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Abstract. Minimum variance distortionless projection, the
so-called Capon method, serves as a powerful and robust data
analysis tool when working on various kinds of ill-posed in-
verse problems. The method has not only successfully been
applied to multipoint wave and turbulence studies in the con-
text of space plasma physics, but it is also currently being
considered as a technique to perform the multipole expan-
sion of planetary magnetic fields from a limited data set, such
as Mercury’s magnetic field analysis. The practical applica-
tion and limits of the Capon method are discussed in a rig-
orous fashion by formulating its linear algebraic derivation
in view of planetary magnetic field studies. Furthermore, the
optimization of Capon’s method by making use of diagonal
loading is considered.

1 Introduction

Nonlinear and adaptive filter techniques have a wide range
of applications in geophysical and space science studies
to find the most likely parameter set describing the mea-
surement data or to decompose the data into a set of sig-
nals and noise. Above all, the minimum variance distor-
tionless projection introduced by Capon (1969) (hereafter,
Capon’s method) has successfully been applied to multipoint
data analyses for waves, turbulence fields and current sheets
(Motschmann et al., 1996; Glassmeier et al., 2001; Narita
et al., 2003, 2013; Contantinescu et al., 2006; Plaschke et
al., 2008). The strength of Capon’s method lies in the fact
that the method performs a robust data fitting even when

the spatial sampling or data amount is limited in the mea-
surement (e.g., successfully applied to four-spacecraft data,
Motschmann et al., 1996). Capon’s method is currently be-
ing considered for planetary magnetic field studies in which
the data (i.e., magnetic field samples) are more limited (e.g.,
data sampled on single orbits) and has recently been applied
to simulated Mercury magnetic field data in view of the Bepi-
Colombo mission (Toepfer et al., 2020).

From a theoretical point of view there are several ori-
gins for the derivation of the method. The first derivation of
Capon’s method (Capon, 1969), constructed for the analysis
of seismic waves, is based on the estimation of frequency–
wavenumber spectra. Later on, this approach was reformu-
lated in terms of matrix algebra (Motschmann et al., 1996).
In light of mathematical statistics, Capon’s estimator can be
regarded as a special case of the maximum likelihood estima-
tor (Narita, 2019). In this work the linear algebraic formula-
tion of the method (Motschmann et al., 1996) with specific
attention to magnetic field analysis is extended and the appli-
cation of diagonal loading is discussed to improve the quality
of data analysis with more justified applications and limits.

2 Motivation of Capon’s method

The analysis of planetary magnetic fields is of great inter-
est and one of the main tasks in space science. Here we
pay special attention to the analysis of Mercury’s internal
magnetic field, which is one of the primary goals of the
BepiColombo mission (Benkhoff et al., 2010). The mag-
netometer onboard the Mercury Planetary Orbiter (MPO)
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(Glassmeier et al., 2010) measures the magnetic field vectors

bi =
(
bix,b

i
y,b

i
z

)T
∈ R3 at N data points xi , i = 1, . . .,N

along the orbit in the vicinity of Mercury. The magnetic fields
around Mercury are considered to be a composition or su-
perposition of internal fields generated by the dynamo pro-
cess as well as crustal and induced fields, which are mainly
dominated by dipole and quadrupole fields and external fields
generated by the currents flowing in the magnetosphere. For
Mercury the external fields contribute a significant amount to
the total magnetic field within the magnetosphere (Anderson
et al., 2011), and therefore a robust method is required for
separating the internal fields from the total measured field.
Yet, each component has to be properly modeled and param-
eterized when decomposing the field.

For example, when only data in current-free regions are
analyzed, the planetary magnetic field is non-rotational and
can be parameterized via the Gauss representation (Gauß,
1839). Within these current-free regions, the internal mag-
netic field can be expressed as the gradient of a scalar poten-
tial 8, which can be expanded into a set of basis functions.
Because of

∂x ·B = 0, (1)

the scalar potential 8 has to satisfy

∂2
x8= 0, (2)

where ∂2
x is the Laplacian. Choosing planetary centered coor-

dinates with radius r i ∈ [RM,∞), azimuth angle λi ∈ [0,2π ]
and polar angle θ i ∈ [0,π ], the solution of Eq. (2) is given by
spherical harmonics so that the potential results in

8
(
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)
=RM

2∑
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(
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)l+1 l∑
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gml cos(mλi)+hml sin(mλi)
]
Pml

(
cos(θ i)

)
(3)

for the planetary dipole and quadrupole fields. Here, RM
indicates the radius of Mercury and Pml represents the
Schmidt-normalized associated Legendre polynomials of de-
gree l and order m. Within this series expansion a set of
expansion coefficients gml and hml occurs, called internal
Gauss coefficients. By constructing the Gauss coefficients in
a vectorial fashion and defining the true coefficient vector as
g =

(
g0

1,g
1
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1
1,g

0
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2
)T , the magnetic field vec-

tors at every data point xi and the expansion coefficients are
related via

bi =−∂xi8(x
i)+ vi +ni (4)

=Hi g+ vi +ni, (5)

where the terms of the series expansion are arranged in the
matrix Hi

(
r i,θ i,λi

)
, called the shape matrix. The vector vi

describes the parts that are not parameterized by the under-
lying model, e.g., the external parts, covering the range be-
tween the parameterized field and the measurement noise of

the sensors, which is symbolized by the vector ni . The mea-
surement noise is neither correlated with the parameterized
part Hig nor with the non-parameterized part vi .

