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Abstract. Station locations in existing environmental networks are typically chosen based on practi-

cal constraints such as cost and accessibility, while unintentionally overlooking the geographical and

statistical properties of the information to be measured. Ideally, such considerations should not take

precedence over the intended monitoring goal of the network: the focus of network design should

be to adequately sample the quantity to be observed.5

Here we describe an optimal network design technique, based on ensemble sensitivity, that objec-

tively locates the most valuable stations for a given field. The method is computationally inexpensive

and can take practical constraints into account. We describe the method, along with the details of

our implementation, and present example results for the US Pacific Northwest, based on the goal of

monitoring regional annual-mean climate. The findings indicate that optimal placement of observing10

stations can often be highly unintuitive, thus emphasizing the importance of objective approaches.

Although at coarse scales the results are generally consistent, sensitivity tests show important differ-

ences in the results, especially at smaller spatial scales. These uncertainties could be reduced with

improvements in datasets and improved estimates of the measurement error. We conclude that the

method is best suited for identifying general areas within which observations should be focused, and15

suggest that the approach could serve as a valuable complement to land surveys and expert input in

designing new environmental observing networks.
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1 Introduction

Environmental observing networks are established for a wide variety of purposes, ranging from

short-term weather forecasting to monitoring ecosystem change. A compromise between scientific20

and practical considerations (e.g., site accessibility, cost, land ownership) usually governs the place-

ment of stations, though practical considerations often have a greater influence on the final station

locations. Historically, station site selection has typically been made subjectively, which suggests

that the goals for the network are not met optimally or cost effectively. Theories for optimal observ-

ing networks have matured to the point where an objective cost-benefit analysis can be considered25

when creating, augmenting, or revising an observing network. Objectivity is important because re-

sults show that optimally selected station locations often do not follow from intuition. Here we

describe a flexible ensemble-based network-design algorithm that incorporates measurement error

and can account for practical considerations such as accessibility of the site and land ownership.

An example of an observing network is the cooperative observer (COOP) weather network, which30

was established in the 19th century and remains the primary legacy network for climate monitoring

in the United States. Since the COOP network relies heavily on volunteer observers, nearly all sta-

tions are situated in inhabited areas, and stations consequently tend to cluster in lower elevations.

Installation and annual upkeep is more costly for remote stations, and these locations are often over-

looked. For areas with complex terrain such as the western United States, low-lying networks near35

population centers do not accurately represent the climate in adjacent mountainous areas, especially

for precipitation (Dabberdt and Schlatter, 1996). Variations in wind and sun exposure, cold air pool-

ing in mountain valleys, and coastal fog are just a few examples of common weather occurrences

that can result in sharp climate distinctions across fairly short distances (e.g., Lundquist and Cayan,

2007; Abatzoglou et al., 2009). As a result, it is possible for closely spaced stations to sample vastly40

different climates, or conversely, for two distant stations to be highly correlated and hence largely

redundant. Prior studies have confirmed this (e.g., Fujioka, 1986; Hargrove et al., 2003), showing

that uniformly spaced stations do not provide an advantage over those that are optimally placed.

Fujioka (1986), for example, found that the optimal station locations were non-intuitive, and had

15 times less normalized error than the gridded locations in representing fire weather variables in45

southern CA.

Clearly, methods are needed that can help objectively identify compromises between scientific

and practical considerations when designing and augmenting an observing network. By optimally

determining the most valuable observation sites, the utility of a network can be maximized and the

cost minimized as redundancy and guesswork in station placement is reduced.50
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2 Methods

2.1 Ensemble Sensitivity

The ensemble sensitivity approach to network design is based on the idea of adaptive (or targeted)

observations (e.g., Bergot et al., 1999; Morss et al., 2001; Bishop and Toth, 1999). Although the

criteria are quite different, the same principles can be applied to the development of a fixed network55

for long-term monitoring. The problem centers on improving estimates of a scalar measure of inter-

est, or “metric”, J . Applied to network design, the method (e.g., Khare and Anderson, 2006; Ancell

and Hakim, 2007; Huntley and Hakim, 2010) works by iteratively finding sites that explain the most

variance of a given climate field while accounting for the variance explained by previous “stations”

selected (hereafter, the term “station” is used to refer to the optimal observing locations identified in60

the ensemble sensitivity approach). Finding the first station is relatively straightforward: it consists

of identifying the point with the highest correlation with the metric while also maximizing the ratio

of that correlation to the measurement error. Locating the second station is more difficult because

the choice must account for the variance already explained by the first station. As discussed below,

this is accomplished by using the Kalman update equation to adjust the sampled values at each grid65

point. The process then repeats: a new station is chosen, and the ensemble sample is adjusted to

account for the new information that this station provides. With each chosen station, the variance

in the data decreases according to the variance explained by the previous stations. At some point,

very little additional variance is gained by identifying new stations, or alternatively, the remaining

variance becomes indistinguishable from the noise. This point is reached when no new informa-70

tion is gained by adding stations beyond the number already identified (in Sect. 2.5 we describe our

bootstrap approach to approximating this threshold). Note that the method is general: no specific

time-step, variables, or spatial configuration is required – this is a key strength of the approach. A

brief description of the algorithm follows.

In ensemble sensitivity analysis, different samples of the state of the system (x) are used to develop75

statistics that relate changes in the state of the system to changes in a particular metric of interest

(J). Using a gridded “truth” field as a proxy for observations, an optimally located observation

is thus defined as the grid point that contributes most to the variance in J , our metric of interest.

We accomplish this by calculating the change in the variance of J (∆σ2
J ) for each grid point, and

identifying the grid point for which this change is maximized. By using anomalies in the state of the80

system (x) and a first-order Taylor expansion of J , Ancell and Hakim (2007) show that ∆σ2
J can be
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rewritten as follows:

∆σ2
J = σ2

J,i−1 −σ2
J,i (1)
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where i refers to the ith iteration of the algorithm, Bi−1 is the prior error covariance of x, Ei is

the “innovation error covariance”, and R2 is the measurement error, which includes both instrument

and “representativeness” error (i.e., error associated with sub-grid variability). Hi is a linearized

observation operator, which maps the state of the system (x) to an observation of interest. In Eq. (2),90

the change in the error covariance upon selection of the ith station is estimated using the Kalman

gain (Eq. 3; Hamill, 2006; Kalman, 1960) associated with the new observation.

