greater understanding
of a range of Earth and ocean processes including insights
into the tectonic evolution of the Earth, tsunamis, landslides
and other marine geohazards, and a range of sedimentary
processes. With the development of multibeam sonar tech-
nology has come a commensurate evolution in positioning
technology (GPS and GLONASS) that has allowed the mea-
surement of the bathymetry of the seafloor in a precise frame-
work of geographic coordinates (Kumar and Moore, 2002).

But, as described above, to date, only a small percentage
of sonar mapping data is available to produce updated bathy-
metric maps of the ocean floor (GEBCO Compilation Group,
2020). Beyond the sonar coverage, for most of the oceans
there are virtually no direct bathymetric measurements. In-
stead, what is shown on global maps is predicted bathymetry
derived from satellite measurements of ocean surface height
indicating underlying bathymetry through gravity anoma-
lies (Smith and Sandwell, 1997; Becker et al., 2009; Olson
et al., 2014); predictions are constrained by directed mea-
surements where they exist. Although predicted bathymetry
is published in a global compilation at 15 arcsec resolution
(approx. 463 m) (Tozer et al., 2019), the minimum size of
features that can be resolved is actually much larger than
this, because it is limited by the footprint of the satellite
sensors and other environmental factors such as wind and
wave effects (Smith et al., 2005). Typically, features smaller
than 5–15 km horizontally cannot be resolved from predicted
bathymetry alone.

The distribution of the Seabed 2030 resolution reflects a
conservative view of the resolving ability of a modern multi-
beam sonar system deployed from a surface vessel operat-
ing in each of the water depth ranges (Mayer et al., 2018).
Therefore, where only predicted bathymetry is available it
can be stored and displayed at a lower resolution. Because
of these requirements a system is needed to show data at
varying resolutions, higher resolutions for shallower regions,

where data exist, lower resolutions for deeper regions that
have been mapped, and still lower resolutions where only
predicted bathymetry exists.

The Global GGS tiling approach described herein is de-
signed to meet the specific needs of the Seabed 2030 project
though it can also have broader applications beyond. It is de-
signed for simplicity in disseminating multi-resolution grids
as specified by that project. It is also intended to support the
purpose of computer graphics rendering. It is a pragmatic so-
lution offering the advantages of regularly gridded data files
for computer graphics and ease of resampling. It also offers
compact file storage and the definition of all files as rectan-
gles defined in geographic coordinates. It provides a nested
hierarchy supporting data at any resolution; as such it should
have uses for other projects involving the visualization of
bathymetric or other geospatial gridded data beyond the spe-
cific requirements of Seabed 2030.

1.2 Existing grid systems

Three alternatives to the proposed Global GGS system are in
common use for global bathymetry data: the geodesic-based
hexagonal tiling developed by Sahr et al. (2003), the Mer-
cator projection based system of Ryan et al. (2009), and the
GEBCO geographic tiling system (Weatherall et al., 2015).
There are also gridding schemes designed specifically for the
computer graphics rendering of large gridded terrains.

The hexagonal tiling of Sahr et al. (2003) is an elegant sys-
tem of overlapping hexagonal grids. Because the cells have
approximately equal area, it is favored by flow modelers.
However, it is more complex to implement and less space ef-
ficient in terms of storage since each point requires latitude–
longitude and depth values. Moreover, resampling from fine
meshes to coarser meshes is complex because tiles are not
strictly nested at different resolutions.

The GMRT system of Ryan et al. (2009) is, in some ways,
similar to Global GGS. It consists of a simple quadtree sub-
division of the entire globe based on a Mercator projection.
It differs from Global GGS in that it accommodates global
coverage by maintaining three parallel tile sets – Mercator,
south polar and north polar. For the projected system, it keeps
a constant number of columns but varies the number of rows
with latitude and, at a given level of binary subdivision, data
grids increase in resolution with distance from the Equator.
GMRT makes it simple to mesh data at a given resolution
within one of the projections.

