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Abstract

We describe the use of Bayesian analysis methods applied to TOF-SIMS spectra. The method
finds the

✿✿

is
✿✿✿✿✿✿✿

applied
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

COSIMA
✿✿✿✿✿✿✿✿✿✿✿

TOF-SIMS
✿✿✿✿✿

mass
✿✿✿✿✿✿

spectra
✿✿✿✿✿✿

where
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

broken

✿✿✿

into
✿✿✿✿✿✿✿✿✿✿

subgroups
✿✿

of
✿✿✿✿✿

lines
✿✿✿✿✿

close
✿✿✿

to
✿✿✿✿✿✿

integer
✿✿✿✿✿

mass
✿✿✿✿✿✿✿

values.
✿✿✿✿

The
✿✿✿✿✿✿

effects
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿

dead
✿✿✿✿

time

✿✿✿

are
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿

a
✿✿✿✿

new
✿✿✿✿✿

way.
✿✿✿✿

The
✿✿✿✿✿✿✿

method
✿✿✿✿✿

finds
✿✿✿✿

the
✿✿✿✿

joint
✿

probability density functions of mea-
sured line parameters (number of lines, and their widths, peak amplitudes, integrated amplitudes
, positions)in mass intervals over the whole spectrum. We discuss the results we can expect
from this analysis.We discuss the effects the instrument dead time causes in the COSIMA TOF
SIMS. We address this issue in a new way.

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

positions).
✿✿✿

In
✿✿✿

the
✿✿✿✿✿

case
✿✿

of
✿✿✿✿

two
✿✿✿

or
✿✿✿✿✿

more
✿✿✿✿✿

lines

✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿✿✿

can
✿✿✿✿

take
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿

forms.The derived line parameters can be used to further
calibrate the mass scaling of TOF-SIMS and to feed the results into other analysis methods such
as multivariate analyses of spectra. We intend to use the methodin two ways, first as a compre-
hensive tool to perform quantitative analysis of spectra, and second as a fast tool for studying
interesting targets for obtaining additional TOF-SIMS measurements of the sample, a property
unique for COSIMA. Finally, we point out that the Bayesian method can be thought as a means
to solve inverse problems but with forward calculations only

✿✿✿✿

with
✿✿✿

no
✿✿✿✿✿✿✿✿

iterative
✿✿✿✿✿✿✿✿✿✿✿

corrections
✿✿

or

✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿✿

manipulation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observed
✿✿✿✿

data.

1 Introduction

The COmetary Secondary Ion Mass Analyzer (COSIMA) is a time-of-flight secondary ion mass
spectrometer (TOF-SIMS) on board the Horizon 2000 European Space Agency Rosetta mission
en route to encounter the comet 67P/Churyumov–Gerasimenko. The space probe consists of an
orbiter and a lander. After the in-flight hibernation, the space probe and its instruments were
successfully woken up on 20 January 2014. The first orbital maneuvers for the comet approach
took place in May 2014. The formal mission end date is 31 December 2015. By that date the
comet has passed perihelion with the Rosetta spacecraft clinging near it all the time.
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While the orbiter is traveling at slow speed (meters per second) in the vicinity of the comet
(Glassmeier et al., 2007), the COSIMA instrument is collecting dust particles that have been
expelled by the comet. A representative set of these particles enter into COSIMA through an
open window which extends to the outer surface of Rosetta. The particles are collected on
a target plate, which consists of three square 1 cm by 1 cm metal plates and an unexposed 0.3
by 3.0 cm reference area. Once exposed the plate is stored. At a suitable time the plates are
examined one by one with an illuminated optical microscope, the COSISCOPE,

✿

which has
an optical pixel size resolution of 14µm (Kissel et al., 2007). By combing several exposures
a super resolution of about 3µm is possible. Target particles for further analysis are selected,
and exposed to an 115In primary ion beam with an ion energy of +8 KeV, a pulse duration of
< 3ns, and a beam width of 50 µm

✿✿✿✿✿

50µm. During each pulse an unknown number of secondary
ions are expelled from the top layer(s) of the target samplecreated. These secondary ions then
enter the electric field lens system and end up on the detector, where the flight times of ions
are measured. For

✿

In
✿

short this process is called a shot. Depending on the polarity, positive or
negative ions are detected. The shots are repeated at 500µs intervals, thus a one second exposure
consists of 2000 shots and during a 3 min exposure about 360 000 shots are fired. The instrument
is described in detail by Kissel et al. (2007).

