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Abstract

We describe how to use multivariate analysis of complex TOF-SIMS spectra introduc-
ing the method of random projections. The technique allows us to do full clustering and
classification of the measured mass spectra. In this paper we use the tool for classi-
fication purposes. The presentation describes calibration experiments of 19 minerals5

on Ag and Au substrates using positive mode ion spectra. The discrimination between
individual minerals gives a crossvalidation Cohen κ for classification of typically about
80 %. We intend to use the method as a fast tool to deduce a qualitative similarity of
measurements.

1 Introduction10

The TOF-SIMS (time-of-flight secondary ion mass spectrometry) instrument COSIMA,
on Rosetta provides high quality measurements of chemically complex cometary dust
(Kissel et al., 2007). The instrument is designed to collect dust on target substrates.
An ion beam with the diameter of about 50 µm bombards the collected dust by indium
ions. The secondary ions created are counted. The instrument is able to detect and15

measure the mass of individual ions at an intermediate mass resolution m/δm ∼ 1400
at mass 100. The top few monolayers of the dust collected are probed by indium ions.
The instrument is sensitive enough to detect individual molecules and is capable to
even provide the molecular structure.

From the knowledge of composition of the dust from cometary sources (Stephan,20

2008), it seems that we will encounter both inorganic and organic substances in mix-
tures. The dust collecting substrates exposed at comet 67P/Churiyumov-Gerasimenko,
are designed to catch dust grains, impacting at low speed, with a high probability (Hor-
nung et al., 2014). The dust grain size is an a priori unknown factor. Dust smaller than
visible by the optical microscope, Cosiscope, will be detectable by the TOF-SIMS in-25

strument. Therefore we need to establish methods by which we can identify a grain
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on a visually seemingly empty background. The optimum size of the dust grains to be
measured would be of the same size as the beam diameter.

The purpose of this presentation is to investigate how well we can identify a set of
selected dust grains, from the substrate background, using a few different sets of data
and applying multivariate statistical analysis enhanced with the relatively recent ran-5

dom projection method, Bingham and Mannila (2001) and developed for our purpose
(Varmuza et al., 2011).

Traditional methods of analyzing mass spectra rely on studying details of individual
mass lines or groups of lines. This type of investigation will be made by us only as
a subsequent second step. In the early phases of the mission, when a small number10

of spectra are available, we need to be able to establish a link between the observed
spectra and those measured earlier in the laboratory. This task has to be based on es-
timating the similarity between spectra and as it is a challenging task, we first present
an overview of methods traditionally utilized for this purpose. Multivariate approaches
in most cases require a reduction of dimensionality by selecting specific features. We15

avoid doing this selection manually either by using a peak list derived from a spec-
trum or by applying the method of random projections. This technique gives additional
advantages as it reduces the computational complexity of the classification task. We
demonstrate how to use the method and show that it is a useful tool.

1.1 Data analysis and classification20

The lack of a overall applicable quantitative model for the ionization processes in SIMS,
Gross (2004), suggests that we approach the data set in an exploratory manner. The
interest in data mining techniques is the subject of intense research and the amount of
published material is large (Dasu and Johnson, 2003). Finding features and patterns
in a set of measurements, does not necessary provide understanding (Keogh et al.,25

2004). We therefore regard the chemometrics methodology to be the only viable basis
for our analysis attempts (Varmuza and Filzmoser, 2009). The amount of information
hidden in any given spectrum is large. Therefore it is sometimes an advantage and
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sometimes simply necessary, to reduce the dimensionality of the data before applying
multivariate statistical tools (Varmuza et al., 2010).

From a general point of view, creating understanding implies reducing dimensionality
of observations. Commonly, linear methods, like principal component analysis (PCA),
have been used to find structure in a dataset. For our purpose it is not clear how well5

this would be valid and applicable. A more general approach is provided by clustering
methods, which can be shown to cope even with non linear situations and embedded
subspaces (Roweis and Saul, 2000). In some sense this understanding is accessible
best by using some random sampling strategy (Candes, 2006).

Interestingly, it has been shown that, the commonly used tools like the linear PCA10

and K-means clustering methods, can be understood from a common base (Ding and
He, 2004). There is no guarantee that the data we collect is in any sense linear. When
measuring a mixture of two compounds A and B and expressing the result in some suit-
able abstract representation space, the results ought to be found along the line joining
these two observations in the space containing both of them. This is an important issue15

when the dimensionality of the data is large. Each of our mass spectra contain some
105 numbers which can be reduced to a few dozen to hundreds of meaningful mass
lines. This is still a large dimension, where in particular clustering methods, tend to
become hard to use as the computational task becomes too costly.

When the number of parameters grows, the interpretation gets even harder, the curse20

of dimensionality. This problem has been investigated and quantitative bounds for the
validity of estimates of principal components have been established (Nadler, 2008).
This makes it possible to create a clustering representation in a space of sufficient
dimension to make the cluster reliable, i.e. contain all required information about the
cluster members. New observations are brought into this map and estimates are made25

about how of much the map changes as the population distribution is modified. To learn
from the established representation, one needs to make a non-trivial reverse mapping,
where observations are related to the interpretation. This task has also recently been
studied (Monnig et al., 2013).
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Other multivariate statistical methods and techniques like data mining can be added
to these tools (Dasu and Johnson, 2003; Giudici and Figini, 2009). For the present
presentation we will not go further into this direction.