Summarizing the magnetic field measurements for all N

data points into a vector B =

((
b1
)T
. . .
(
bN
)T)T

∈ R3N ,

the field can be written as

B =H g+ v+n, (6)

where n=
(
n1. . .nN

)T
∈ R3N , v =

(
v1. . .vN

)T
∈ R3N and

H=
[
H1. . .HN

]T
∈ R3N×G. G indicates the number of ex-

pansion coefficients.
Within Eq. (6) the magnetic field vector B and the shape

matrix H, given by the underlying model, are known. The co-
efficient vector g is to be determined by data fitting. Since in
most applications the number of known magnetic data points
is much larger than the number of wanted expansion coeffi-
cients (G� 3N ), H is a rectangular matrix in general. Fur-
thermore, the non-parameterized parts of the field and the
noise are unknown. Therefore, the direct inversion of Eq. (6)
is impossible and g has to be estimated. In this case, Capon’s
method establishes a robust and useful tool to find the esti-
mated solution for the expansion coefficients in Eq. (6).

Since the method does not require the orthogonality of the
basis functions, it has a wider range of applications when
decomposing the measured data into a set of superposed sig-
nals, especially when the number of data points is limited.
For example, when the magnetic field data are measured on
a dense grid in the vicinity of the planet, the Gauss coeffi-
cients can be estimated via integration of the data. But in the
case of a limited data set those integrals cannot be evaluated.

3 Derivation of Capon’s method

The following derivation of Capon’s method is based on
the linear algebraic formulation (Motschmann et al., 1996),
which was formerly applied to the analysis of plasma waves
in the terrestrial magnetosphere. Now we are focusing on the
analysis of planetary magnetic fields.

As illustrated in the previous section, the magnetic field bi

measured at data point xi in the vicinity of Mercury and the
wanted expansion coefficients g are related via

bi =Hi g+ vi +ni (7)

or in a compact form for all N data points

B =H g+ v+n, (8)

where the shape matrix H describes the underlying model.
For every data point xi the noise vector ni is assumed to

be Gaussian with variance σn and zero mean so that 〈ni〉 = 0
and 〈ni

◦ni
〉 = σ 2

n I, where I is the identity matrix. The an-
gular brackets indicate averaging over an ensemble, e.g.,
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different samples, realizations or measurements. Therefore,
〈bi〉 =Hi g+〈vi〉 holds and equivalently

〈B〉 =H g+〈v〉, (9)

since the model H and the true coefficient vector g are not
affected by the averaging.

Because H is not always a square matrix but is in general
a rectangular matrix with different sizes between rows and
columns, the direct inversion of Eq. (9) is not guaranteed.
Let us ignore for the moment the nonexistence of H−1 and
write down the equation

g =H−1 (〈B〉− 〈v〉) . (10)

Despite its simplicity it is obviously incorrect. As H−1

does not exist, let us look for another matrix w called the
filter matrix, which follows the structure of this equation and
in principle fulfills the solution of Eq. (9) with respect to g.
Furthermore, the non-parameterized parts 〈v〉 are unknown,
and therefore it is desirable to truncate these parts by the filter
matrix. Capon’s method is just the procedure to construct the
filter matrix w and to calculate or, more precisely, to estimate
g. To do so, some helpful quantities are introduced. In order
to distinguish between the true coefficient vector g and the
estimated solution, in the following Capon’s estimator will
be symbolized by gC.

For the inversion of Eq. (6) it is useful to rewrite the vec-
tors B and gC in terms of a matrix representation. Thus, the
data covariance matrix M and the coefficient matrix P are
introduced as follows:

M= 〈B ◦B〉 =
1
Q

Q∑
α=1

Bα
◦Bα

∈ R3N×3N , (11)

P= 〈gC ◦gC〉 ∈ RG×G. (12)

Here, Q indicates the number of measurements at each
data point xi , for example the number of flybys at each data
point, and the circle ◦ symbolizes the outer product, which is
defined by

x ◦ y = x · y†
∈ Rn×m (13)

for any pair of vectors x ∈ Rn, y ∈ Rm. The dagger † indi-
cates the Hermitian conjugate and the dot stands for the mul-
tiplication of the matrices x ∈ Rn×1 and y†

∈ R1×m. There-
fore, the diagonal of the matrix P contains the quadratic aver-
aged components of the wanted estimator. It is important to
note here that the covariance matrix M must be statistically
averaged over several measurements. Otherwise the matrix is
singular with a vanishing determinant (see Appendix A) and
the further analysis cannot be achieved.