As discussed above, the selection of the ith station is conditioned on the variance explained by

the previous (i− 1) stations. In matrix form, this conditional adjustment is applied using the clas-

sic Kalman update equation for the covariance matrix (Bi = (I −KiHi)Bi−1). The matrix imple-95

mentation, however, has two principle disadvantages: (1) it can be numerically unstable, and (2) it

is computationally expensive. As a result, we instead use the square root implementation of the

Kalman update equation, as follows:
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where xm refers to the time series for an arbitrary grid point, xstn refers to the time series for the

ith selected station, and β is a term that results from the conversion from matrix to square root

form (Potter, 1964). These simplified equations arise from the fact that, in serial processing (i.e.,105

the square root implementation), Hi is simply a vector that extracts the mth grid point of x (i.e.,

Hi = [0,0, . . .,1, . . .,0]; see Huntley and Hakim, 2010).

Although perhaps less elegant than in their matrix form, these equations help illustrate the logic

behind the approach. First, note that Eq. (5) very closely resembles the square of the correlation

between J and the time series at each grid point, the only differences being a missing constant110

(σ2
J ) and an added error term (R2) in the denominator. At each step in the calculation, the optimal

station is selected by identifying the grid point for which ∆σ2
J is maximized. The error term serves

to promote areas where the correlation with J is large compared to the measurement uncertainty.

Second, note that Eq. (6) essentially uses an ordinary least squares regression, scaled by β, to adjust
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the sample values at each grid point (xm). The conditional adjustment is thus achieved by removing115

that portion of the variance in xm that can be reproduced using the time series of the selected station

(xstn). Finally, note that the parameter β is always between 0.5 and 1, and thus serves to reduce the

adjustment to xm, based on the proportion of grid cell variance to measurement uncertainty (R2).

The approach we have described rests on several key assumptions. Specifically, the Kalman up-

date equation is only optimal if the following conditions are met:120

1. Linear: the approach involves a linearization about the time-averaged state.

2. Gaussian: the model state variables (and associated noise) are Gaussian in distribution.

These assumptions are discussed in Section 2.3 below.

2.2 Data

We apply the approach to the problem of monitoring regionally- and annually-averaged precipita-125

tion and temperature over the US Pacific Northwest (hereafter “PNW”), which we define to span

the three states of Oregon, Washington, and Idaho (see Fig. 1). This is based loosely on the recent

interest in improving climate monitoring across the US, as exemplified by the deployment of the Cli-

mate Reference Network (CRN) in the early 2000s. As we note above, although there are numerous

observing stations throughout this region, the sampling is biased towards lower elevations and pop-130

ulation centers, in all likelihood leaving important features of the regional climate unobserved. The

purpose of the present exercise is thus to identify the locations where surface measurements would

be most valuable, with regard to the goal of monitoring annual climate in the PNW. For simplic-

ity we assume that we are designing the network from scratch and neglect practical considerations

such as land ownership and access. The results thus identify the most valuable observing locations,135

irrespective of existing measurements or constraints on land use, access, etc. As discussed in the

conclusions, the method can be easily adapted to incorporate such considerations.

In order to explore the sensitivity to the dataset used to define the stationary climate, we apply

the method using three meteorological datasets listed in Table 1. PRISM (Daly et al., 2002) is

created by gridding point observations and using an interpolation scheme that accounts for influences140

of terrain on climate including rain shadows, coastal effects, and temperature inversions. Annual

temperature and precipitation data were obtained at 2.5 arc-minute (∼ 4 km) resolution from the

PRISM Climate Group website (www.prism.oregonstate.edu) for the years 1948–2011. Note that

although PRISM data are available for 1895 to present, we chose to use only data from 1948 onward

due to the greater station density in the latter part of the record. NARR (Mesinger et al., 2006) is an145

assimilated dataset covering North America from 1979 to present at a spatial resolution of 32 km.

Data were obtained from the National Climatic Data Center (NCDC; http://nomads.ncdc.noaa.gov/).

GHCN is an integrated and quality-assured database of land surface stations (Lawrimore et al., 2011;

stations included in the present analysis are listed in Table 4). Daily data were quality controlled by
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eliminating any temperature excursions that exceeded 5 standard devations of all daily measurements150

for a specific calendar month, and any daily precipitation measurements that exceeded 254 mm (10

inches). Annual averages of GHCN observations were compiled from daily data by requiring a

minimum of 10 days to compute a monthly average and 9 months to compute an annual average –

different choices for these thresholds did not substantially impact the results. The 181 stations with

complete records for 1979–2011 were included in the analysis.155

Before proceeding, we assess the extent to which the data satisfy the two assumptions listed in

the previous section, which are necessary conditions for applying the ensemble sensitivity approach.

The first assumption, linearity, is not an issue for our application: since we intend to model precip-

itation and temperature using distributed observations of precipitation and temperature, our model

simply consists of an average and is therefore linear.160

The assumption of Gaussian statistics is worth investigating in some depth, in particular with re-

gard to precipitation, which – even at annual time scales – exhibits a distribution that is skewed

toward larger values. Table 2 lists the statistics of temperature, raw precipitation, and tranformed

precipitation data, showing the range of each statistic over all grid points. The transformed precip-

itation was created by remapping the observed cumulative distribution of precipitation to that of a165

normal distribution (by matching quantiles). To preserve the spatial variability in precipitation, the

width of the normal distribution was scaled to match the variance of the observations. The transfor-

mation was performed separately for each grid cell since, although lumping all of the data together

would improve sampling, it would not guarantee Gaussian statistics at each point. As can be seen

in Table 2, the main impact of the precipitation transform is to eliminate any skewness in the data,170

though it is notable that the raw precipitation data is very nearly Gaussian as well. For this reason,

our default in the calculaions below is to use raw precipitation, though we note the impact of using

transformed precipitation in the sensitivity tests discussed below.