When operating the instrument, we will encounter mixtures (Stephan, 2008). Be-
cause quantitative absolute measurements are not possible, we need to address the5

question of precision and accuracy in the present investigation. Bayesian methods
(Broemeling, 2009), are robust and additionally provide knowledge about our possi-
ble ignorance of the experimental setup. This method will later serve as a first step in
the data processing chain of events (Lehto, 2014).

1.2 Considerations when operating the instrument10

During the operational phase of the ROSETTA mission, measurement strategy deci-
sions have to be made on the fast track. The TOF-SIMS device is an extremely sensi-
tive instrument providing measurements of ions from the dust grain surface. Contami-
nation, emerging through out gassing from the electronics and structural elements on
the space craft, or other unknown sources, is of great concern. Contamination tends15

to be organic compounds that may migrate and cover the very small size dust grains
collected during the target exposure.

Repeating measurements at some time intervals does therefore not necessarily give
the same results. Some aspects of this is covered in a separate article (Hilchenbach,
2014). Contamination is a hard problem, as there are indications that comets are sur-20

rounded by dust with a size distribution such that small grains are much more abundant
than large ones (McDonnell et al., 1991; Kolokolova et al., 2004; Tuzzolino et al., 2004).
This results in a “contamination like” influence on the measurements which might show
up as a real measured signal. Being indeed of cometary origin it would contaminate
the entire surface being investigated. The consequence of this is that contamination25

always is present and will for ever be an inseparable part of the measurement.
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We do have information about cometary matter from a number of sources (Tsou
et al., 2004; Stephan, 2008; Mumma and Charnley, 2011), but little data is collected in
a non destructive manner in situ.

Our approach is to construct maps of some laboratory spectra based on multivariate
statistical techniques. Standard methods of principal component analysis are applied5

directly to peak lists derived from full mass spectra. This list represents a first large
dimensionality reduction, which is sufficient for most purposes. It does not evaluate the
influence of the ever present signal noise residing between individual mass lines, or
multiply ionized ions at fractional masses m/z.

As pointed out before, there are limits on dimensionality reduction, which must not be10

exceeded. The dimensionality reduction method, random projections (RP), introduced
a decade ago (Bingham and Mannila, 2001), can be shown to possess a number of
universally attractive properties (Candes, 2006). The problem of outliers in a principal
component analysis as described by Filzmoser et al. (2009) is eliminated by design in
the method of random projections which is in some sense optimal (Candes, 2006).15

It may be even possible to construct maps for nonlinear cases, using this method
(see Roweis and Saul, 2000, or Monnig et al., 2013 for a good overview of the mapping
and its inversion).

During the operational phase of the Rosetta mission, there is a need to make fast
decisions on what to measure, based on possibly very limited information. In this con-20

text, a quick analysis, where measured spectra can directly be related to any laboratory
results or to previous in situ measurements is important. Support for this kind of rea-
soning is an additional goal for this work.

2 Method

Principal component analysis, PCA, is a well known robust linear method. It simply25

establishes an orthogonal coordinate system in which the measured data can be ex-
pressed in a clear manner. Each direction established is independent of each other.
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The principlal components (PC) each tell about what features, in order of importance,
are separating our individual measurements.

When using the PCA method, it is important to center the data. For very high di-
mensional data it is reasonable to apply the method in two steps where the random
projection (RP) method is first used, and on the result the PCA method is applied.5

The properties of RP essentially whitens the data and removes biases. It is important
to use a dimensionality large enough to correctly preserve the data structure under
consideration.

In mathematical terms we can express these statements as follows. We may regard
each measurement as a row vector d . The dimensionality is determined by the number10

N of parameters measured. The complete set of data is then given by the matrix D. It
consists of M measurements, rows, each N dimensional vectors d , columns.

A linear dimensionality reduction then consists of a projection of D using a transfor-
mation matrix R giving a transformed data set X with dimension N ×K as

XM×K = DM×N ·RN×K15

Random projection is suitable to map even a very high dimensional data set into
a reduced dimension which still retains the most important features of the original data
but is small enough to be numerically tractable. The selection of transformation matrix
is of critical importance. If we by ad hoc reasoning decide that only certain lines in20

the mass spectrum are important, we actually choose a very limiting simple form of
projection. On the other hand if we randomly select different features from our data set
multiple times, we effectively ensure that we do not loose anything important. This can
be proven mathematically in a strict manner (Candes, 2006). This reduction can be
understood relatively easily by realizing that each projected dimension provides a view25

of the full original data set viewed from some particular direction. Therefore a random
projection into ten dimensions provide ten complete views of the entire data. For our
task we select each element of R from a standard normal distribution N(0,1). Using an
optional normalization N(0,1)/

√
N makes the columns of R approximately unit length
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and the average of X is approximately zero, fulfilling the statistical requirements im-
posed by PCA.