If the non-invertibility of the matrix Bα
◦Bα is neglected,

for every measurement α = 1, . . ., Q an estimator gαC for the
true coefficient vector g can be determined so that

Bα
=H gαC+ vα +nα (14)

is valid. Thereby, each estimator deviates from the true coef-
ficient vector by an error vector εα = g−gαC. Note that be-
cause of the non-invertibility of the matrix Bα

◦Bα the single
estimator gαC cannot be calculated. Since the invertibility is
solely given by the averaging overQmeasurements, only the
averaged estimator

gC =
1
Q

Q∑
α=1

gαC, (15)

with its related error

〈ε〉 =
1
Q

Q∑
α=1

εα, (16)

is available.
In contrast to the estimator, the true coefficient vector is a

theoretical given vector that is not affected by the averaging
(g ≡ 〈g〉, Eq. 9). This property directly links the estimator to
the true coefficient vector, which can be rewritten as

g = gαC+ εα. (17)

Averaging over Q measurements and using g ≡ 〈g〉 results
in

g = gC+〈ε〉 (18)

and analogously for the second-order moments

g ◦g = 〈gC ◦gC〉+ 〈gC ◦ ε〉+ 〈ε ◦gC〉+ 〈ε ◦ ε〉. (19)

In the limit of vanishing errors 〈ε〉 → 0 and 〈ε ◦ ε〉 → 0,
Capon’s estimator converges to the true coefficient vector:

gC→ g, (20)

and therefore

〈gC ◦gC〉 → g ◦g. (21)

For the further evaluation of Eq. (6) the definition of the
outer product (Eq. 13) is utilized. Matrix multiplication of
Eq. (6) with its Hermitian adjoint and averaging yields

〈B ·B†
〉 = 〈(H g+ v+n) · (H g+ v+n)†〉 (22)

and therefore

〈B ◦B〉 =H·g◦g ·H†
+2(Hg)◦〈v〉+〈v◦v〉+〈n◦n〉, (23)

assuming that n is Gaussian with variance σn and zero mean
(〈n〉 = 0). Because HgC and 〈v〉 have the same dimension,
the outer product commutates. By means of the limit 〈ε〉 → 0
in Eq. (21) the unknown matrix g ◦g and the true coefficient
vector g can be approximated by Capon’s estimator, resulting
in

〈B ◦B〉 =H · 〈gC ◦gC〉 ·H
†
+ 2

(
HgC

)
◦ 〈v〉

+ 〈v ◦ v〉+ 〈n ◦n〉. (24)
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Taking into account that 〈n◦n〉 = σ 2
n I and using the above

defined abbreviations, Eq. (24) can be rewritten as

M=HPH†
+ 2

(
HgC

)
◦ 〈v〉+ 〈v ◦ v〉+ σ 2

n I (25)

Since Eq. (25) cannot be directly solved for P, the goal is
to find the best estimator gC for g so that P= 〈gC ◦gC〉 is
obtained as an approximate solution of Eq. (25). Therefore, a
filter matrix w is constructed that separates the parameterized
field from the noise by projecting the measured data onto the
parameter space

w†
〈B〉 = gC (26)

and simultaneously truncates the non-parameterized parts,
i.e.,

w†
〈v〉 = 0. (27)

Applying the filter matrix to the average of the non-
parameterized parts of the field in Eq. (6),

0= w†
〈v〉 = w† (

〈B〉−HgC
)
= w†
〈B〉−w†HgC

= gC−w†HgC, (28)

where the true coefficient vector has been replaced by
Capon’s estimator (Eq. 18) and taking into account that
〈n〉 = 0 leads to the distortionless constraint

w† H= I. (29)

This equation is one of the important constraints for the
construction of the wanted filter matrix w, but it is not
enough. Let us look for another criterion. The basic idea is
that in Eq. (6) there may be contributions 〈v〉 in the data B

that are not caused by the internal magnetic field, and thus
these contributions are not modeled by Hg. Although the fil-
ter matrix w is already designed to truncate these parts, i.e.,
w†
〈v〉 = 0, their contributions to the data are unknown, and

therefore the parts that have to be truncated by w are un-
known.

Referring to Eq. (26), the average output power, which is
defined as the sum of the quadratic averaged components of
the estimator, can be rewritten as (Pillai , 1989)

trP= tr 〈gC ◦gC〉 = tr
(

w†
〈B ◦B〉w

)
, (30)

where tr 〈gC ◦gC〉 is the trace of the matrix 〈gC ◦gC〉.
Using Eq. (30), the coefficient matrix P can be expressed

by the weight w and the data covariance M as

P= 〈gC ◦gC〉 = w†
〈B ◦B〉w= w† Mw. (31)

The amount of noise and the amount of the non-parametrized
part are unknown. Thus, it is conservative and safe to assume
that a large part of the data is influenced by the noise and
the non-parameterized parts that have to be truncated by the

matrix w and the underlying model keeps the minimal con-
tribution to the data. This minimal contribution has to be ex-
tracted.