The GEBCO 2020 grid is a geographic system providing
global bathymetry in geographic coordinates in a single grid
at 15 arcsec resolution. It is not a hierarchical system, and
because the grid is constant in geographic coordinates, the
spatial density of samples becomes increasingly asymmet-
ric approaching the poles where sample spacing along lines
of latitude becomes much greater than sample spacing along
lines of longitude.
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Hierarchical meshes and grids have been extensively used
in computer graphics applications for rendering both terrains
and objects. Quadtrees in particular have been used for ter-
rains. In most examples, the goal of a quadtree rendering
is for run-time rendering of perspective views so as to ren-
der fewer polygons for more distant parts of the terrain.
With hierarchical block representations (Pajarola and Gob-
betti, 2007; Schneider and Westermann, 2006) fixed sized
grids are used (257×257 in the case of Schneider and West-
ermann), and these are placed in a hierarchical structure.
Regular grids can be rendered very efficiently by a modern
computer graphics system so that even though these grids do
not result in the minimum number of polygons overall, the
gains in rendering efficiency outweigh the increase in poly-
gon count. In addition, grids can be very compactly stored,
since, as already mentioned it is not necessary to store the
locations of each vertex or information about the triangular
mesh.

The goals of storage for bathymetry data are significantly
different than those for rendering surface terrains. In partic-
ular, our purpose is not primarily to support multi-resolution
rendering, although that might be a side benefit, but to sup-
port the specific needs of bathymetric mapping that, due to
limitations in data acquisition, are often constrained by data
that vary in resolution with depth. The usual practice for
block grids used in computer graphics (Schneider and West-
ermann, 2006) is for height values to be placed at grid ver-
tices. In contrast, for bathymetric data it is more usual for
depth values to be placed in the centers of grid cells. The
value of the grid node is typically a statistical representation
(mean, median, mode, etc.) of all of the soundings within
a defined radius often with an inversely weighted contribu-
tion from surrounding cells. The two schemes are equivalent
in terms of network topology, but there are important impli-
cations when it comes to sampling. Figure 1 illustrates this
point. If points are defined at grid cell centers (a) averaging
from a high resolution to a lower resolution is straightfor-
ward. The average of values within a 2× 2 grid is the same
as the average of the larger grid node one level up. This is
not the case when heights (or depths) are placed at the ver-
tices. Averaging the vertices shown in (b1) does not result
in the vertices shown in (b2); rather it yields the vertices
shown in (b3). In this case there are no points in common
between grids at different resolutions, and some form of re-
averaging is needed to achieve a grid hierarchy. There is little
difference between the two schemes in terms of the complex-
ity of stitching together adjacent grids since the meshes are
topologically the same. Figure 1c and d show the triangular
meshes required to stitch adjacent grids together in the two
cases. The fill strip is narrower and skewed when depths are
at the centers of grid cells.

Figure 1. (a) When depth values placed at the centers of cells are
averaged to a lower resolution, the result is also at the center of a
cell (green dot). (b) The averages of four vertex groups do not lie
on vertices (b2) but at the centers of grid cells (b3), so there are no
common vertices between grids at different scales. (c–d) Triangle
strips linking adjacent grids are topologically the same for the two
schemes.

2 The global geographic grid system

The design goals for Global GGS were to create a hierarchi-
cal gridding system based on geographic coordinates and to
mitigate the effects of variable sampling along lines of lat-
itude, which occurs because of the convergence of meridi-
ans towards the geographic poles. It also makes it easy to tie
together adjacent grids having different resolutions. In ad-
dition, for conceptual simplicity, it is desirable to have unit
degrees as one of the possible grid sizes in the hierarchy. For
this reason, a binary subdivision of the entire globe was re-
jected.

The Global GGS borrows from both GMRT and GEBCO;
like GEBCO it is defined in geographic coordinates; like
GMRT it incorporates a quadtree hierarchy enabling data of
any resolution to be represented. Unlike GMRT, Global GGS
uses a single scheme (and projection) to extend to the poles.
Also, Global GGS avoids the extreme sampling asymmetries
of GEBCO.

The system supports differently sized data grids in a way
that is independent of resolution. It is useful to have large
tiles to represent large areas of the seafloor mapped at a con-
stant resolution, but grids that are very large are slow to load
and display and therefore difficult to handle in most inter-
active display systems. Smaller grids are space efficient for
areas of the seafloor mapped at different resolutions, but nu-
merous small grid tiles are also not efficient to render in com-
puter graphics since large numbers of tiles must be managed.
For this reason, Global GGS grids are constrained in both
minimum and maximum size.
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Figure 2. (a) An example of a quadtree metagrid tree structure with a 2◦ subsection color coded to illustrate different data grid resolutions
in meters. (Note that a 960× 960 grid subtending 1◦ would have a grid cells size of 115.7 m.) (b) The same subsection is shown as a map.
Numbers in the square areas illustrate grid sizes used to achieve different spatial resolutions.