The outcome of a measurement is a time of flight spectrum, which we are directly inter-
ested in. In this paper we will discuss the quantitative foundation of understanding the spectrum
through statistical analyses of individual spectral lines and touch on some critical issues such
as instrument dead time effects, normalization,

✿✿✿

and
✿

isotope ratio calculation of lines. Multi-
variate techniques connecting complex chemistry and complete spectra are discussed elsewhere
(Silén et al., 2014). Bayesian methods can be extended to the interpretation of these cases too,
but this is beyond our scope here

✿✿✿

but
✿

it
✿✿

is
✿✿✿✿✿✿✿

beyond
✿✿✿

the
✿✿✿✿✿✿

scope
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

paper.

2 Time of flight spectrum

We measure the raw time of flight spectrum,
✿✿✿

i.e. the number of secondary ions as a function of
time. This is

✿✿✿✿✿✿✿

defines the coordinate space we are working in.
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The time of flight of an ion scale
✿✿✿✿✿✿

scales with the mass m and charge qis
✿

,

t= a+ b
√

(m/q), (1)

where
✿✿✿

the
✿✿✿✿

mass
✿✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿✿✿✿✿

parameters
✿

a and b have values of about 4000 and 1600, respectively
in COSIMA. The values of a and b are initially estimated by the onboard software. The charge
q is usually +1 or −1. The mass of the ion m is

✿✿✿✿✿✿✿✿✿

expressed in atomic mass units, u. The time of
flight is digitized by the Time-to-digital converter to bins of 1.953125 ns (Kissel et al., 2007).
One COSIMA time of flight time bin t corresponds at mass m∼ 1 to

✿✿

to
✿

a
✿✿✿✿✿

mass
✿✿✿✿

bin
✿✿

of 0.0013u
and at m∼ 900 to

✿

at
✿✿✿✿✿

mass
✿✿✿✿✿✿

m∼ 1
✿✿✿✿

and
✿✿

to
✿✿

a
✿✿✿✿✿

mass
✿✿✿

bin
✿✿

of
✿

about 0.04u
✿✿

at
✿✿✿✿✿✿✿✿

m∼ 900.
The resolution of the mass spectrometer is m/δm∼ 1400 at m= 100. At low masses all the

atomic lines are easily separated. Up to mass off about m∼ 120u mineral and hydrogen rich or-
ganic components can be separated (F. Krüger, personal communication, 1992). The distinction
is based on the fact that most minerals due to their internal structure shows elemental masses

✿✿✿✿✿✿✿

produce
✿✿✿✿✿✿✿✿✿

elemental
✿✿✿✿✿✿✿

masses
✿✿✿

in
✿✿✿✿

their
✿✿✿✿✿✿✿

spectra. These have values that usually are below the inte-
ger value of the mass. Single mineral ions with Z > 80, m> 200 have masses below

✿✿✿✿✿✿✿

Z > 86,

✿✿✿✿✿✿✿✿

m> 222
✿✿✿✿✿

have
✿✿✿✿✿✿✿

masses
✿✿✿✿✿✿

above integer values, but they are not expected to have a large contri-
bution to the spectrum. Hydrogen tends to be common in organic molecules and their breakup
products. A neutral hydrogen has a mass surplus of δH = 0.0078u above the integer value
of 1. A loss of an electron produces a hydrogen ion, H+ with an excess of δH+ = 0.0073u.
This implies that organic molecules with ample hydrogen tend to have masses above an integer
mass value. It is noteworthy to mention that other elements common in organics have the fol-
lowing deviations 12C: 0δH, 14N: 0.39δH, 16O: −0.65δH, so nitrogen enhances the positive
deviation, while the presence of oxygen reduces it. Two relatively common elements, phospho-
rus and sulfur, often associated with organics reduce the organic shift by 31P :−3.36δH ,

✿✿✿

and
32S :−3.56δH.