Therefore, the output power P = trP has to be minimized
with respect to w†, subject to the distortionless constraint
w† H= I or equivalently H† w= I. Using the Lagrange mul-
tiplier method this minimization problem can be formulated
as

minimize tr
[
w† Mw+3

(
I−H† w

)]
, (32)

where 3 represents the related Lagrange multipliers and the
minimum is taken with respect to w. Since the components
wij and w†

ij of the matrix w and w†, respectively, are inde-
pendent of each other, Eq. (32) can be expanded as

minimize P = tr
[
w† Mw+3

(
I−H†w

)
+

(
I−w† H

)
0
]

(33)

or equivalently

minimize P = w
†
ijMjkwki +3ii −3ijH

†
jkwki

+0ii −w
†
ijHjk0ki (34)

with related additional Lagrange multipliers 0. Taking the
derivatives with respect to wki and w†

ij results in

0= ∂wkiP = w
†
ijMjk −3ijH

†
jk, (35)

yielding

w† M=3H† (36)

and

0= ∂
w

†
ij
P =Mjkwki −Hjk0ki, (37)

resulting in

Mw=H0. (38)

Multiplication of Eq. (36) with w from the right and mul-
tiplication of Eq. (38) with w† from the left considering the
distortionless constraint delivers

P= w† Mw= 0 =3, (39)

and therefore

P = trP= tr0 = tr3. (40)

Because

P = trP=
∣∣〈gC〉

∣∣2 (41)

is a convex function, 3 and 0 realize the minimal output
power.
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Due to the ensemble averaging the matrix M is invertible
and M−1 exists. Multiplying Eq. (38) with H† M−1 and again
considering the distortionless constraint yields

P=3= 0 =
[
H† M−1 H

]−1
. (42)

By means of Eq. (36) the filter matrix results in

w†
= PH† M−1, (43)

and therefore Capon’s estimator is given by

gC =
[
H† M−1 H

]−1
H† M−1

〈B〉. (44)

Regarding the expensive derivation, this compact formula
for Capon’s estimator is surprising.

4 Diagonal loading

The filter matrix w is the key parameter to distinguish be-
tween the parameterized and the non-parameterized parts of
the field. Conferring to Eq. (25) the ratio of these parts de-
fines the input signal–noise ratio (given by the data) as

SNRi =
tr
(
HPH†)

tr
(
2
(
HgC

)
◦ 〈v〉+ 〈v ◦ v〉+ σ 2

n I
) . (45)

The filter matrix is applied to the disturbed data for esti-
mating the output power that is related to Capon’s estimator.
Thus, the output signal–noise ratio (resulting from the filter-
ing) can be expressed as (Haykin, 2014; Van Trees, 2002)

SNRo=
tr
(
w†HPH†w

)
tr
(
2 w†

(
HgC

)
◦ 〈v〉w+w†〈v ◦ v〉w

)
+ σ 2

n tr
(
w†w

)
=

tr(P)
σ 2
n tr

(
w†w

) , (46)

since the filter fulfills the distortionless constraint w†H= I
and truncates the non-parameterized parts of the field, i.e.,
w†
〈v〉 = 0. The ratio of the output and the input signal–noise

ratio is the so-called array gain (Van Trees, 2002),

SNRo

SNRi
=

1
tr
(
w†w

) tr(P)
σ 2
n tr

(
HPH†

)
tr
(

2
(
HgC

)
◦ 〈v〉+ 〈v ◦ v〉+ σ 2

n I
)

∼
1

tr
(
w†w

) , (47)

which is controlled by tr
(
w†w

)
, since H, P and v are given

by the data and the underlying model.
The input signal–noise ratio is given by the data and the

underlying model, and therefore SNRi = const. in Eq. (47).
In contrast to the input signal–noise ratio, the output signal–
noise ratio depends on the filtering. When tr

(
w†w

)
is large,

the output signal–noise ratio can decrease (SNRo→ 0), re-
sulting in signal elimination, and thus the performance of
Capon’s estimator degrades. To prevent the signal elimina-
tion and to improve the robustness of Capon’s estimator
it is desirable to restrict tr

(
w†w

)
with an upper boundary

T0 = const. (Van Trees, 2002), which can be expressed by
the additional quadratic constraint

tr
(

w†w
)
= T0. (48)

For reasons of mathematical aesthetics, the constant T0 is
expressed as the trace of a matrix T. For example, one can
choose

T=
T0

G
I ∈ RG×G, (49)

where G again indicates the number of wanted expansion
coefficients and I ∈ RG×G is the identity matrix so that

tr(T)=
T0

G
tr(I)= T0 (50)

holds. Thus, Eq. (48) can be rewritten as

tr
(

w†w−T
)
= 0. (51)

It should be noted that the matrix T can be chosen arbitrar-
ily as long as it is independent of w and w†.