The results for PCA obtained from the reduced space, can be directly related to the
original high dimensional data. Therefore an advanced kind of information extraction is
utilized in a robust manner (Candes, 2006). We can actually compute the PCA compo-5

nents robustly by first projecting the data set by RP and then apply standard PCA.
When the number of samples, i.e. spectra, grows, the accuracy of the PCA method

decreases. For this case clustering approaches for classification can be shown to per-
form better than simple PCA (Varmuza and Filzmoser, 2009).

We describe a set of calibration measurements of 19 minerals measured by the10

instrument. A separate paper (Krueger, 2014), will discuss the sample preparation and
details of the manual spectral evaluation. In this paper we are interested in constructing
a method which would accurately and rapidly relate a new measurement to previously
measured spectra. It should ideally be able to indicate the presence of mineral mixtures
or clearly indicate nonconformity of something yet not observed.15

A typical measurement sequence consists of visually, using Cosiscope, identifying
a grain or a substrate area to be analyzed, Fig. 1. This is covered by a 5×5 matrix
of measurements, Fig. 2. In most cases some of the measurements will hit a mineral
grain and in some cases the substrate only. From the 25 spectra collected, we can
derive typical properties of individual spectra and their variability. A principal component20

analysis loading vectors also pinpoint the typical features identifying the spectra. In
some cases the discriminating signatures can be very small. Often therefore heuristic
arguments are used to look at selected subsets of the spectra. This selection process
effectively increases the signal to noise ratio. In this work we rather rely on using the
full spectral data and a dimensionality reduction by random projection. This method25

being in some sense quite optimal, manages to reduce the dimensionality of the data
studied. The resulting reduced data set is made small enough to be able to apply
standard multivariate techniques.
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We perform this analysis for two sets of data. First for a substrate with several de-
posited minerals of which we study 4, to establish what the reliability is of separating
background and minerals. As an option we may use a set of 40 background additional
spectra measured at the substrate in a position free from contamination.

For the second set we use all data as one uniform data set. To be able to compare5

spectra, we normalize spectra by taking the square root of the ion counts of individual
bins or mass peaks and then normalize the result into unit vectors using an L2 norm,
i.e. Euclidean norm. This corresponds to scaling spectral components by their stan-
dard deviations. Computations using the methods described in Nadler (2008), show
that typical noise levels in signals are so small that several dozens of principal compo-10

nents are statistically significant and exceed the signal noise power. Therefore we may
indeed utilize even relatively high order principal components if the particular compo-
nent responds to a proposed question. As the principal components are statistically
orthogonal, we can in some sense treat them as independent probes into the data
set. This corresponds to the popular technique of manual feature selection like using15

specific mass line amplitudes or ratios between amplitudes.
It can be shown that computing PCA components from the data projected by a ran-

dom projection, gives the same results as doing it from the original data. The RP tech-
nique, makes it possible to compute the clustering of even the complete set of cali-
bration measurements. For the sake of demonstration we have used it only on a few20

thousand spectra investigating the properties of wet deposited minerals.
The probabilities for a correct identification are computed by the octave program

(Eaton et al., 2009), function xval (Duda et al., 2001; Schlogl et al., 2007). It allows
a wide variety of classification methods to be used. It also provides a statistically valid
cross validation. Linear discriminant analysis of various flavours, give comparable re-25

sults.
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3 Data sources

For this study, we use two separate sets of data.
The first set is peak lists derived from complete positive ion mode spectra using

a heuristic method providing a separation of mass peaks into inorganic and organic
components. This minimal peak list data set is produced on board the spacecraft by the5

instrument software and is transmitted to ground regardless of telemetry constraints.
The instrument autonomously estimates mass line intensities for integer masses up

to 300 Da. For higher values an additional 30 numbers describe integrals of mass line
intervals. For the mass range 301 to 400 intervals of 10 masses are used. The next
401 to 600 gives intervals of 20 followed by intervals of 50 up to mass 1000. The last10

two are ranges are masses from 1001–1200 and finally above 1200. For each interval
the total count of ions is given.

A further useful feature is introduced by a heuristic division of masses into organic
and inorganic components based on an empirical rule commonly used in mass spec-
trometry. The method is based on the fact that hydrogen is a common element in15

organic compounds which has a mass slightly above 1 Da which causes the organic
ions to generally have a total mass slightly larger than the closest integer mass while
the inorganic compound tends to stay below this value.

The second set of data is complete positive ion mode mass spectra, each containing
217 numbers of ion counts in bins representing ion flight times.20

This selection of data is motivated by the fact that it is generated autonomously in
the instrument and transmitted to ground before the full spectrum. In addition a refined
analysis of the full spectrum could later support this approach in more quantitative
manner (Lehto, 2014).

Finally it is worth to mention that a random projection could be used on the full25

spectrum and serve as a compressor or withening step followed by the methods used
in this presentation. The advantage of this approach is that a cross validation of the
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clustering results is possible between the full spectra and the limited mass line driven
representations.