2.3 Measurement Error

The method takes into account measurement error (denoted R2 in Eq. 3) resulting primarily from175

instrumental error and representativeness error, the latter being the error due to the fact that variabil-

ity exists at the subgrid scale. Although in principle these quantities can be estimated, in practice

such estimates are quite uncertain. In the present study, we use an empirically-based estimate of

the error variance in daily observations of surface temperature used by the European Centre for

Medium-Range Weather Forecasting (ECMWF), of 3.6 K2. Assuming an autocorrelation time scale180

of 5 days, we obtain an annual error variance of about 0.05 K2 for annual average temperature. A

constant value for R2 is applied to all grid cells. Since measurements of precipitation are not gen-

erally assimilated in weather forecasting, there does not exist a similar estimate for the appropriate

error variance in precipitation. As a result, we estimate the error variance for precipitation by sim-

ply rescaling the value used for temperature using the ratio of the variance in precipitation to the185
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variance in temperature, and accounting for a precipitation autocorrelation time scale of 2 days in-

stead of 5. This corresponds to an error variance of ∼ 3.6 % of the variance in precipitation at each

grid cell and a mean error variance of 500 mm2 (for total annual precipitation). Note that this is

an approximation, since precipitation measurements are subject to different and often greater errors

than for temperature. However, such differences are likely far less than the span of the sensitivity190

tests for R2, described below. Finally, note that in contrast with temperature, R2 is scaled with the

grid cell variance in precipitation, since using a constant error variance would bias the results in

favor of wetter regions.

Since both estimates of R2 are approximations, we perform two simple verifications: (1) using

raw surface observations from two nearby stations, and (2) using a gridded estimate of representa-195

tiveness error. Note that in both cases we are assuming that the magnitude of R2 is dominated by the

representativeness error – a good assumption given that propagating the error in daily measurements

of temperature and precipitation gives an annual instrument error of about 0.0001 K2 and 0.01 mm2,

respectively.

In the first approach we consider the mean-squared difference between two nearby observing sta-200

tions – Sea-Tac airport (47.45◦ N, 122.3◦ W) and Kent COOP (47.4◦ N, 122.2◦ W) – for the overlap-

ping time series spanning 1951–2011. The result is a value of 0.28 K2 for temperature and 7800 mm2

for precipitation. Our central estimate for R2 at that location is ∼ 950 mm2 for precipitation (and,

as with all grid cells, 0.05 K2 for temperature). Note that the distance between these two observing

stations is 7.5 km, which is about twice the grid resolution of the PRISM dataset, making it likely205

that these numbers represent an overestimate of representativeness error

Our second approach to verifying the R2 estimates from ECMWF is to use the 30 arc-second

(∼800 m resolution) climatologies available from PRISM to estimate the sub-grid variance in tem-

perature and precipitation for each 2.5 arc-minute (∼4 km) grid cell. This gives an estimate of the

representativeness error that varies with each grid cell, with a median of 0.06 K2 for temperature210

and 600 mm2 for precipitation. The corresponding values from ECMWF are 0.05 K2 for tempera-

ture, and 375 mm2 for precipitation, indicating that as above, the ECMWF estimates are somewhat

conservative but well within the range of our sensitivity tests, discussed below.

2.4 Sensitivity Tests

As the above discussion of measurement error highlights, several of the parameters used in apply-215

ing the method are uncertain. Specifically, in addition to measurement error, the method may be

sensitive to the choice of climate dataset, precipitation transform, the number of years included in

the gridded data, the sample size (in years) for each calculation, and assumptions about the number

of stations that the algorithm can meaningfully identify (i.e., as limited by sampling error). To ad-

dress the sampling issues, we implemented a Monte Carlo routine in which the algorithm was run220

50 000 times, using a different random sample of years for each iteration. The Monte Carlo approach
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also addresses the question of noise limitations, since statistics can be obtained on the consistency

of results between iterations (see discussion below). To test robustness to other parameters, we

performed the following sensitivity tests: measurement error variance (R2) was scaled by a factor

ranging from 0.1 to 10, calculations were repeated for different climate datasets, precipitation trans-225

forms, sample sizes (ranging from 20 to 40 yrs), and years from which to draw samples (1948–1979

vs. 1980–2011).

3 Results and discussion

Figure 2 shows the best estimate of the optimal observing locations, obtained using the following

choices of data and parameters:230

– Metric (J): regionally averaged annual Temperature and Precipitation

– Dataset: PRISM

– Years: 1948–2011

– Sample size: 30 yr

– R2 = 0.05 K2 for temperature235

– R2 = 3.6 % of the grid cell variance in precipitation

– Precipitation: raw data (not transformed)

In this section we discuss these results along with the results of our sensitivity tests, which evaluate

the impact of varying the above parameters and assumptions.

We summarize the results by producing maps that show the frequency, among all Monte Carlo240

iterations, with which a grid point is selected in the top “N” stations, where “N” is chosen to cor-

respond to some average total variance explained in regional temperature or precipitation. This

accounts for sample variability while highlighting areas that are most likely to contribute optimally

to monitoring regional climate. The result is a frequency value for each grid point, which can then

be mapped as shown in Fig. 2. Since these frequency values are most meaningful in a relative sense245

– which grid cells have greater weightings than others – we display the percentile values of the grid

cell weightings, which we consider more helpful for interpretation. For example, a point is assigned

a 95th percentile value if its frequency value – the fraction of Monte Carlo iterations in which it was

selected in the top “N” points – is greater than or equal to that of 95 % of all other points. Finally,

in this and subsequent maps stemming from gridded PRISM data, the results have been averaged250

from 2.5 arc-min (∼ 4 km) resolution to 0.5 degree resolution. This smoothing is applied to aid in

interpretation.
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In order to choose “N” we look at the change in the variance explained as the calculation pro-

gresses – in other words, the percent of the variance in the metric (regional temperature or precip-

itation) that can be reproduced using a linear combination of the already-chosen stations. Table 3255

lists the mean variance explained for both temperature and precipitation, for each additional station

selection, for the results mapped in Fig. 2. As described in Sect. 2.2, the calculation proceeds by

selecting stations that maximize the residual variance explained – in other words, that maximize the

additional value lent by their selection. Table 3 illustrates that, due to high spatial autocorrelation

across the region (in particular at annual time scales), the first station explains a majority of the vari-260

ance, while subsequent stations account for progressively less of the residual variance. By summing

the variance explained at each step we find that, on average, the top 3 stations in temperature and

the top 2 in precipitation are sufficient to explain 95 % of the variance in the annual climate signal

for the PNW. Similarly, to explain 99 % of the variance would require selection of the top 11 and 4

stations for temperature and precipitation, respectively. For simplicity, we only show results for the265

former (i.e., 95 % variance explained) in Fig. 2 and all subsequent figures. The results for different

choices are qualitatively similar.