The Global GGS also supports the seamless meshing of
low-latitude data with polar data sets. Often polar data sets
use a different projection than the one used for data at lower
latitudes creating difficulties in displaying data that cross the
boundary. In the Global GGS, Arctic and sub-Arctic and
Antarctic and sub-Antarctic data are supported essentially in
the same way.

Global GGS combines a metagrid hierarchy with a system
of compatible data grids. Metagrid nodes define the bound-
aries of data grids. Data grids are square grids of depth val-
ues, coarse grids are used to represent sparse data and finer
grids are used to represent high-resolution data. Both meta-
grids and data grids are defined in geographic coordinates to
allow broad compatibility with the widest range of geospatial
software packages. An important goal of the Global GGS is
to support the meshing of adjacent tiles with different resolu-
tions so as to create a seamless surface. This is accomplished
by ensuring that abutting data grids either match exactly or
only differ by powers of 2. The oversampling of geographic
data grids which occurs towards the poles is addressed by re-
ducing the number of columns (zonal sampling) by powers
of 2 at appropriate lines of latitude.

2.1 The metagrid structure

The metagrid is designed to have integer degrees as a ba-
sic unit with a quadtree structure starting at 8◦, which is
the largest integer that both divides exactly into 360 and is
a power of 2.

Figure 2 illustrates an example of a metagrid structure in-
corporating data grids of different sizes to achieve different
resolutions in different regions; because this example is less
than 8◦, the metagrid has a quadtree structure. Figure 3 il-
lustrates the global metagrid. Up to 72◦ N or S, the metagrid
consists of 72◦×72◦, 24◦×24◦, and 8◦×8◦ cells as shown in

Fig. 2, with a quadtree for cells of 8×8 and smaller as shown
in Fig. 1; at 72◦ N or S, the metagrid becomes 24◦× 8◦ and
72◦× 8◦ at 80◦.

2.2 Data grids below 60◦ N or S

Data grids have their row and column counts defined in pow-
ers of 2, and to support efficient tiling have both a minimum
and a maximum allowable (row, column) size. Because both
metagrids and data grids are defined by powers of 2 the sys-
tem guarantees that abutting meshes only differ by powers
of 2 in terms of resolution. This greatly simplifies the stitch-
ing of adjacent cells.

All data grid cells are defined in terms of a binary se-
quence of resolutions. This results in a set of fixed spacings in
terms of both degrees of longitude and physical distances in
a north–south direction. In the east–west direction, the width
of cells varies by a maximum factor of 2 at a given level of
binary subdivision. For example, at 60◦ N or S, lines of lon-
gitude have half the separation that they do at the Equator.

For metagrid cells with a southern boundary <60◦, al-
lowed sequences of data-grid sizes are for example: 64× 64,
128×128, 256×256, 512×512, 1024×1024 (possibly also
2048× 2048), or 60× 60, 120× 120, 240× 240, 480× 480,
960× 960 (possibly also 1920× 1920).

The latter sequence is fully compatible with the
GEBCO 2020 grid. Tying such grids together at the bound-
aries is straightforward and because they always differ by
powers of 2. In addition, resampling of the grids (or aver-
aging down) is also simple. The reason for not having larger
grid sizes is that large files are slow to load and inefficient
when a small area must be viewed. The reason for not hav-
ing smaller grid sizes is that rendering many small grids has
a high computational overhead. In general, small grids will
be used to render small features with large depth ranges,
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Figure 3. (a) The metagrid is shown above the Equator. For cells 8× 8 and smaller the structure is a quadtree. (b) A polar view of the
metagrid showing wider metagrid cells north of 72◦.

Figure 4. For the polar regions the number of grid columns is re-
duced by two each time the spacing between lines of latitude is
halved.

whereas the larger grids will be used for larger areas of uni-
form depth; as processing power and graphics efficiency in-
creases, the range of data-grid sizes can easily be scaled.