The full spectrum consists of 217 or 131 072 time bins and reach to about m∼ 6400u. The
raw data is in the form of

✿✿✿

are
✿✿

in
✿

counts per TOF time bin. The lowest mass peak is usually
hydrogen ion at 1.0073u. An electron peak at mass me = (1/1839)u is present in negative
spectra. It is broad due to the significantly larger thermal velocities electrons have compared to
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ions and due to the high energy the ion formation and decay processes after the substrate has
been irradiated with the indium beam. In principle ions with the same mass should fall into one
time bin. However the stability of the instrument, the pulse length of the primary beam, finite
beam size and thermal distribution of ions all contribute to the resolution so that the time of
flight arrivals from a single pulse produces a peak with a full width at half of the maximum
amplitude (FWHM) of about 2.5 TOF time bins, and close to Gaussian in shape.

Dead time effects

The secondary ions have a distribution in arrival times, which can be characterized by
a distribution at time of flight corresponding to the true mass and Gaussian dispersion of about
2.5 bins FWHM. In weak lines with low secondary ion yield, most of the

✿✿✿✿✿✿✿

primary
✿✿✿✿

ion
✿✿✿✿✿

beam fir-
ings will produce no secondary ions for that mass, and only single ions will be recorder

✿✿✿✿✿✿✿✿

recorded
occasionally. For example a line with a total count of ∼ 1000 secondary ions in a 3 min expo-
sure will behave in this way, with about one secondary ion on average for every 360 indium
shots.

If the ion yield is higher, such that the total counts of a spectral line are of the order of 10 %
of the total number of shots, in our example

✿

a
✿✿

3
✿✿✿✿✿✿

minute
✿✿✿✿✿✿✿✿✿

exposure,
✿✿

a
✿✿✿✿

few
✿✿✿✿✿

times
✿

∼ 104, then an

✿✿✿

the instrument dead time effect sets in. After the arrival of a secondary ion, the instrument does
not respond to new secondary ions within the next 10ns, which corresponds to about 5.2 TOF
time bins (Kissel et al., 2007). This becomes

✿✿

is important when the number of cases with two
or more ions arriving to the instrument becomes significant. Note also as

✿✿✿✿

that the instrument
cannot distinguish between background ions and “good” ions. Both will contribute to the dead
time effect. The contribution of the background is expected to be small, because of the low
background levels in COSIMA. It cannot be completely ignored however. The dead time causes
two major distortions to the shape of the spectral line. It reduces the total number of counts
detected per time of flight bin. Further, a second bias is produced by the asymmetric nature of
the dead time. The spectral line becomes skewed by the shifting the peak of the line to smaller
flight times than if all ions were recorded or if the dead time was zero.
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The single most important parameter for understanding the dead time effect is the
✿✿✿✿✿

yield
✿✿

of

✿✿✿✿✿✿✿✿✿✿

secondasry,
✿✿✿

the
✿

ratio of counts creating a given line to the number of shots. It gives a measure
of how many occurrences of two or more ions in a single shot occur for that particular line. This
implies that two spectra with same

✿✿✿✿✿✿✿✿

absolute line counts for a given mass will have different
dead-time effects if they have a different number of

✿✿✿✿✿✿✿

primary
✿✿✿

ion
✿

shots. On the other hand the
shape of the same line in a sample from short exposures and long exposures will not change due
to dead time effects if the secondary ion yield does not change.

Ideally the time of flight spectrum would show no background, show sharp discrete line peaks
and have an exact TOF mass calibration. In reality we are limited by measurement statistics,
finite resolution, dead time effects, background, multiple nearby by lines and various other
issues. We will next address how to analyze our COSIMA spectra from a Bayesian perspective.

3 Method (mathematics
✿✿✿✿✿✿✿✿✿✿✿✿

Mathematics
✿

and statistics)

We discuss next the statistical nature of the data. The ordinate in the data is the TOF time bin,
which has a linear relation to the time of flight, which scales as the square root of ion mass. The
data itself is count data and thus Poisson distributed.

The parameters we are interested in at a given mass are the number of spectral components,
the integrated count of each component, the mass corresponding to each line and the confidence
limits of all these parameters. We approximate the spectral lines as Gaussian in the time of flight
coordinate system. We will later apply other options such as a combination of a Gaussian and
a Lorentzian profile. Standard methods such as least squares or χ2 fittings are not applicable,
however. The reason for this is the nature of the noise in these spectra.