The results shown in Fig. 2 highlight several regions that are important for capturing the regional

signal of climate variability. The results for temperature, for instance, highlight the central Snake

River plain in Idaho, the mountains of northeast Oregon, and north-central Washington, among270

other regions (see Fig. 1 for a key to the geography of the region). For precipitation, the results

are quite different, primarily highlighting the central Cascades, the Columbia gorge near Portland,

the southeastern slopes of the Olympic mountains in Washington, and certain parts of the coast

of Oregon. Notably, the optimal locations for monitoring temperature are almost entirely east of

the Cascade mountains, while the opposite is true for the optimal observing locations identified for275

precipitation. In addition, some of the results are quite unintuitive. For instance, while it makes

sense that precipitation monitoring will maximize signal to noise on the substantially wetter western

slopes of the Cascade mountains, it is not intuitively obvious that the central Cascade mountains are

more appropriate than any other portion of this mountain range, nor is it clear why the even wetter

western slopes of the Olympic mountains are hardly highlighted at all.280

Figure 3 shows a comparison of results obtained from the three datasets: GHCN, NARR, and

PRISM. In order to perform a direct comparison, NARR and PRISM data were only used for the grid

points that correspond most closely to the location of each GHCN station, and all datasets applied to

the years 1979–2011 only, with a sample size of 20 yr for each calculation. The R2 values applied to

each case were identical. Note that this is not a perfect comparison, since point measurements (i.e.,285

GHCN) are different from grid-cell averages (NARR, 32 km resolution; PRISM, ∼ 4 km resolution).

The rank correlations between the GHCN results and each gridded dataset are shown in the upper

right-hand corner of each map. Since disagreement among adjacent stations could confound the

results, we calculated correlations by first averaging the point results for each dataset onto a 0.5

9



degree grid. Point correlations (not shown) were significant but substantially lower than their gridded290

counterparts. We use rank correlations because the results are highly skewed, causing standard

correlations to be disproportionately affected by a small number of points. Since our emphasis in

this work is on the relative rankings among grid points, we deem the rank correlations a better

measure of similarities among the results. Standard correlations also revealed significant positive

correlations, but nonetheless lower values.295

A number of observations can be made from these results. First, at coarse scales (i.e., the broad

regions highlighted) there is good agreement among the three datasets. Second, PRISM and GHCN

bear the greatest similarities, a fact which is perhaps not surprising given that PRISM is essentially

a regridding of surface observations. Third, although the general picture remains consistent between

datasets, the specific rankings can differ substantially (as reflected in the correlations). Since the300

three agree well at coarser spatial scales, this suggests that the discrepancies are primarily in the

treatment of climate variations across smaller scales. We thus conclude that, until well-validated

improvements in datasets become available, the results are best viewed as defining broad regions

within which to focus efforts. Based on this comparison, Fig. 2 and all subsequent results are shown

using the PRISM dataset, averaged to 0.5 degree resolution (i.e., calculations are performed at the305

native PRISM resolution of ∼ 4 km, then averaged to 0.5 degree resolution for presentation).

A primary advantage of our approach is that it is objective, and that it is therefore capable of high-

lighting non-intuitive but nonetheless optimal observing locations. However, implementation of the

method does entrain a number of important subjective decisions, as highlighted at the beginning of

this section. Figures 4 and 5 show how the results are affected by varying the parameters chosen for310

the calculation. Specifically, we test for the influence of variations in the sample size (20 vs. 40 yr),

the years from which to draw a sample (1948–1979 vs. 1980–2011), and the value for the total error

variance (R2; 10 times smaller vs 10 times larger than our central estimate) in temperature (Fig. 4)

and precipitation (Fig. 5). Note that changing the values of R2 changes the number of stations (“N”)

needed to achieve 95 % variance explained – these were adjusted accordingly in the maps showing315

sensitivity to R2. Note, also, that we do not consider variations in the metric (J) – this would by

definition alter the results, but would not inform our question regarding the robustness of the method.

Overall, as with Fig. 3, these results show broad consistencies across different parameter values,

highlighting similar areas for monitoring despite large variations in parameters. Precipitation results

appear to be much more robust than those for temperature. For both variables, the results are largely320

insensitive to the choice of sample size, but indicate a fair sensitivity to the choice of years sampled

and, in particular, to R2. The magnitude of R2 impacts the extent to which explanatory power is

balanced by the ratio of signal-to-noise: small values for R2 favor areas that correlate best with the

regional signal, while large values of R2 favor areas with higher variance. Even in the case of R2,

it is notable that the dominant regions highlighted nearly always correspond to regions that are also325

highlighted in Fig. 2.
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For precipitation, we also considered the influence of holding R2 constant across the domain and

of applying a Gaussian transform to the precipitation results. Although not shown, the results using

transformed precipitation correlated highly (r = 0.85; as above, we computed rank correlations after

regridding to 0.5 degree) with the original results, indicating that at annual time scales the raw330

data are sufficiently Gaussian. Results obtained by using constant measurement error were less

similar (r = 0.57), with differences largely resulting from the greater influence of regions west of the

Cascade mountains. These differences are anticipated, since there are sharp changes in precipitation

across the region, and a constant R2 will favor regions with greater accumulation.

4 Conclusions335

The ensemble sensitivity approach provides an objective method for allocating resources to develop

an observational network. It allows for rapid evaluation of different metrics, and requires only

a climatological sample. Since the utility of each observation is maximized, optimal placement

ensures an efficient use of resources. There are two salient features to the approach: (1) stations are

selected based on a compromise between their correlation with the metric and the ratio of signal-to-340

noise, and (2) new selections are constrained to minimize redundancy by maximizing the additional

variance explained.

We present an example in which the goal is to optimally monitor regional climate in the US

Pacific Northwest. Our analysis suggests that this goal can be achieved with 5 to 10 optimally placed

stations. We find that station placement is not intuitive, highlighting the importance of employing345

objective methods for network design. Note that this information can be used in one of two ways:

(1) install only 5-10 new observing stations instead of the total number planned, or (2) pursue other

monitoring goals (e.g., monitoring local climate, seasonal climate, or probability of extremes).