2.3 The Arctic and Antarctic

The basic principle of polar grid construction is that the num-
ber of data grid columns decreases by powers of 2 as dis-
tances between lines of longitude decrease by a factor of 2.
This gridding concept is illustrated in Fig. 4 with grid cells
greatly enlarged for clarity. The first such boundary is at 60◦

where lines of latitude have half the spacing that they do at
the Equator [cos(60)= 0.5]. The next is at (approx.) 75.5◦

where lines of longitude half again. The third transition is
above 82.8◦ where data grids have one-eighth of the number
of columns per degree relative to rows.

In addition to reducing the number of data grid columns on
a per degree basis, metagrids become larger in the east–west
direction as illustrated in Fig. 3. This is to avoid metagrids

becoming very thin trapezoids, close to the pole. They be-
come 24× 8 at 72◦ N and 72× 8 at 80◦ N. North of 88◦ is a
single 360◦× 2◦ metagrid node.

To fit correctly within the 24×8 and 72×78 metagrid cells,
data grids must be modified in such a way that they main-
tain the power of 2 ratio between abutting grids. Consider
an example of a data grid based on a metagrid cell span-
ning 72–80◦ (latitude) and 0–24◦ (longitude). Were it not
for the halving rule (north of 60) this data grid would con-
tain 960 rows and 2880 columns, but because of the halving
principle, above 60◦ it will have 960 rows and 1440 columns.
Other allowable data grid sizes for this metagrid cell are
480× 720, 240× 360 and 120× 180.

The wide high-latitude metagrid nodes form the roots of
a quadtrees that subdivide in the same way as the 8× 8
quadtrees at lower latitudes. So the child nodes of a 24◦×8◦

metagrid node will be 12◦×4◦, the grandchild nodes will be
6◦× 2◦ and so on.

In all cases the result is to create data grid cells where the
east–west resolution is as good as, or better than, the north–
south resolution.

2.4 Depths on vertices or centers?

Computer graphics renders polygons defined by vertices, and
for this reason it is conceptually simpler if depth are defined
at the vertices of data grids. If depths are defined at the cen-
ters of grid cells, small offsets must be computed relative to
the metagrid frame and this adds complexity. Nevertheless,
as discussed in the introduction, there is an advantage to hav-
ing depths at the centers of data grid cells; it better supports
both sampling and resampling from high-resolution to low-
resolution grids. Global GGS can be implemented either with
depths at grid centers or vertices. On balance, it is better for
depths to be defined on grid centers.
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2.5 Compatibility with GEBCO 2020 grid

The grid size sequence 60×60, 120×120, 240×240, 480×
480, 960× 960 is fully compatible with the GEBCO 2020
15 arcsec grid. This corresponds, for example, to a 960×960
grid within a 4◦ metagrid node (or 240× 240 within a 1◦

metagrid node). More generally it is compatible with grid
spacings in the series 30, 15, 7.5, 3.75. . . arcsec which cor-
respond to 925.9, 462.9, 231.5, 115.7. . . m at the Equator.

3 Implementation

The following sections describe a proof-of-concept imple-
mentation of the Global GGS. Source code is provided
in a Bitbucket repository (https://bitbucket.org/ccomjhc/
globalggs/, last access: 15 October 2019). The implementa-
tion was done in C++ and OpenGL and uses glut to provide
a GUI for the test driver. Naturally, it could be implemented
in any programming language, and there are many possible
variations, some of which we discuss in a later section. In this
description, we provide the main C++ classes and methods.
Details relating to such things as shading and color-mapping
are omitted since they are peripheral, but they are provided
in the form of source code in the Supplement.

The implementation is driven by a latitude–longitude ref-
erence point. This causes the LoadData method to load a
set of files within a specified distance from this point. On
loading, all coordinates are converted to positions relative to
the reference. The use of relative positions has the important
benefit that coordinates can be stored as single, as opposed
to double, precision floats substantially reducing the mem-
ory load.

3.1 The GGGS root class

The GGGS root class is an implementation of the top level
grid illustrated in Fig. 3. The main data structure is a two-
dimensional (24× 45) array of pointers to 8◦× 8◦ metagrid
nodes. The grid has a longitude range of (−180◦, 180◦). The
latitude range of the array extends beyond the poles, from
−96.0 to 96◦. This ensures a grid boundary at the Equator
but means that the first and last rows only contain 2◦ of data.
The nodes approaching the Equator have extended widths
(8◦×24◦, 8◦×72◦, 2◦×360◦). However, these are implicit as
illustrated in Fig. 5 and maintained by the accessor functions.