Referring to the previous section and considering the addi-
tional quadratic constraint, the filter matrix can be calculated
by solving

minimize tr
[

w† Mw+ σ 2
d

(
w†w−T

)
+3

(
I−H†w

)
+

(
I−w† H

)
0

]
(52)

with respect to w, where σ 2
d is the related additional Lagrange

multiplier. Carrying out the same procedure as described in
Sect. 3, the constrained minimizer is given by

w=
(

M+ σ 2
d I
)−1

H
[

H†
(

M+ σ 2
d I
)−1

H
]−1

. (53)

The comparison of Eq. (43) with Eq. (53) shows that the
quadratic constraint results in the addition of the constant
value σ 2

d to the diagonal of the data covariance matrix M,
which is known as diagonal loading (Van Trees, 2002). Con-
sequently, the filter matrix is designed for a higher Gaussian
background noise than is actually present (Van Trees, 2002).

In Fig. 1 tr
(
w†w

)
is displayed with respect to σ =√

σ 2
d + σ

2
n . For σd→ 0, tr

(
w†w

)
is large, resulting in a small

output signal–noise ratio, which can cause signal elimina-
tion. For increasing values of σd, tr

(
w†w

)
decreases and for

σd→∞ Capon’s filter converges to the least square fit filter

w† σd→∞
−→

[
H†H

]−1
H† (54)
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Figure 1. Sketch of the trace of the filter matrix with respect to

σ =

√
σ 2

d + σ
2
n . For increasing values of the diagonal loading pa-

rameter σd the output signal–noise ratio increases and Capon’s filter
converges to the least square fit filter if the diagonal loading param-
eter is large.

or equivalently

w†w
σd→∞
−→

[
H†H

]−1
, (55)

which treats all data equally.
Since tr

(
w†w

)
is a monotonically decreasing function,

σd→∞ might be the best choice for the diagonal loading
parameter. To check this expectation we have to take a look at
the output power Pd for the synthetic increased noise, which
can be estimated by replacing M→M+σ 2

d I in Eq. (42), re-
sulting in (Pajovic, 2019; Richmond et al., 2005)

Pd = tr
[
w†
(

M+ σ 2
d I
)

w
]

= tr
[

H†
(

M+ σ 2
d I
)−1

H
]−1

σd→∞
−→ σ 2

d tr
[
H†H

]−1
. (56)

Thus, Pd is an increasing function of σd. Since the output
power has to be minimized one would expect that σd = 0 is
the best choice, which is in contradiction to the argumenta-
tion above. Therefore, the maximization of the array gain is
not equivalent to the minimization of the output power (Van
Trees, 2002). Since σd cannot be directly calculated within
the minimization procedure (Eq. 52), it is not clear how to
choose the optimal diagonal loading parameter σopt. that lies
somewhere between those extrema.

In the literature there are several methods for determin-
ing the optimal diagonal loading parameter (Pajovic, 2019).
In contrast to the analysis of waves, we favor measurements
that are stationary up to the Gaussian noise for the analy-
sis of planetary magnetic fields. Comparing the measurement
times with planetary geology timescales, this assumption is
surely valid for the internal magnetic field. For the exter-
nal parts of the field this can be realized by choosing data
sets of preferred situations, e.g., calm solar wind conditions.
By virtue of the stationarity, the data covariance matrix M=
〈B〉◦〈B〉+σ 2

n I contains only one nontrivial eigenvalue λ1 =∣∣〈B〉∣∣2+σ 2
n and λi = σ

2
n for i = 2, . . .,3N elsewhere (see Ap-

pendix B). Therefore, estimators for the diagonal loading pa-
rameter that are related to eigenvalues corresponding to inter-
ference and noise (Carlson, 1988) or estimators taking into
account the standard deviation of the diagonal elements of
the data covariance matrix, i.e., σ 2

d = std {λ1, . . .,λ3N} (Ma
and Goh, 2003), cannot be applied. When simulated data are
analyzed the deviation between Capon’s estimator and the
true coefficient vector, implemented in the simulation, is a
useful metric for estimating the optimal diagonal loading pa-
rameter (Pajovic, 2019; Toepfer et al., 2020). But when the
method is applied to real spacecraft data no true coefficient
vector is available, and therefore another estimation method
for the diagonal loading parameter that solely depends on the
data and the underlying model is required.