Our data is particle count data and as such positive definite. It follows Poisson statistics. The
Poisson probability density function is defined as

p(n,λ) =
λne−λ

n!
, (2)
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where for large values of n the factorial is calculated either in a logarithmic form

ln(p(n,λ)) = n lnλ−λ− ln(n!) (3)

or e.g. by the Batir (2010) equation which is good for n > 1
✿✿✿✿✿

n > 1 to within a relative accuracy
of < 10−6 which is sufficient for our calculations.

The Poisson nature of the data implies that the distribution
✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿✿

density
✿✿✿✿✿✿✿✿

function
✿

is
not symmetric. The mean has a value different from the median and the mode, the most likely
value. As the distribution is not symmetric, the standard

✿✿✿✿✿

square
✿✿✿✿

root
✿✿✿

of
✿✿✿✿✿✿✿✿

variance “sigma”, should
not be used to calculate confidence limits or “error limits”. Note also that strong peaks have the
largest noise in the absolute terms, whereas low peaks have relatively a more significant noise
contribution

✿✿

in
✿✿✿✿✿✿✿

relative
✿✿✿✿✿

terms.
The instrumental dead time brings an additional special complication. The observed data

which is affected by the dead time still has a Poisson probability distribution in secondary ion
counts per time bin. The “correction” of the dead time applied

✿✿✿✿

used
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿✿

methods

✿✿✿✿✿✿

applied
✿✿✿✿✿✿✿✿

applied
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

obseved
✿✿✿✿✿

data
✿✿✿✿✿✿

points
✿

effectively distorts the statistical properties of the
data by increasing the real noise in the corrected data to a level larger than what is expected
from Poisson data, the corrected data been essentially too noisy. This is potential problem for
strong lines. Our approach will avoid these problems

✿✿✿✿✿✿

avoids
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

problems
✿✿✿✿✿✿✿

because
✿✿✿✿

we
✿✿✿✿✿

apply

✿✿✿

the
✿✿✿✿

dead
✿✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿

corrections
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿

and
✿✿✿✿

not
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿

peaks.
In statistical analyses, one tends to habitually assume Gaussian noise and the propagation

of errors through addition of variances. These assumptions are not valid in our case. Their
use could cause negative values in “error” limits, which is mathematically and physically an
impossible situation as they would imply negative counts. Furthermore, the way propagation is
used contains the hidden assumption of symmetric errors, which is not the case in these data.

We will address the analysis of COSIMA spectra through Bayesian analysis, which will avoid
all the problems mentioned above.
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3.1 Bayesian analysis

The Bayesian analysis is a universal means of understanding and interpreting measured data.
In principle we could consider our spectrum as one measured entity with several hundred lines
and interpret the full spectrum by Bayesian means. This would require working in a data space
of a dimensionality of several thousands squared. In practice it is more convenient to reduce the
analysis into analysis of hundreds of lines, which can be really

✿

.
✿✿✿✿✿

Each
✿✿✿✿✿✿✿✿✿

consisting
✿✿✿

of a combina-
tion of

✿✿✿✿

one
✿✿

or
✿

several nearby lines. This we can do
✿✿✿

We
✿✿✿✿

can
✿✿

do
✿✿✿✿

this
✿

as at low masses there is no
overlap between lines of different integer masses and at high masses the lines tend to be sparse
and still well separated.

✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿✿

analysis
✿✿✿

of
✿✿✿✿✿✿✿✿

resolved
✿✿✿✿

time
✿✿✿

of
✿✿✿✿✿

flight
✿✿✿✿✿

mass
✿✿✿✿✿✿✿✿

spectrum
✿✿✿✿✿✿

starts
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿

observed

✿✿✿✿✿✿✿✿✿

spectrum,
✿✿✿✿✿✿✿

applies
✿✿

a
✿✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿

term
✿✿✿

in
✿✿✿✿✿✿

order
✿✿✿

to
✿✿✿✿✿✿✿

correct
✿✿✿✿

for
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿

remove)
✿✿✿✿

the
✿✿✿✿✿

dead
✿✿✿✿✿

time

✿✿✿✿✿✿

effects,
✿✿✿✿

and
✿✿✿✿✿

then
✿✿✿✿✿✿✿✿

possibly
✿✿✿✿✿✿✿

remove
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

and
✿✿✿✿

then
✿✿✿✿✿

treat
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

remainder
✿✿

as
✿✿✿✿

the
✿✿✿✿

real
✿✿✿✿

line.