Sensitivity tests indicate that the results are robust to the choice of sample size and time period

analyzed, but that there are important differences resulting from the choice of dataset and assumed350

measurement error (R2). Sensitivity to R2 is fairly strong, but in general does not result in the iden-

tification of new regions for monitoring. Differences among datasets are likely partially attributable

to differences in spatial resolution and the distinction between point measurements and grid cell

averages. However, it is also likely that these differences represent real differences in the modeled

covariability of temperature and precipitation across the region. Fortunately, the differences among355

datasets largely result from small spatial scale distinctions between each: the broad-scale patterns

are consistent. Since important differences do exist, we conclude that until an improved dataset

becomes available, the method is best used to identify general areas in which to locate stations. In

practice, this is unlikely to be a limitation, since siting decisions at local scales are dominated by

practical constraints such as land ownership, access, etc.360

The example we present pertains to climate monitoring, and the approach assumes stationarity in
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the relationship between temperature and precipitation variations across the region. It is therefore

worth considering whether the non-stationarity of the climate would impact the value of the network

under climate change. The approach uses the covariance structure to identify optimal observing lo-

cations, which is primarily affected by terrain features: elevation, aspect, proximity to the coast, etc.365

Since these will not change with a changing climate – future storms will still come from the west,

temperatures in the interior will still be more variable than at the coasts, etc. – we do not believe that

this is a major concern. Furthermore, the assumption that the statistical relationships will remain the

same with a changing climate is common in climate research (e.g., statistical downscaling, paleocli-

mate reconstructions). Moreover, an alternative approach, such as using GCM simulations, would370

have its own set of caveats in this regard (e.g., bias, coarse resolution, etc.).

A primary advantage of the ensemble sensitivity method is that it can be modified in a way that

takes into account practical and scientific considerations while ensuring that the network maximizes

return on investment. For instance, there are important practical constraints on station siting, such

as land ownership, proximity to roads, and the presence of existing stations. These are easily in-375

corporated into the calculations by (a) constraining the first “n” station selections to correspond to

existing observations, and (b) simply masking out grid cells that do not conform to certain criteria.

Furthermore, climatological networks are not designed to monitor just one quantity, and it is not

necessarily the case that sites that capture a large fraction of the variance in precipitation should also

be useful for monitoring other variables. The method could be made to iteratively select temperature380

and precipitation stations, making each conditional on the other. Flexibility is a key advantage of

this approach: it can be easily adapted to the practical constraints of station siting while still ensuring

that the monitoring goals are pursued optimally.

There are numerous potential applications for the ensemble sensitivity method spanning multiple

fields, monitoring goals, and regions of interest. The advantage of optimal design is that it ensures an385

efficient use of resources. We believe that this approach can be a useful tool for informing decisions

in network design.
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Table 1. Meteorological datasests used.

Dataset Resolution Notes

PRISM: Parameter-elevation Regressions on Independent Slopes Model 2.5 arc-min (∼4 km) Daly et al. (2002)

NARR: North American Regional Reanalysis 32 km Mesinger et al. (2006)

GHCN: Global Historical Climatology Network, v 3.0 N/A (point observations) Lawrimore et al. (2011)

Table 2. Statistics of annual climate data for both temperature and precipitation. Results for precipitation are

shown for both the raw data and after the tranformation to Gaussian, as described in the text. For each statistic,

the median for all grid cells is listed followed by the 5th and 95th percentile values in parentheses. Note that

a Gaussian distribution has a skewness of 0 and a kurtosis of 3, but that with smaller sample sizes a discrete

approximation to a Gaussian results in slightly lower values for the kurtosis.

Variable Source Mean Variance Skewness Kurtosis

GHCN 10.1 (5.2, 12.3) 0.5 (0.3, 1.2) −0.4 (−1.5, 0.3) 3.2 (2.2, 6.2)

Temperature (◦C) PRISM 6.9 (2.0, 11.2) 0.6 (0.3, 1.2) −0.1 (−0.7, 0.5) 2.8 (2.3, 4.1)

NARR 7.8 (2.2, 11.9) 0.6 (0.2, 1.1) −0.1 (−0.7, 0.3) 2.7 (2.0, 4.0)

GHCN 0.59 (0.23, 2.1) 0.016 (0.0039, 0.21) 0.6 (−0.1, 2.0) 3.0 (2.0, 8.4)

Raw Precip (m yr−1) PRISM 0.53 (0.24, 2.3) 0.010 (0.0034, 0.16) 0.4 (−0.1, 1.0) 3.0 (2.2, 4.8)

NARR 0.56 (0.26, 1.9) 0.015 (0.0043, 0.17) 0.5 (−0.2, 1.1) 2.8 (2.0, 4.3)

GHCN 0 (0, 0) 0.015 (0.0036, 0.20) 0 (0, 0) 2.5 (2.5, 2.5)

Transformed Precip PRISM 0 (0, 0) 0.010 (0.0033, 0.15) 0 (0, 0) 2.7 (2.7, 2.7)

NARR 0 (0, 0) 0.014 (0.0043, 0.16) 0 (0, 0) 2.5 (2.5, 2.5)
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Fig. 1. Map of the study region, defined as the region encompassed by the US states of Idaho, Oregon, and

Washington. The map and legend highlight several geographic features as well as the cities of Boise, Portland,

and Seattle. The color scale shows elevation above sea level in meters.
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Table 4: GHCN station attributes.