The implementation relies on pre-prepared data grid files
with grids that are computed as described in the first part of
the document.

There are three public methods in the GGGS root class:
LoadData, draw and loadColorMaps.

LoadData (float lat, float long,
float width, float height)

The LoadData method takes in a latitude–longitude refer-
ence point as well as a width (in longitude degrees) and a

Figure 5. The larger root nodes north and south of 72◦ are implicit.
Only the nodes colored yellow contain pointers to metagrid sub-
trees.

height (in latitude degrees). Its main function is to sequence
various operations carried out by the metaGridNode class.
These are listed here then described in more detail in the de-
scriptions of metaGridNode methods.

1. LoadData first instantiates a set of metaGridNode ob-
jects covering the specified ranges.

2. LoadData inserts the top level 8◦× 8◦ (or in polar re-
gions: 8◦× 24◦, 8◦× 72◦, 2◦× 360◦) data files cover-
ing the specified range. For this implementation low-
resolution 8◦× 8◦ data grids are required to exist for all
top level metagrid nodes.

3. Within the boundaries of each metaGridNode the entire
set of file names for 1× 1 (or in polar regions: 1◦× 3◦,
1◦× 9◦, or 1◦× 45◦). nodes are constructed. Their ex-
istence is tested the filenames for those that exist are
passed to the metaGridNode. An alternative approach
would be to have a list of files available for insertion
based on a pre-defined scene file. Figure 6a shows an
example tree following data insertion.

4. For each top level metaGridNode the pushdown method
is called. This recursively splits the top level metagrid
node into parts to fill in around the detail nodes in the
metaGridNode tree. Figure 6b shows an example tree
following this operation.

5. For each top level node a linkSibs metagrid method is
called. This recursively threads the tree, linking pointers
between nodes at every level. At every level it is the
parents responsibility to provide each child node with
pointers to their siblings.

6. For each top level metaGridNode a walkBuildStrips(0
method is called. The purpose of this is to build stitch-
Lists for every data grid node which will be displayed. A
stitchList is an array of arrays containing the data points
of the nodes adjoining the east, west, north and south
edges of a displayable data node. stitchLists are needed
to fill the strips between data grids with polygons. Fig-
ure 6c shows an example tree following this operation.
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Figure 6. Steps in the construction of a seamless mesh from multi-resolution files. (a) The structure after the data have been loaded. (b) The
structure following pushdown. (c) Following stitchList construction.

7. Special stitchLists are constructed for the boundaries at
72 and 80◦ if these boundaries lie within the specified
latitude–longitude data ranges.

draw (bool lores)

The draw method calls the root metaGridNodes which
then traverse the hierarchical metaGridNode trees and draws
both the data grids and their associated stitchLists. The draw
method has a single boolean parameter. If set to true render-
ing is done at lower resolution. This is useful for interactively
changing the view of the data.

loadColorMaps()

The loadColorMaps method loads multiple colormaps so
that attributes of the data sets can be color coded.

3.2 The metaGridNode class

metaGridNode implements the quadtree hierarchy, a signa-
ture feature of the Global GGS. Each metagrid node has four
pointers to children which are also metaGridNodes. Each
node also has pointers to sibling nodes to the east, west, north
and south. The following sections describe the functions of
the most important class methods.

bool insertChild (char *fname,
double focusLat, double focusLon,
int childC, int childR, int depth,
int Tdepth);

The insertChild method is passed a file name, the focus
latitude–longitude coordinates, depth of insertion and the
current depth within the metaGridNode tree. The childC and
childR parameters tell it which (of four) children it is, relative
to its parent.

insertChild builds the metaGridNode tree down to the
level at which the data file should be inserted. Once that level
is reached the bathyGrid method is given the responsibility
of opening and loading the data file. Figure 7 shows an ex-
ample which crosses the 80◦ boundary.