The additional quadratic constraint (Eq. 48), resulting
in diagonal loading, bounds the trace of the filter matrix
that is the solution of the minimization procedure (Eq. 52).
To prevent signal elimination, tr

(
w†w

)
and Pd have to be

minimized simultaneously. Since tr
(
w†w

)
is decreasing for

higher values of σd (see Fig. 1), Pd is an increasing function,
and thus they act as competitors. At the optimal value σopt.
the two competitors compromise, which can be understood
as tr

(
w†w

)
reaches its minimal value under the constraint

that Pd is minimal. Therefore, the diagonal loading of the
data covariance matrix is equivalent to the Tikhonov regular-
ization for ill-posed problems. The Tikhonov regularization
improves the robustness of the least square fit problem,

minimize
∣∣Hg−B

∣∣2, (57)

with respect to g under the constraint of solutions g with
minimal norm, i.e.,

minimize
∣∣Hg−B

∣∣2+α∣∣g∣∣2, (58)

where α is the corresponding Lagrange multiplier, which is
also known as the regularization parameter (Tikhonov et al.,
1995). In analogy to the Lagrange multiplier α, the optimal
diagonal loading parameter can be estimated by the method
of the L curve (Hiemstra et al., 2002). The L curve arises
by plotting lg

[
tr
(
w†w

)]
versus lg

[
tr
(
w† (M+ σ 2

d I
)

w
)]

for
different values of σd and is displayed in Fig. 2. The optimal
value σopt. is located in the vicinity of the L curve’s knee,
which is defined by the maximum curvature of the L curve
(Hiemstra et al., 2002).

5 Practical application of Capon’s method

When Capon’s method is applied to the reconstruction of
Mercury’s internal magnetic field (Toepfer et al., 2020), sev-
eral computationally burdensome matrix inversions are nec-
essary to calculate the estimator (see Eq. 44)

gC =
[
H† M−1 H

]−1
H† M−1

〈B〉. (59)
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Figure 2. Sketch of the L curve for estimating the optimal diagonal
loading parameter σd. The optimal value is located in the vicinity
of the L curve’s knee (dashed circle).

Thus, for the practical application of Capon’s method it is
useful to rewrite the method in terms of the least square fit
method.

Capon’s estimator inherits the matrix operation structure
of the least square fit estimator, which is given by Haykin
(2014):

gL =
[
H†H

]−1
H†
〈B〉. (60)

Substituting H→M−1/2 H and 〈B〉 →M−1/2
〈B〉 in

Eq. (60), the least square fit estimator may be converted into
Capon’s estimator.

The least square fit method minimizes the deviation be-
tween the disturbed measurements B and the underlying
model Hg, measured in the Euclidian norm ||.||2, so that

gL = argmin
g

∣∣∣∣Hg−B
∣∣∣∣2

2. (61)

Referring to the abovementioned substitutions, Capon’s
method can be interpreted as measuring the deviation in
Eq. (61) in a different norm,∣∣∣∣Hg−B

∣∣∣∣2
M−1 =

∣∣∣∣M−1/2 (Hg−B)
∣∣∣∣2

2, (62)

so that Capon’s estimator is given by

gC = argmin
g

∣∣∣∣Hg−B
∣∣∣∣2

M−1 . (63)

Thus, Capon’s method can be regarded as a special case of
the least square fit method or more precisely of the weighted
least square fit method, whereby the data and the model are
measured and weighted with the inverse data covariance ma-
trix. This property is useful for the practical application of
Capon’s method. In contrast to the computationally burden-
some matrix inversions in Eq. (44), the usage of minimiza-
tion algorithms, such as the gradient descent or conjugate
gradient method, for solving Eq. (63) is more stable and com-
putationally inexpensive.

To illustrate the mathematical foundations presented
above, Capon’s method is applied to simulated magnetic field

Table 1. Implemented and reconstructed Gauss coefficients for the
internal dipole and quadrupole field.

Gauss Input Output Capon
coefficient in nT in nT

g0
1 −190.0 −189.2

g1
1 0.0 1.9

h1
1 0.0 0.2

g0
2 −78.0 −68.4

g1
2 0.0 26.1

h1
2 0.0 11.4

g2
2 0.0 −2.4

h2
2 0.0 0.0

data in order to reconstruct Mercury’s internal magnetic field.
As a proof of concept, the underlying model is restricted to
the internal dipole and quadrupole contributions to the mag-
netic field as discussed in Sect. 2. Since simulated magnetic
field data are analyzed, the special application to Mercury’s
magnetic field is of minor importance because the ideal so-
lution is known from the simulation. If the method were
tested against in situ measurement data, the application to the
analysis of the Earth’s magnetic field would be more suitable
since the Earth’s magnetic field is better known than Mer-
cury’s magnetic field.