ID Latitude Longitude Elevation (m) U.S. State Station Name Notes

USC00100010 42.9536 -112.8253 1342.6 ID ABERDEEN EXP STN HCN∗

USC00100667 47.9803 -116.5594 636.1 ID BAYVIEW MODEL BASIN

USC00101017 43.7383 -116.2022 1184.1 ID BOISE 7 N

USC00101018 43.5253 -116.0542 865.6 ID BOISE LUCKY PEAK DAM

USC00101220 42.6006 -114.7453 1158.2 ID BUHL #2

USC00101363 48.0864 -116.0572 662.3 ID CABINET GORGE

USC00101408 44.5733 -116.6753 807.7 ID CAMBRIDGE HCN

USC00101514 44.5228 -116.0481 1492.3 ID CASCADE 1 NW

USC00101551 42.5503 -114.8661 1165.9 ID CASTLEFORD 2 N

USC00101671 43.9772 -113.8289 1908.0 ID CHILLY BARTON FLAT

USC00102260 43.4650 -113.5581 1797.4 ID CRATERS OF THE MOON

USC00102444 43.5764 -116.7475 765.0 ID DEER FLAT DAM

USC00102707 44.2436 -112.2006 1661.2 ID DUBOIS EXP STN

USC00102845 46.5022 -116.3217 303.3 ID DWORSHAK FISH HATCH HCN

USC00102875 45.8356 -115.4611 1236.9 ID ELK CITY 1NE

USC00102942 43.8544 -116.4664 728.5 ID EMMETT 2 E

USC00103143 46.0931 -115.5356 475.5 ID FENN RS HCN

USC00103297 43.0428 -112.4133 1360.9 ID FT HALL 1 NNE

USC00103631 42.9403 -115.3231 751.6 ID GLENNS FERRY HCN

USC00103771 45.9414 -116.1175 1005.8 ID GRANGEVILLE

USC00103964 43.9664 -112.2642 1460.0 ID HAMER 4 NW

USC00104140 42.5972 -114.1378 1237.5 ID HAZELTON HCN

USC00104295 42.3528 -114.5739 1379.2 ID HOLLISTER HCN

USC00104384 43.7828 -113.0033 1469.1 ID HOWE

USC00104442 43.8383 -115.8319 1208.5 ID IDAHO CITY

USC00104456 43.3456 -111.7847 1776.4 ID IDAHO FALLS 16 SE

USC00104670 42.7325 -114.5192 1140.0 ID JEROME HCN

USC00104831 47.5339 -116.1222 724.5 ID KELLOGG HCN

USC00104845 43.6842 -114.3603 1795.3 ID KETCHUM RS HCN

USC00105275 42.1231 -111.3139 1806.2 ID LIFTON PUMPING STN HCN

USC00105708 44.8872 -116.1047 1531.6 ID MC CALL

USC00105897 44.7189 -115.0150 1365.5 ID MIDDLE FORK LODGE

USC00106152 46.7281 -116.9558 810.8 ID MOSCOW U OF I HCN

USC00106305 43.6039 -116.5753 752.9 ID NAMPA SUGAR FACTORY HCN

USC00106542 42.2342 -113.8981 1389.6 ID OAKLEY HCN

USC00106844 43.8022 -116.9442 698.0 ID PARMA EXP STN

USC00106891 44.0764 -116.9311 655.3 ID PAYETTE HCN

USC00107040 43.3111 -114.0742 1472.2 ID PICABO

USC00107046 46.4922 -115.8006 938.8 ID PIERCE

USC00107320 46.5100 -114.7111 1075.9 ID POWELL

USC00107386 48.3511 -116.8353 722.7 ID PRIEST RIVER EXP STN HCN

USC00107648 43.2064 -116.7494 1197.9 ID REYNOLDS

USC00108022 43.9517 -111.6789 1496.6 ID SAINT ANTHONY

USC00108080 45.1875 -113.9008 1198.2 ID SALMON-KSRA HCN

USC00108380 42.9383 -114.4169 1204.0 ID SHOSHONE 1 WNW

USC00108928 43.2436 -116.3783 708.7 ID SWAN FALLS P H

USC00108937 43.4447 -111.2939 1633.7 ID SWAN VALLEY 2 E

USC00109065 43.8564 -111.2769 1880.6 ID TETONIA EXP STN

USC00109303 42.5458 -114.3461 1207.0 ID TWIN FALLS 6 E

USC00109846 46.2381 -116.6233 1210.7 ID WINCHESTER

USC00350304 42.2128 -122.7144 532.2 OR ASHLAND HCN

USC00350471 43.1497 -124.4019 6.1 OR BANDON 2 NNE

continued on next page...
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ID Latitude Longitude Elevation (m) U.S. State Station Name Notes