3.1 Database

A database provides fast and easy access to the data. Three different instrument mod-
els are accessible, namely the laboratory reference model, the flight model at the comet5

and a second laboratory reference model in France. More than a hundred thousand
spectra are available. A wide variety of substances, both organic and inorganic, have
been measured in positive and negative ion modes.

For the purpose of this study we use data from the database covering the substrates
and minerals as shown in Table 1.10

The samples studied in this presentation are listed in Table 2. Calibration experi-
ments valdiating the measurements of organics are also discribed separately in Leroy
(2014).

4 Constructing maps

We use multivariate analysis to construct a relation between observations and repre-15

sent them projected on a map. As an example of constructing a map, we take a subset
of measured peak list data shown in Fig. 1 visually on a substrate. A 5×5 matrix of mea-
surements has been made and they are in the circle as shown in the figure. The layout
of the TOF-SIMS measurements, for this particular measurement matrix, albite, in de-
tail shown magnified in Fig. 2. The events marked by ×:s are spectra assigned manually20

as mineral calibration samples. The rest are regarded as “background”. The minerals
are deposited as a droplet of suspension, and thus, it is probable that the sample is not
sharply distributed, as anticipated, but rather as diffuse spread out contamination. This
might be analog to the dust collection at the comet where a size distribution of dust is
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encountered and statistically distributed over the collector substrate. For convenience,
the average of 8 peak list spectra for albite is shown in Fig. 3.

There are other minerals deposited locally on the target as well, measured using
a similar matrix scan. At the bottom of the substrate is a vertical set of 40 spectra in
a region that should be devoid of any mineral samples, see Fig. 1.5

The final set of measurements in positive ion mode consist of 25 spectra each for al-
bite, fayalite, hyperstene and orthoclase to which a background reference of 40 spectra
is added. We use the peak lists of this set of data consisting of 300 mass lines each
of inorganic and organic ions. We make no feature identification of any kind. Our data
therefore consists of a 140×600 matrix, 140 (= 25×4+40) spectra each with 600 mass10

lines. From this we compute the principal components. The score plot for the first two
PC’s is shown in Fig. 4. As is evident from the 3-D presentation of the first three PC’s
in Fig. 5, the clustering is not confined to any simple plane. Each of the 4 minerals
nicely separates into independent clusters, despite their pairwise chemical similarity,
see Table 2.15

It is instructive to look at the cross validation of a classification analysis of the miner-
als without using the background as a reference. Taking our 4 minerals, 4×25 spectra
and postulating that they consists of two groups. The first group seem to originate from
the visually observable mineral and the second group seem to come from a background
of the “not contaminated” substrate. For this scenario applied to the complete set of 1920

minerals we arrive at a picture Fig. 6. The Cohen κ ∼ 0.4±0.03 clearly indicates that
we do not obtain a correct interpretation of the ingoing data set (Cohen, 1960). An
observation is assigned a value between 0 and 1, indicating the probability of correct
identification. The Cohen κ coefficient shows a far too low probability for a correct clas-
sification. When including the background reference measurments made separately,25

the results are much improved as can be seen in Fig. 7.
Now κ becomes 0.88±0.03 and the multivariate approach is valid. Binary mixtures

are a little easier to classify and only one or two spectra out of a hundred are assigned
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an incorrect group. The background effectively serves as an additional constraint which
directly improves the over all performance.

A very similar result, as for peak lists, can be achieved at much lower computational
effort by first computing a random projection of the spectrum (either the full spectrum
with 105 bins or the peak lists with some 600 peaks) and then continue with PCA. Be-5

cause the RP reduces the dimensionality greatly, the PCA becomes much faster. The
speed depends primarily on the dimensionality. The reduction of it therefore speeds
up the repetitive computations required for the cross validation. The process is difficult
when full spectra are considered, because of the high dimensionality.

The selection of random number sequences used in the RP has a small and in-10

significant influence on the results, as long as the same projection matrix is used for
the entire data set studied. The transformation matrix establishes an approximately or-
thonormal coordinate system in which the data is represented. The clustering can be
directly computed from the RP projected data set but alternatively also be made by
other methods, which we do not discuss here any further.15

We finally estimate the number of valid signal carrying components using the method
of Nadler (2008). For the described 4+1 classification of 140 spectra we get ∼ 60 PC
components larger than the noise. This indicates that we need to use this number
of degrees of freedom to catch all phenomena hidden in the data. Some information
can be extracted already at lower dimensionalities. A dimensionality of ∼ 10 is already20

sufficient to get the Cohen κ estimates to within one % of what the full data shows.
This can easily be understood by realizing the speed of decline of the eigenvalues in
the principal component estimate.