pushdown (int depth);

pushdown is a recursive method which takes any node that
both contains a bathyGrid and has children. It passes down a
pointer to the bathyGrid to all of its child nodes using the
insertDtmQuadrant method. These child nodes extract the
bathyGridNode quadrant corresponding to their geographic
extent and copy the data into a new bathyGrid node. This
is recursively repeated to the lowest level in the hierarchy.
The purposes is to fill in around high-resolution nodes which
have been inserted. Figure 6b illustrates the result as a tree
diagrams. Figure 8 gives an example.

insertDtmQuadrant (bathyGrid *ddtm,
int child)

insertDtmQuadrant is passed an instance of a bathyGrid,
together with information about which (of four) children it is,
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Figure 7. Data tiles north and south of 80◦.

relative to its parent. It uses this information to create a new
bathyGrid using the appropriate quadrant of the bathyGrid.

dtmQuadrantMerge (bathyGrid *ddtm,
int child)

For this implementation there is an additional dtmQuad-
rantMerge function with is called when the traversal reaches
a leaf node. The 1◦ data grids in this application only contain
valid bathymetry, where multibeam surveying has been done,
otherwise they are empty. dtmQuadrantMerge is used where
leaf nodes contain multibeam bathymetry. In these cases, the
low-resolution bathyGrid is interpolated to fill the missing
values as illustrated in Fig. 8.

linkSibs (int mg8Lat, metaGridNode *sE,
metaGridNode *sW, metaGridNode *sN,
metaGridNode *sS);

LinkSibs is a recursive method that walks the tree connect-
ing sibling pointers to adjacent metaGridNodes at each level.
It is the parents responsibility to give each child pointers to
its siblings.

buildStitchLists()

buildStitchLists is responsible for building a data structure
required to fill the gaps between adjacent nodes with strips of
polygons. The method creates and populates a data structure
which is a list of lists. Stitch lists are only required where
larger nodes are adjacent to a set of smaller nodes along one
of the edges and they are only built for leaf nodes (that have
no children). An example is given in Fig. 6 where the node
marked with an X will have a stitch list along it’s western
edge containing the data points from the extern boundaries
of the four nodes indicated by arrows.

For leaf nodes, buildStitchLists checks the east, west, north
and south neighbors. If they exist, then a stitch list is con-
structed, by asking that neighbor to fill in the data points for
the appropriate edge. If a neighbor is not a leaf node this in-
volves recursively traversing the neighbor’s subtree. For ex-
ample, building a stitch list for the west edge of node X in

Figure 8. In this example, a low-resolution grid has been used to
fill in around a high-resolution multibeam data. Two colormaps are
used with highly saturated colors being used to highlight multibeam
data.

Figure 9. Bathymetric values are represented relative to a tangent
plan with an orthographic projection of latitude–longitude posi-
tions.

Fig. 6c involves obtaining a list of the data grid values along
the east edges of the leaf nodes indicated by arrows.

3.3 The bathyGrid class

bathyGrid nodes load and store load data from bathymetry
files, computes surface normals, and renders the data. For
this implementation latitude–longitude coordinates are trans-
formed by rotations into a planar orthographic projection
centered on the focus coordinates (Fig. 9). Because all co-
ordinates are stored as offsets from the focus coordinates and
this means that single precision floating point numbers can
be used internally. On loading a data grid, latitude–longitude
coordinates are constructed for the centers of all grid points
based on the lower left coordinate of a data grid, the grid size
and the number of rows and columns.

computeXYfromLatLon (double focLat,
float focLon, float rLat, bool print)

These coordinates are transformed to x, y coordinates on
a plane tangential to the surface at the reference point. This
is achieved by rotating the absolute latitude and relative lon-

Geosci. Instrum. Method. Data Syst., 9, 375–384, 2020 https://doi.org/10.5194/gi-9-375-2020



C. Ware et al.: A global geographic grid system for visualizing bathymetry 383

gitude values about an axis through the Equator. This yields
x, y coordinates for each of the DEM points as illustrated in
Fig. 9.

4 Conclusions

Perhaps the most important practical implication of Global
GGS is that it constrains a set of dissemination grids. In or-
der for the system to be efficiently implemented these must
be defined at a series of resolutions given by binary subdi-
visions of degrees as prescribed. In the ideal situation, data
grids will be derived directly from primary data sources such
as bathymetric measurements from multibeam mapping sys-
tems. However, in many cases it is inevitable that resampling
from existing grids will be necessary.