USC00350652 44.2867 -122.0386 655.9 OR BELKNAP SPRINGS 8 N

USC00350694 44.0567 -121.2850 1115.6 OR BEND HCN

USC00350897 45.6361 -121.9519 18.9 OR BONNEVILLE DAM

USC00351433 44.3914 -122.4811 292.6 OR CASCADIA HCN

USC00351448 42.1597 -123.6422 419.7 OR CAVE JUNCTION 1 WNW

USC00351643 46.1081 -123.2058 6.7 OR CLATSKANIE

USC00351765 45.2325 -120.1817 865.6 OR CONDON HCN

USC00351836 43.1872 -124.2025 7.0 OR COQUILLE CITY

USC00351862 44.6342 -123.1900 68.6 OR CORVALLIS STATE UNIV HCN

USC00351877 44.5078 -123.4575 180.4 OR CORVALLIS WATER BUREAU

USC00351902 43.7178 -123.0578 253.3 OR COTTAGE GROVE DAM

USC00351946 42.8967 -122.1328 1973.6 OR CRATER LAKE NPS HQ HCN

USC00352112 44.9464 -123.2908 88.4 OR DALLAS 2 NE

USC00352173 44.5564 -119.6447 688.8 OR DAYVILLE 8 NW

USC00352292 44.7242 -122.2547 371.9 OR DETROIT DAM

USC00352406 43.6656 -123.3275 89.0 OR DRAIN HCN

USC00352693 45.2689 -122.3186 137.2 OR ESTACADA 2 SE

USC00353047 44.4139 -122.6728 167.6 OR FOSTER DAM

USC00353356 42.4036 -124.4242 15.2 OR GOLD BEACH RS

USC00353402 45.3014 -121.7417 1213.1 OR GOVERNMENT CAMP

USC00353692 42.5483 -119.6556 1711.8 OR HART MTN REFUGE

USC00353770 45.4486 -122.1547 228.0 OR HEADWORKS PORTLAND WTR HCN

USC00353827 45.3653 -119.5639 574.5 OR HEPPNER HCN

USC00353995 43.9281 -124.1069 35.1 OR HONEYMAN SP

USC00354003 45.6847 -121.5175 152.4 OR HOOD RIVER EXP STN HCN

USC00354126 43.3708 -122.9653 329.2 OR IDLEYLD PARK 4 NE

USC00354291 44.4233 -118.9594 933.6 OR JOHN DAY

USC00354606 44.6253 -122.7189 158.5 OR LACOMB 3 NNE

USC00354622 45.3167 -118.0747 839.7 OR LA GRANDE

USC00354811 44.1014 -122.6886 205.7 OR LEABURG 1 SW

USC00354835 43.3597 -122.2208 1242.7 OR LEMOLO LAKE 3 NNW

USC00355050 43.9144 -122.7600 217.0 OR LOOKOUT POINT DAM

USC00355055 42.6722 -122.6750 481.6 OR LOST CREEK DAM

USC00355142 44.6633 -121.1461 744.6 OR MADRAS 2 N

USC00355160 43.9794 -117.0247 688.8 OR MALHEUR BRANCH EXP STN

USC00355221 44.6125 -121.9486 754.4 OR MARION FRKS FISH HATCH

USC00355593 45.9428 -118.4089 295.7 OR MILTON FREEWATER HCN

USC00355711 44.8186 -119.4200 608.1 OR MONUMENT 2

USC00355734 45.4825 -120.7236 570.0 OR MORO HCN

USC00356179 43.8764 -116.9903 662.9 OR NYSSA

USC00356213 43.7428 -122.4433 388.6 OR OAKRIDGE FISH HATCHERY

USC00356334 45.3558 -122.6047 50.9 OR OREGON CITY

USC00356366 45.0333 -123.9239 45.7 OR OTIS 2 NE

USC00356405 43.6500 -117.2467 731.5 OR OWYHEE DAM

USC00356532 44.7275 -121.2506 429.8 OR PELTON DAM

USC00356784 42.7519 -124.5011 12.8 OR PORT ORFORD NO 2

USC00356907 42.7342 -122.5164 756.5 OR PROSPECT 2 SW HCN

USC00357169 42.9506 -123.3572 207.3 OR RIDDLE HCN

USC00357277 43.3636 -117.1142 1118.6 OR ROCKVILLE 5 N

USC00357331 43.2131 -123.3658 129.5 OR ROSEBURG KQEN HCN

USC00357641 45.9869 -123.9236 3.0 OR SEASIDE

USC00357675 44.1383 -118.9750 1420.4 OR SENECA

USC00357817 43.1244 -121.0620 1335.6 OR SILVER LAKE RS

USC00357823 45.0058 -122.7739 124.4 OR SILVERTON

continued on next page...
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ID Latitude Longitude Elevation (m) U.S. State Station Name Notes

USC00358095 44.7892 -122.8142 129.5 OR STAYTON

USC00358173 42.9592 -120.7897 1277.7 OR SUMMER LAKE 1 S

USC00358536 43.2750 -122.4497 627.9 OR TOKETEE FALLS

USC00358797 43.9814 -117.2439 682.8 OR VALE HCN

USC00358884 45.8653 -123.1903 190.5 OR VERNONIA NO 2

USC00359316 43.6825 -121.6875 1328.3 OR WICKIUP DAM

USC00450008 46.9658 -123.8292 3.0 WA ABERDEEN HCN

USC00450482 45.7717 -122.5286 86.6 WA BATTLE GROUND

USC00450844 48.9947 -117.3544 559.9 WA BOUNDARY DAM

USC00450945 47.1694 -122.0036 208.8 WA BUCKLEY 1 NE HCN

USC00451276 46.7200 -122.9528 56.4 WA CENTRALIA HCN

USC00451350 47.8361 -120.0381 335.0 WA CHELAN

USC00451400 47.9967 -119.6483 254.2 WA CHIEF JOSEPH DAM

USC00451484 48.9672 -122.3292 19.5 WA CLEARBROOK HCN

USC00451767 47.9544 -118.9997 524.0 WA COULEE DAM 1 SW

USC00451939 47.3706 -123.1600 6.4 WA CUSHMAN POWERHOUSE 2 HCN

USC00452007 47.6575 -118.1614 722.1 WA DAVENPORT HCN

USC00452157 48.7142 -121.1431 271.6 WA DIABLO DAM

USC00452505 46.9692 -120.5400 451.1 WA ELLENSBURG HCN

USC00452531 47.0092 -123.4008 21.3 WA ELMA

USC00452548 48.0164 -123.5906 109.7 WA ELWHA RS

USC00452675 47.9753 -122.1950 18.3 WA EVERETT HCN

USC00452914 47.9558 -124.3539 106.7 WA FORKS 1 E HCN

USC00453515 47.4933 -118.2500 658.4 WA HARRINGTON 1 NW

USC00453883 46.2447 -118.8786 112.2 WA ICE HARBOR DAM

USC00454154 46.2111 -119.1011 118.9 WA KENNEWICK HCN

USC00454338 46.8167 -117.8831 449.9 WA LACROSSE

USC00454679 47.0022 -118.5658 496.8 WA LIND 3 NE

USC00454748 46.3675 -124.0378 7.6 WA LONG BEACH EXP STN HCN

USC00454764 46.7492 -121.8120 841.9 WA LONGMIRE RAINIER NPS HCN

USC00454769 46.1506 -122.9164 3.7 WA LONGVIEW HCN

USC00455224 47.1358 -122.2558 176.5 WA MC MILLIN RSVR HCN

USC00455704 47.1414 -121.9356 398.7 WA MUD MTN DAM

USC00456039 47.3328 -118.6944 470.0 WA ODESSA HCN

USC00456096 48.6117 -122.8064 24.4 WA OLGA 2 SE HCN

USC00456262 46.6092 -121.6744 323.1 WA PACKWOOD

USC00456295 47.3058 -121.8514 280.4 WA PALMER 3 ESE

USC00456534 47.7850 -120.6456 590.1 WA PLAIN

USC00456789 46.7603 -117.1861 766.6 WA PULLMAN 2 NW HCN

USC00456846 47.8092 -122.9136 37.5 WA QUILCENE 2 SW

USC00456880 47.2156 -119.8478 388.3 WA QUINCY 1 S

USC00456898 46.7858 -121.7425 1654.1 WA RAINIER PARADISE RS

USC00456974 48.6469 -118.7314 798.6 WA REPUBLIC

USC00457059 47.1178 -118.3722 566.9 WA RITZVILLE 1 SSE HCN

USC00457180 47.2325 -117.3625 733.0 WA ROSALIA

USC00457185 48.7272 -121.0722 376.7 WA ROSS DAM

USC00457267 47.0933 -117.5878 595.0 WA ST. JOHN HCN

USC00457507 48.4958 -122.2355 18.3 WA SEDRO WOOLLEY HCN

USC00457696 45.6228 -122.2175 134.1 WA SKAMANIA FISH HATCHRY

USC00458773 45.6778 -122.6511 64.0 WA VANCOUVER 4 NNE HCN

USC00459200 46.0436 -118.4628 192.6 WA WHITMAN MISSION

USC00459376 48.4742 -120.1886 533.1 WA WINTHROP 1 WSW HCN

USW00024130 44.8428 -117.8086 1024.4 OR BAKER CITY MUNI AP HCN

USW00024131 43.5667 -116.2406 857.7 ID BOISE AIR TERMINAL GSN∗∗, WMO 72681∗∗∗

continued on next page...
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ID Latitude Longitude Elevation (m) U.S. State Station Name Notes