Because the RP is a linear method, it is natural that it is compatible with principal
component analysis. It can be shown that the results of a PCA of a RP data set is25

approximately the same as the result computed directly (Seitola et al., 2014). The
results are very similar as long as the dimensionality of the RP is sufficient to contain
the information of the original data.
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4.1 Classification

Establishing classification in a lower dimension is much less costly than directly doing
it in a data volume of high dimensionality. Classification can in many cases be achieved
using only a small number of PC components. In the general case we need to include
a number large enough to represent all aspects of the data.5

The RP technique makes it possible to compute a full cross validation of the classifi-
cation of a large data set. We can easily in a few minutes establish the classification of
the data set consisting of peak list spectra from 19 minerals and 40 background spec-
tra. We process a total of about 880 peak lists. The data matrix is 880×600 numbers. It
is important to note that for this relatively large number of spectra and the likewise many10

parameters (peaks) the PCA in general is quite noisy. Therefore it is essential to ask
how many components are actually meaningful and exceeding a noise background.

Applying Nadler (2008) to our data set again, shows that we have about 90 mean-
ingful components when computed from the peaklist data directly from the set of over
800 events. Therefore the maximum dimensionality needed for the RP would be of15

that same order of magnitude. The number of components required scales weakly with
the number of spectra and parameters in the data. Analysing the previously discussed
smaller data set of 140 spectra for 4 minerals and a background set, would require
about 50 components and the same subset when projected to 100-dimension reduces
the set to about 25. A small variation in the numbers is present and depends on details20

in the behaviour of the least significant components responsible for information at the
10−3 level of the total variance.

Using the RP for the purpose of performing the full cross validation of the data set
classification is rewarding. The RP is able to pick out the discriminating features in
a very beneficial manner. Using different projection matrices makes it possible to apply25

the methods multiple times and establish proper error estimates (sensitivity analysis).
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5 Results

We have developed a technique of classifying measured TOF-SIMS mass spectra from
the COSIMA instrument using multivariate statistical analysis of data projected by ran-
dom projections into a lower dimensional space. A manual visual inspection and iden-
tification of spectra originating from mineral or background, does not correctly identify5

the class memberships, while the task is performed well by the methods presented
above. This fact demonstrates the usefulness of our approach.

The Cohen κ probability of correct classification varies from useless to reasonable
(0.2–0.8) when using manual visual identification to derive class memberships as com-
pared to almost complete success when using an additional reference background10

measurement. These results show the importance of measuring several reference
spectra prior to exposing targets for dust. It is found that even peak lists are sufficient
to determine class membership to a high degree of confidence.

We have found that using the random projection method of reducing the data di-
mensionality, classification results are obtained at a cross validation level very similar15

to what can be achieved using the full spectrum data set. The variation in scores is
smaller when utilizing the random projection method, than when using full spectra.

The results of classification and cross validating 4 minerals and a background, is
shown in Table 3. The classification is in this case computed from peak list data on
which we optionally have applied random projections, to validate the computational20

method. The variation in classification errors when changing the random projection
dimensionality is of the order of 3 % as estimated by the Cohen κ. The variability in the
κ estimate between individual cross validation runs when keeping the dimensionality
fixed is of the order of 0.5 %.

The random projection method also makes it possible to compute the classification25

directly from full size spectra, see Figs. 8 and 9. From a spectrum truncated to 100 000
bins, we reduce the dimensionality for instance to 300 to catch even subtle features.
This data set consists of 113 spectra. We compute the principal components from the
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300-dimensional data and from the full spectra by limiting the number of components.
As the PCA method is sensitive to outliers and large dimensions, the expected match
between the two results, shows resemblence but not a complete match. The full spectra
provide a much larger spread in scores than the RP result does. Also more details and
repeated features are retained in the random projection results. An example is shown5

in Fig. 8 which should be compared to Figs. 4 and 5 above. The improved quality of the
PCA from the projected full spectra is demonstrated by the enlarged rightmost cluster
of points in Fig. 8 shown in Fig. 9.

A similar result can be obtained for the measurements treated as pairs of a binary
mixture of mineral on background. The results for that case are very good with few10

errors in classification. A more demanding case is to classify all 19 minerals with the
background. When applying the random projection method to the data, the task is
solved quickly and cleanly. Comparing the classification solution from the direct method
operating on the full set of data and the case using the RP gives similar results. The
Cohen κ is similar to within a few % and the classification results essentially identical.15

The compute time is one to several orders of magnitude lower with the RP providing
results in only a few minutes. Furthermore the RP seems to yield a computationally
more stable solution.

The classification and cross validation for the full data set using the RP method for
computations is shown in Table 4. The number of PC values exceeding the noise level20

is about 90 for the peak list data set. Decreasing the RP dimension to correspond to
the data set in Table 4 only slightly changes the κ, decreasing it by less than 1 %. The
corresponding score plot for the first two principal components is shown in Fig. 10. It
represents the heart of the instrument performance. The shape is due to the fact that
we view a point set (spectra) distributed on a unit sphere. We assume that we will be25

able to distinguish between the measured minerals quite well.
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6 Conclusions

We have successfully applied the method of random projections to the classification of
a set of TOF-SIMS spectra complete and alternatively represented by peak lists derived
from full spectra. The reduced data set has been used directly or by first applying
a random projection. For both cases we obtain very similar results. The computational5

cost and robustness of the latter being superior.
The RP compressed data is an unbiased and a very robust tool to acquire information

that is hidden in the data. This technique opens up a very powerful and general way of
finding global taxonomy of observations.