For the reconstruction of Mercury’s internal dipole
and quadrupole field the internal Gauss coefficients g0

1 =

−190nT and g0
2 =−78nT (Anderson et al., 2012; Wardinski

et al., 2019), defining the nonvanishing components of the
true coefficient vector g, are implemented in the hybrid code
AIKEF (Müller et al., 2011), and the magnetic field data re-
sulting from the plasma interaction of Mercury with the so-
lar wind are simulated. The data are evaluated along selected
parts of the prospective trajectories of the BepiColombo mis-
sion on the night side of Mercury within a distance of 0.2RM
up to 0.4RM from Mercury’s surface. Since simulated data
are analyzed, the deviation between the true coefficient vec-
tor g and Capon’s estimator gC can be used as a metric to
verify the estimation of the optimal diagonal loading param-
eter by making use of the L-curve technique. The optimal
diagonal loading parameter results in σopt. ≈ 800nT, which
corresponds to the vicinity of the L curve’s knee. The re-
constructed Gauss coefficients for the internal dipole and
quadrupole field are presented in Table 1.

The deviation
∣∣gC−g

∣∣ between Capon’s estimator and
the true coefficient vector results in 30.2 nT or 14.7%, re-
spectively, for the optimal diagonal loading parameter. When
the magnetic field data are evaluated at an ensemble of data
points at a distance of 0.2RM from Mercury’s surface this
deviation is of the same order (Toepfer et al., 2020). Since
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the underlying model neglects the external parts and only the
internal parts are considered, the coefficients g1

2 and h1
2 show

large deviations from the implemented coefficients. Extend-
ing the underlying model by a parameterization of the exter-
nal parts of the magnetic field improves Capon’s estimator,
especially when the magnetic field data are evaluated at some
distance above Mercury’s surface. In principle, one can also
analyze the external field if some model is adopted.

6 Discussion of Capon’s method

Capon’s method has been previously applied to the analy-
sis of waves. Thus, the existing derivations treat the non-
parameterized parts of the field v as Gaussian noise so that
v and the measurement noise n are of the same character
(Motschmann et al., 1996). Considering the analysis of plan-
etary magnetic fields this assumption is indefensible. For ex-
ample, the external parts of the field are systematic noise
and cannot be modeled by a Gaussian distribution. When
the non-parameterized parts are Gaussian, i.e., 〈v〉 = 0, the
truncation of these parts by the filter matrix w†

〈v〉 = 0 (see
Eq. 27) is fulfilled trivially, which reduces the terms within
the derivation and the estimation of the diagonal loading pa-
rameter. Therefore, the mathematical foundations presented
above generalize the previous derivations of Capon’s method
and transist into the derivation presented by Motschmann et
al. (1996) for the special case of 〈v〉 = 0.

As already mentioned in the Introduction (Sect. 1),
Capon’s method can be regarded from several mathemati-
cal perspectives. Within the derivation presented above, the
output power P , which is defined as the trace of the co-
efficient (covariance) matrix, is minimized with respect to
the filter matrix w, subject to the distortionless constraint
w†H= I. This procedure corresponds to the name minimum
variance distortionless response estimator (MVDR), since
P contains the variance of the model coefficients. Narita
(2019) showed that Capon’s estimator can also be derived by
treating Capon’s method as a special case of the maximum
likelihood estimator by regarding the likelihood function as
nearly Gaussian (particularly around the peak of the likeli-
hood function). As discussed in Sect. 5, Capon’s method can
also be interpreted as a special case of the weighted least
square fit. This illustrates that the several existing inversion
methods for linear inverse problems are connected to each
other and are not as different as they seem to be at first ap-
pearance.

7 Conclusions

Capon’s method is a robust and useful tool for various kinds
of ill-posed inverse problems, such as Mercury’s planetary
magnetic field analysis. The derivation of the method can
be regarded from different mathematical perspectives. Here
we revisited the linear algebraic matrix formulation of the
method and extended the derivation for Mercury’s magnetic
field analysis. Capon’s method becomes even more robust
by incorporating the diagonal loading technique. Thereby,
the construction of a filter matrix is vital to the derivation
of Capon’s estimator.

The trace of the filter matrix in particular determines the
array gain, which is defined as the ratio of the output and
the input signal–noise ratio. If the trace is large, the out-
put signal–noise ratio can decrease, resulting in signal elim-
ination, and thus the performance of Capon’s estimator de-
grades. Bounding the trace of the filter matrix results in diag-
onal loading of the data covariance matrix, which improves
the robustness of the method. The main problem of the diag-
onal loading technique is that in general it is not clear how
to choose the optimal diagonal loading parameter. Since for
the analysis of planetary magnetic fields we prefer measure-
ments that are stationary up to the Gaussian noise, estima-
tors for the diagonal loading parameter that are related to
eigenvalues of the data covariance matrix corresponding to
interference and noise cannot be applied. Making use of the
L-curve technique enables a robust procedure for estimating
the optimal diagonal loading parameter.

For the calculation of Capon’s estimator several computa-
tionally burdensome matrix inversions are necessary. Inter-
pretation of Capon’s method as a special case of the least
square fit method enables the usage of numerically more sta-
ble and fewer burden minimization algorithms, e.g., the gra-
dient descent or conjugate gradient method, for calculating
Capon’s estimator.