Although Global GGS prescribes the grid spacings, it is
agnostic as to the format of data grid files. In the imple-
mentation provided in supplementary material, bathymetry is
encoded compactly using png files, but GeoTIFFs, NetCDF
files or any other gridded format could serve the purpose.
Also, there are other variants in file format which could be
implemented within the Global GGS concept. For exam-
ple, adding additional rows and columns to grid boundaries
which duplicate the boundaries of adjacent grids, could facil-
itate the rendering of seamless tiling where a single resolu-
tion is involved.

One of the less than desirable qualities of Global GGS is
non-square grid cells. In Global GGS data grids can have
variable aspect ratios between 1.0 and 2.0 depending on lati-
tude. However, where the aspect ratios are higher, this repre-
sents an oversampling in terms of longitude, never an under
sampling. A simple modification could be used to ensure that
the aspect ratio never exceeds the square root of 2 (1.4142).
This can be achieved by changing the latitudes at which the
number of columns is decreased. For example, instead of the
first such transition occurring at 60◦. of latitude it would oc-
cur at 45◦. But this modification would also have a cost in
that sometimes longitude would be oversampled with respect
to latitude and sometimes the converse.

There are many alternative ways in which Global GGS
could be implemented either as a desktop or web-based ap-
plication. The specific implementation given here is provided
only as a working example. Some aspects of it are more gen-
eral than others. The way the tree is built, as files are inserted,
would be a necessary part of any implementation. The push-
down function is also needed to fill around high-resolution
data with lower-resolution data. Some form of threading be-
tween adjacent nodes will be needed in order to provide links
necessary to create seamless polygon meshes at the bound-
aries between data grids, especially those having different
resolutions. Other aspects of the implementation are open to
many alternatives. The specific way that the boundary links
are constructed using stitchLists is just one possibility.

For many applications the implementation of scene files
would be a useful enhancement. These could specify an as-
semblage of data grid files and attribute files, together with
rendering attributes such as colormaps, viewpoint, height ex-
aggeration and illumination.

As discussed in the introduction, the use of small tiles has
the advantage that they can be loaded rapidly for interactive
applications especially over the internet. Small grids are also
beneficial where the resolution at which the seafloor has been
mapped is highly variable, as is often the case for bathymet-
ric data, especially where the data has been acquired to sup-
port science rather than standardized surveys conducted by
hydrographic agencies. Smaller files lead to efficient render-
ing by reducing the number of polygons for terrains where
only isolated areas have high-resolution data. But there are
circumstances where larger tiles may be more beneficial, es-
pecially where larger areas with limited relief have been uni-
formly mapped. With some storage schemes rapid loading
need not be compromised by large file sizes. For example,
NetCDF files, allow for rapidly loading subsets of the data
within a file without the whole file being read.

The original motivation for Global GGS came from the
Seabed 2030 project and its need for multi-resolution grids
which requires a method capable of handling multiple res-
olutions in a seamless mesh. However, different resolutions
were also specified as a minimum requirement, meaning that
higher resolutions could eventually be accepted and making
it desirable to design a system that can support any resolu-
tion. Global GGS meets this requirement and can support the
visualization of grids at any resolution. As such Global GGS
may also prove to be an efficient approach to the represen-
tation of any single or multiresolution globally distributed
three-dimensional geospatial data set.

Code availability. Example code is available in a bit bucket repos-
itory https://bitbucket.org/ccomjhc/globalggs (Ware, 2019, last ac-
cess: 15 October 2019). Note that the concepts in this paper are
more general than those expressed in the code which represents a
proof-of-concept implementation. There are many possible imple-
mentations of Global GGS and many useful variants.

Data availability. A small amount of sample data is available in the
same bit bucket repository https://bitbucket.org/ccomjhc/globalggs
(Ware, 2019b, last access: 15 October 2019).

Author contributions. CW developed the original concept, wrote
the code, did most of the writing. LM helped to refine the concept,
provided advice on issues related to mapping. Wrote much of the
introduction. PJ: Transformed data grids for prototype. Advised on
mapping and GIS formats. MJ helped to clarify the concept. Ad-
vised with respect to Arctic data requirements. VF helped to refine
the concept. Helped with data preparation and the transformation of
GMRT (Mercator) data into the GGGS format.
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