The instrument provides us a peak list at very low telemetry cost. This data is shown10

to be sufficient for several tasks of discriminating between minerals. This makes the
method well suited to make assessments on measurement strategies during the sci-
entific phase of the mission.

Future work will include deriving peak lists using Bayesian methods to establish sta-
tistically strict quantitative information about spectra. This reduced set can then be15

analyzed by the method described here to achieve even better results.
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Table 1. Layout of minerals on substrates. In particular we use substrate 496 to validate classi-
fication of 4 minerals and background.

SUB Minerals deposited

4AF Calcite Dolomite Sphalerite
4B0 Corundum Ilmenite Magnetite Richterite
41D Clinopyroxene
41E Orthopyroxene
41F Olivine
48B Plagioclase
420 Forsterite
421 Sulfide
422 Smectite
496 Albite Fayalite Hyperstene Orthoclase
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Table 2. Table showing the names, composition and substrates used for this investigation. Min-
erals are deposited on blank Ag or Au substrates either by suspension (S), by pressing (P) or
heterogeneous (H), see last column. ID refers to substrate ID fond in the COSIMA data base.
Fayalite is a heterogenous suspension. For calcite and dolomite, carbon was not measured.
For richterite and smectite, hydrogen was not measured and for magnetite, oxygen was mea-
sured as FeO. Details on the measured compositions and target preparations are discussed in
Krueger (2014).

Mineral Formula Measured Target ID Dep.

Albite NaAlSi2 O2 NaAlSi3O8 Ag blk 496 S
Calcite CaCO3 Ca3O3† Ag blk 4AF S
Corundum Al2O3 Al2O3 Ag blk 4B0 S
Clinopyroxene CaMgSi2O6 Mg0.9,Fe0.1,Al0.1Ca0.7Si1.8O6 Au blk 41D P
Dolomite (Ca,Mg)(CO3)2 (Ca3,Mg2.5,Fe0.5)O6† Ag blk 4AF S
Fayalite Fe2SiO4 Fe1.9Si1.0O4 Ag blk 496 S, H
Hyperstene (Mg,Fe)2Si2O6 (Mg0.91,Al0.06,Fe0.36)Si1.29O3 Ag blk 496 S
Ilmenite FeTiO3 (Fe0.8Mg0.2)TiO3 Ag blk 4B0 S
Magnetite Fe3O4 Fe2.5O4 (O measured as FeO) Ag blk 4B0 S
Nepheline (Na,K)AlSiO4 (Na0.6,Ca0.3),Al1Si1O4 Ag blk 497 S
Olivine Mg2SiO4 (Mg1.8,Fe0.2)Si1.0O4 Au blk 41F P
Orthopyroxene (Mg,Fe)2Si2O6 (Mg0.9,Fe0.1,Al0.1)Si1.9O6 Au blk 41E P
Orthoclase KAlSi3O (Na0.3,K0.6,Al1.0)Si3O8 Au blk 496 S
Plagioclase (Na,Ca)(Si,Al)4O8 (Na0.5,Ca0.5)(Si2.5,Al1.5)O8 Ag blk 48B P
Richterite Na[CaNaMg5][(OH)2[Si8O22]] Na0.9Al0.3Ca1.6(Mg4.7,Fe0.4)[Si8.2O24] Ag blk 4B0 S
Smectite Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2nH2O Ca0.2(Mg0.1,Fe2.7)[(Si4.3,Al0.2)O12] Au blk 422 P
Forsterite Mg2SiO4 Mg2SiO4 Au blk 41F P
Sphalerite (Zn,Fe)S ZnS Ag blk 4AF S
Sulfide Fe2S2 FeS2 Au blk 421 P
Background Ag blk 496
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Table 3. Cross validation results for 4 minerals and background residing on the same substrate
SUB-496. Classification accuracy shown at bottom computed from the average of several cross
validations. Two albite spectra are incorrectly classified as fayalite and one orthoclase spectrum
as albite, shown for one particular realization.

Alb Fay Hyp Ort Bak

Albite 23 2 0 0 0
Fayalite 0 25 0 0 0
Hypersten 0 0 25 0 0
Orthoclase 1 0 0 24 0
Background 0 0 0 0 40
sACC 0.939 0.962 1.00 0.980 1.00
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Table 4. Cross validation results for all 19 minerals and background.