It should be noted that the parameterization of Mercury’s
internal magnetic field via the Gauss representation, as men-
tioned in Sect. 2, is only one of several possibilities for
modeling the magnetic field in the vicinity of Mercury. The
underlying model can be expanded by other parameteriza-
tions, for example the Mie representation (toroidal–poloidal
decomposition) or magnetospheric models, and Capon’s
method can be applied to estimate the related model coef-
ficients. Besides the analysis of Mercury’s internal magnetic
field, the extension of the model also enables the reconstruc-
tion of current systems flowing in the magnetosphere. Con-
cerning the BepiColombo mission this work establishes a
mathematical basis for the application of Capon’s method
to analyze Mercury’s internal magnetic field in a robust and
manageable way.
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Appendix A: Determinant of the outer product

The influence of the averaging on the determinant of the data
covariance matrix M is exemplarily illustrated for the three-
dimensional case. Thus, the magnetic field vector is given by

B =

BxBy
Bz

 , (A1)

and therefore the outer product results in

B ◦B =

 B2
x BxBy BxBz

BxBy B2
y ByBz

BxBz ByBz B2
z

 (A2)

with a vanishing determinant

det(B ◦B)= 3B2
xB

2
yB

2
z − 3B2

xB
2
yB

2
z = 0. (A3)

Throughout the averaging of the data, the data covariance
matrix results in

M= 〈B ◦B〉 = 〈B〉 ◦ 〈B〉+ σ 2
n I

=

〈B2
x 〉+ σ

2
n 〈Bx〉〈By〉 〈Bx〉〈Bz〉

〈Bx〉〈By〉 〈B
2
y 〉+ σ

2
n 〈By〉〈Bz〉

〈Bx〉〈Bz〉 〈By〉〈Bz〉 〈B
2
z 〉+ σ

2
n

 (A4)

with a nonvanishing determinant

det(M)= (〈B2
x 〉+ σ

2
n )(〈B

2
y 〉+ σ

2
n )(〈B

2
z 〉+ σ

2
n )

−〈B2
x 〉〈B

2
y 〉〈B

2
z 〉− σ

2
n 〈B

2
y 〉〈B

2
z 〉

− σ 2
n 〈B

2
x 〉〈B

2
z 〉− σ

2
n 〈B

2
x 〉〈B

2
y 〉

= σ 4
n (〈B

2
x 〉+ 〈B

2
y 〉+ 〈B

2
z 〉)+ σ

6
n

6= 0. (A5)

Thus, the inverse of M exists, whereas the outer product
B ◦B is singular.

Appendix B: Eigenvalues of the data covariance matrix

The data covariance matrix is defined as

M= 〈B ◦B〉 = 〈B〉 ◦ 〈B〉+ σ 2
n I. (B1)

This matrix is quadratic and especially diagonalizable. Thus,
there is a matrix DM that is similar to the matrix M so that

DM = V† MV, (B2)

where V is an orthogonal transformation, i.e., V†V= I, and
DM is a diagonal matrix, the diagonal elements of which are
given by the eigenvalues of M. Inserting the definition of the
matrix M delivers

DM = V† MV= V†
〈B ◦B〉V

= V† (〈B〉 ◦ 〈B〉) V+ σ 2
n I, (B3)

since V†V= I. To determine the diagonal form of the outer
product, the two-dimensional case in which

〈B〉 =

(
〈Bx〉

〈By〉

)
(B4)

is considered exemplarily. Thus,

〈B〉 ◦ 〈B〉 =

[
〈Bx〉

2
〈Bx〉〈By〉

〈Bx〉〈By〉 〈By〉
2,

]
(B5)

and the characteristic polynomial results in(
〈Bx〉

2
−β

)(
〈By〉

2
−β

)
−〈Bx〉

2
〈By〉

2
= 0 (B6)

or equivalently

β2
−β

(
〈Bx〉

2
+〈By〉

2
)
= β2

−β
∣∣〈B〉∣∣2 = 0, (B7)

where β denotes the eigenvalue given by β = 0 and β =∣∣〈B〉∣∣2. Therefore, in general the diagonal matrix of the outer
product is given by

D〈B〉◦〈B〉 =


∣∣〈B〉∣∣2 0 · · · 0

0 0 · · · 0
...

. . .
...

0 · · · · · · 0

 . (B8)

The noise matrix σ 2
n I is already a diagonal matrix so that the

diagonal form of M is given by

DM =


∣∣〈B〉∣∣2 0 · · · 0

0 0 · · · 0
...

. . .
...

0 · · · · · · 0

+ σ 2
n


1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · · · · 1



=


∣∣〈B〉∣∣2+ σ 2

n 0 · · · 0
0 σ 2

n · · · 0
...

. . .
...

0 · · · · · · σ 2
n

 . (B9)

Thus, the data covariance matrix contains only one nontrivial
eigenvalue λ1 = 〈B〉

∣∣2+ σ 2
n and λi = σ

2
n for i = 2, . . .,3N .
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