USW00024133 42.5417 -113.7661 1262.5 ID BURLEY MUNI AP

USW00024141 47.3078 -119.5153 381.6 WA EPHRATA MUNI AP WMO 72790

USW00024149 46.3747 -117.0156 437.7 ID LEWISTON NEZ PERCE CO AP HCN, WMO 72783

USW00024155 45.6906 -118.8528 461.8 OR PENDLETON GSN, WMO 72688

USW00024156 42.9203 -112.5711 1364.9 ID POCATELLO RGNL AP GSN, WMO 72578

USW00024157 47.6217 -117.5281 717.2 WA SPOKANE INTL AP HCN, WMO 72785

USW00024162 44.0206 -117.0128 667.5 OR ONTARIO MUNI AP

USW00024219 45.6194 -121.1661 71.6 WA THE DALLES MUNI AP

USW00024221 44.1278 -123.2206 107.6 OR EUGENE MAHLON SWEET AP WMO 72693

USW00024225 42.3811 -122.8722 395.3 OR MEDFORD ROGUE VLY AP WMO 72597

USW00024227 46.9733 -122.9033 57.3 WA OLYMPIA AP GSN, WMO 72792

USW00024229 45.5908 -122.6003 5.8 OR PORTLAND INTL AP WMO 72698

USW00024232 44.9050 -123.0011 62.5 OR SALEM MCNARY FLD WMO 72694

USW00024233 47.4444 -122.3139 112.8 WA SEATTLE TACOMA INTL AP WMO 72793

USW00024242 45.5511 -122.4089 8.8 OR PORTLAND TROUTDALE AP

USW00024243 46.5683 -120.5428 324.3 WA YAKIMA AIR TERMINAL WMO 72781

USW00024284 43.4133 -124.2436 5.2 OR NORTH BEND RGNL AP HCN

USW00094224 46.1569 -123.8825 2.7 OR ASTORIA RGNL AP HCN, WMO 72791

USW00094225 46.9728 -123.9303 3.7 WA HOQUIAM BOWERMAN AP

USW00094239 47.3978 -120.2014 374.6 WA WENATCHEE PANGBORN AP

USW00094240 47.9375 -124.5550 56.4 WA QUILLAYUTE STATE AP WMO 72797

∗ indicates the station is included in the U.S. Historical Climatology Network (HCN)
∗∗ indicates the station is included in the Global Climate Observing System (GCOS) Surface Network (GSN)
∗∗∗ denotes the Word Meteorological Organization (WMO) number for the station
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Table 3. Percent of the variance explained with each station selection. Values shown are the median and

5th–95th percentile values (in parentheses) based on all 50 000 Monte Carlo calculations.

Station # Variance Explained (%)

Temperature Precipitation

01 86.68 (82.18–89.57) 88.08 (83.50–91.21)

02 6.71 (05.00–09.30) 6.70 (04.20–11.08)

03 2.36 (01.68–03.41) 2.72 (01.62–04.38)

04 1.13 (00.80–01.66) 1.23 (00.69–02.18)

05 0.66 (00.47–00.97) 0.65 (00.36–01.22)

06 0.43 (00.31–00.63) 0.39 (00.21–00.74)

07 0.30 (00.22–00.44) 0.25 (00.13–00.48)

08 0.22 (00.16–00.32) 0.16 (00.08–00.32)

09 0.17 (00.13–00.25) 0.11 (00.06–00.22)

10 0.14 (00.10–00.19) 0.08 (00.04–00.16)

11 0.11 (00.08–00.16) 0.06 (00.03–00.12)

12 0.09 (00.07–00.13) 0.05 (00.02–00.09)

13 0.08 (00.06–00.11) 0.04 (00.02–00.07)

14 0.06 (00.05–00.09) 0.03 (00.01–00.06)

15 0.06 (00.04–00.08) 0.02 (00.01–00.05)

16 0.05 (00.04–00.07) 0.02 (00.01–00.04)

17 0.04 (00.03–00.06) 0.02 (00.01–00.03)

18 0.04 (00.03–00.05) 0.01 (00.01–00.03)

19 0.03 (00.03–00.05) 0.01 (00.01–00.03)

20 0.03 (00.02–00.04) 0.01 (00.00–00.02)
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Fig. 2. Results for annual temperature and precipitation, obtained using the optimal network design calculation.

Calculations were performed using regionally-averaged temperature and precipitation as the target metric (de-

fined as the average over the US states of Idaho, Oregon, and Washington). Contours show the percentile value

of the grid cell weighting – higher weights denote areas where measurements contribute more to the variance

explained. Results are obtained using the PRISM dataset (1948–2011), central estimates for the measurement

error (R2), and a sample size of 30 yr.
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Fig. 3. Results from three different datasets (GHCN, NARR, PRISM), calculated for the 181 GHCN stations

with continuous records for the period 1979–2011. The top map, labeled “GHCN locations”, shows the location

of the GHCN stations used in the calculation. The 6 other maps show results for the different datasets. Each

dot denotes the location of a GHCN station, and is shaded according to the percentage of time the station was

chosen using the network design algorithm. Rank correlations with the GHCN results are shown in the top right

corner of the NARR and PRISM maps. As with Fig. 2, percentile values are plotted to simplify interpretation.

Note that, unlike in other figures, the color scale remains a light yellow at low values, and does not fade to

white.
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Fig. 4. Sensitivity of network design results for annual temperature, obtained by varying the parameters used

to apply the algorithm. The top row shows results in which the sample size is varied between 20 and 40 yr, the

middle row shows results obtained from the first half of the record (1948–1979) and the last half (1980–2011),

and the bottom row shows the impact of scaling the measurement error (R2) by an order of magnitude in each

direction.
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Fig. 5. As in Fig. 4 except applied to annual precipitation.
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