alb cal cor cpx dol fay hyp ilm mag nep oli opx ort pla ric sfo sme sph sul bak

alb 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cal 0 22 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
cor 2 0 12 0 0 0 0 10 1 0 0 0 0 0 0 0 0 0 0 0
cpx 0 0 0 18 0 0 0 0 1 0 2 13 0 0 1 0 0 1 2 0
dol 0 0 0 0 20 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0
fay 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0
hyp 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0
ilm 0 0 6 0 0 0 0 55 2 0 0 0 0 0 2 0 0 0 0 0

mag 0 0 6 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0
nep 3 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0
oli 0 0 0 4 0 0 0 0 0 0 60 1 0 0 0 0 0 0 0 0

opx 0 0 1 1 0 1 1 0 0 0 9 43 0 0 0 1 3 0 1 0
ort 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0
pla 0 0 0 0 0 0 0 0 0 0 0 0 2 26 0 0 0 0 0 0
ric 0 0 1 0 2 0 0 0 9 0 0 0 0 0 51 0 0 0 0 2
sfo 0 1 0 0 0 0 1 1 0 0 0 2 0 0 1 36 0 0 0 0

sme 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0
spa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0
sul 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 47 0
bak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25
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99705

Figure 1. A substrate to collect dust. This one contains multiple
mineral samples. In the middle at the top the albite mineral is de-
posited and a 5x5 matrix of closely spaced measurements is made.
At the bottom is a straight vertical matrix of measurements on a
clean area of the substrate which serves as a background reference.

Figure 2. Picture showing the position of measurements at the min-
eral albite. The beam radius corresponds to the distance between the
indicated positions. The marked squares indicate the hand picked
positions on the edge of the mineral sample. As the sample is placed
by wet deposition, it is likely that the other positions are contami-
nated by the same mineral substance in a possibly diluted form.

Figure 1. A substrate to collect dust. This one contains multiple mineral samples. In the middle
at the top the albite mineral is deposited and a 5×5 matrix of closely spaced measurements
is made. At the bottom is a straight vertical matrix of measurements on a clean area of the
substrate which serves as a background reference.
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Figure 1. A substrate to collect dust. This one contains multiple
mineral samples. In the middle at the top the albite mineral is de-
posited and a 5x5 matrix of closely spaced measurements is made.
At the bottom is a straight vertical matrix of measurements on a
clean area of the substrate which serves as a background reference.

Figure 2. Picture showing the position of measurements at the min-
eral albite. The beam radius corresponds to the distance between the
indicated positions. The marked squares indicate the hand picked
positions on the edge of the mineral sample. As the sample is placed
by wet deposition, it is likely that the other positions are contami-
nated by the same mineral substance in a possibly diluted form.

Figure 2. Picture showing the position of measurements at the mineral albite. The beam radius
corresponds to the distance between the indicated positions. The marked squares indicate
the hand picked positions on the edge of the mineral sample. As the sample is placed by wet
deposition, it is likely that the other positions are contaminated by the same mineral substance
in a possibly diluted form.
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10 J. Silén et al.: COSIMA Data Processing

Figure 3. Example of peak lists. This is the average of peak lists for
albite spectra. Organic and inorganic components are separated.

Figure 4. Score plot using the two first PCA components. The
events represent the four minerals and the background for substrate
SUB496. The scores from peak lists and RP results are essentially
identical.

Figure 5. Score plot using the three first PCA components. The
events represent the four minerals and the background for substrate
496.

Figure 6. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space using
random projections. For this case background is regarded as those
visually identified spectra surrounding measured minerals, marked
as "environment".

Figure 7. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space us-
ing random projections. For this case a separate reference back-
ground measurements is made. When included the Cohen κ∼
0.88+−0.04.

Figure 8. Score plot using the two first PCA components from RP
projection of full spectra. The events represent the four minerals and
the background for substrate 496. The circled region is magnified in
Fig. 9.

Figure 3. Example of peak lists. This is the average of peak lists for albite spectra. Organic and
inorganic components are separated.
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Figure 3. Example of peak lists. This is the average of peak lists for
albite spectra. Organic and inorganic components are separated.

Figure 4. Score plot using the two first PCA components. The
events represent the four minerals and the background for substrate
SUB496. The scores from peak lists and RP results are essentially
identical.

Figure 5. Score plot using the three first PCA components. The
events represent the four minerals and the background for substrate
496.

Figure 6. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space using
random projections. For this case background is regarded as those
visually identified spectra surrounding measured minerals, marked
as "environment".

Figure 7. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space us-
ing random projections. For this case a separate reference back-
ground measurements is made. When included the Cohen κ∼
0.88+−0.04.

Figure 8. Score plot using the two first PCA components from RP
projection of full spectra. The events represent the four minerals and
the background for substrate 496. The circled region is magnified in
Fig. 9.

Figure 4. Score plot using the two first PCA components. The events represent the four miner-
als and the background for substrate SUB496. The scores from peak lists and RP results are
essentially identical.
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Figure 3. Example of peak lists. This is the average of peak lists for
albite spectra. Organic and inorganic components are separated.

Figure 4. Score plot using the two first PCA components. The
events represent the four minerals and the background for substrate
SUB496. The scores from peak lists and RP results are essentially
identical.

Figure 5. Score plot using the three first PCA components. The
events represent the four minerals and the background for substrate
496.

Figure 6. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space using
random projections. For this case background is regarded as those
visually identified spectra surrounding measured minerals, marked
as "environment".

Figure 7. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space us-
ing random projections. For this case a separate reference back-
ground measurements is made. When included the Cohen κ∼
0.88+−0.04.

Figure 8. Score plot using the two first PCA components from RP
projection of full spectra. The events represent the four minerals and
the background for substrate 496. The circled region is magnified in
Fig. 9.

Figure 5. Score plot using the three first PCA components. The events represent the four
minerals and the background for substrate 496.
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Figure 3. Example of peak lists. This is the average of peak lists for
albite spectra. Organic and inorganic components are separated.

Figure 4. Score plot using the two first PCA components. The
events represent the four minerals and the background for substrate
SUB496. The scores from peak lists and RP results are essentially
identical.

Figure 5. Score plot using the three first PCA components. The
events represent the four minerals and the background for substrate
496.

Figure 6. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space using
random projections. For this case background is regarded as those
visually identified spectra surrounding measured minerals, marked
as "environment".

Figure 7. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space us-
ing random projections. For this case a separate reference back-
ground measurements is made. When included the Cohen κ∼
0.88 +−0.04.

Figure 8. Score plot using the two first PCA components from RP
projection of full spectra. The events represent the four minerals and
the background for substrate 496. The circled region is magnified in
Fig. 9.

Figure 6. Cross validation accuracies showing the Cohen κ value computed for the data pro-
jected to a 100 dimensional space using random projections. For this case background is re-
garded as those visually identified spectra surrounding measured minerals, marked as “envi-
ronment”.
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Figure 3. Example of peak lists. This is the average of peak lists for
albite spectra. Organic and inorganic components are separated.

Figure 4. Score plot using the two first PCA components. The
events represent the four minerals and the background for substrate
SUB496. The scores from peak lists and RP results are essentially
identical.

Figure 5. Score plot using the three first PCA components. The
events represent the four minerals and the background for substrate
496.

Figure 6. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space using
random projections. For this case background is regarded as those
visually identified spectra surrounding measured minerals, marked
as "environment".

Figure 7. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space us-
ing random projections. For this case a separate reference back-
ground measurements is made. When included the Cohen κ∼
0.88 +−0.04.

Figure 8. Score plot using the two first PCA components from RP
projection of full spectra. The events represent the four minerals and
the background for substrate 496. The circled region is magnified in
Fig. 9.

Figure 7. Cross validation accuracies showing the Cohen κ value computed for the data pro-
jected to a 100 dimensional space using random projections. For this case a separate reference
background measurements is made. When included the Cohen κ ∼ 0.88±0.04.
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Figure 3. Example of peak lists. This is the average of peak lists for
albite spectra. Organic and inorganic components are separated.

Figure 4. Score plot using the two first PCA components. The
events represent the four minerals and the background for substrate
SUB496. The scores from peak lists and RP results are essentially
identical.

Figure 5. Score plot using the three first PCA components. The
events represent the four minerals and the background for substrate
496.

Figure 6. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space using
random projections. For this case background is regarded as those
visually identified spectra surrounding measured minerals, marked
as "environment".

Figure 7. Cross validation accuracies showing the Cohen κ value
computed for the data projected to a 100 dimensional space us-
ing random projections. For this case a separate reference back-
ground measurements is made. When included the Cohen κ∼
0.88+−0.04.

Figure 8. Score plot using the two first PCA components from RP
projection of full spectra. The events represent the four minerals and
the background for substrate 496. The circled region is magnified in
Fig. 9.

Figure 8. Score plot using the two first PCA components from RP projection of full spectra. The
events represent the four minerals and the background for substrate 496. The circled region is
magnified in Fig. 9.
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Figure 9. Score plot using the two first PCA components from RP
projection of full spectra. The region shown is zooming into the
cluster at far right in Fig. 8.

Figure 10. Classification of 19 minerals and background of a sub-
strate. The PC components show only the most pronounced fea-
tures. The classification matrix is shown in Table 4. Each sample is
represented by a marker. The colours and markers represent indi-
vidual classes. The elements are the same as in Table 4. More quan-
titative details are seen only when rotating a 3D image of suitably
chosen principal components.

Figure 9. Score plot using the two first PCA components from RP projection of full spectra. The
region shown is zooming into the cluster at far right in Fig. 8.
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Figure 9. Score plot using the two first PCA components from RP
projection of full spectra. The region shown is zooming into the
cluster at far right in Fig. 8.

Figure 10. Classification of 19 minerals and background of a sub-
strate. The PC components show only the most pronounced fea-
tures. The classification matrix is shown in Table 4. Each sample is
represented by a marker. The colours and markers represent indi-
vidual classes. The elements are the same as in Table 4. More quan-
titative details are seen only when rotating a 3D image of suitably
chosen principal components.

Figure 10. Classification of 19 minerals and background of a substrate. The PC components
show only the most pronounced features. The classification matrix is shown in Table 4. Each
sample is represented by a marker. The colours and markers represent individual classes. The
elements are the same as in Table 4. More quantitative details are seen only when rotating
a 3-D image of suitably chosen principal components.
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