✿✿✿✿✿✿✿

Careful
✿✿✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿

analysis
✿✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿

ignore
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿

noise,
✿✿✿✿✿✿✿✿✿

however.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Stephan et al. (2001) presents
✿✿✿

an
✿✿✿✿✿✿✿

elegant
✿✿✿✿

way
✿✿✿

to
✿✿✿✿✿✿✿

analyse
✿✿✿

the
✿✿✿✿✿✿✿✿✿

classical
✿✿✿✿✿✿✿✿✿

challenge
✿✿

of
✿✿✿✿✿✿✿✿✿✿

separating
13C

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

nearby 12CH
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

deconvolving
✿✿✿✿✿

either
✿✿✿

the
✿

13C
✿✿

or
✿

12CH
✿✿✿✿

with
✿✿✿

the
✿✿✿✿

line
✿✿✿✿✿

shape
✿✿✿✿✿✿✿✿✿

measured

✿✿✿✿

from
✿

12C
✿

.
✿✿✿✿✿

From
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿

point
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

introduction
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

errors
✿✿✿✿✿

from
✿✿✿✿

the 12C
✿✿✿✿

line
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

indeterminacy
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

posteriori
✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

fitted
✿✿✿✿✿

lines
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

something
✿✿✿✿

that

✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿✿

addressed
✿✿✿✿✿✿✿✿

properly
✿✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿

Bayesian
✿✿✿✿✿✿✿✿

methods.
✿✿✿✿

All
✿✿✿

the
✿✿✿✿✿

steps
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

procedure
✿✿✿✿✿✿

distort
✿✿✿

the

✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿✿✿✿

Poissonian
✿✿✿✿✿✿

nature
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

data.

✿✿✿✿

Our
✿✿✿✿✿✿✿

analysis
✿✿✿

is
✿✿✿✿✿✿

nearly
✿✿✿✿✿✿✿

reverse
✿✿

in
✿✿✿✿✿✿

many
✿✿✿✿✿✿✿

aspects.
✿✿✿✿

We
✿✿✿✿

start
✿✿✿

by
✿✿✿✿✿✿✿✿✿

selecting
✿

a
✿✿✿✿✿✿

model
✿✿✿✿✿

from
✿✿

a
✿✿✿✿✿

large

✿✿

set
✿✿✿

of
✿✿✿✿✿✿✿

models
✿✿

of
✿✿

a
✿✿✿✿✿

beam
✿✿✿✿✿✿

shape,
✿✿✿✿✿✿✿✿✿✿

amplitude
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

background,
✿✿✿✿

after
✿✿✿✿✿✿

which
✿✿✿✿

we
✿✿✿✿✿

apply
✿✿✿

the
✿✿✿✿✿✿✿

effects
✿✿

of

✿✿✿

the
✿✿✿✿

dead
✿✿✿✿✿

time
✿✿✿✿

and
✿✿✿✿✿✿

obtain
✿✿

a
✿✿✿✿✿✿

model
✿✿✿

for
✿✿✿

an
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿

spectrum.
✿✿✿✿✿✿✿✿✿

Assuming
✿✿

a
✿✿✿✿✿✿✿

Poisson
✿✿✿✿✿✿✿✿✿✿✿

distribution

✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿

we
✿✿✿✿✿

then
✿✿✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

likelihood
✿✿✿✿

that
✿✿✿✿

this
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

explains
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿✿✿

We

✿✿✿✿

then
✿✿✿✿✿✿

iterate
✿✿✿✿✿✿✿

towards
✿✿

a
✿✿✿✿✿

cloud
✿✿✿

of
✿✿✿✿✿✿✿✿✿

solutions.
✿✿✿✿✿

There
✿✿✿✿

are
✿✿✿✿

two
✿✿✿✿✿✿

details
✿✿✿

we
✿✿✿✿✿✿

should
✿✿✿✿✿✿✿✿✿✿

emphasize
✿✿✿✿✿

here.
✿✿✿✿

Our

✿✿✿✿✿✿✿✿✿✿

calculation
✿✿

is
✿

a
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿✿✿

calculation.
✿✿✿

For
✿✿✿✿

this
✿✿✿✿✿✿

reason
✿✿✿

we
✿✿✿✿

take
✿✿✿✿

the
✿✿✿✿

dead
✿✿✿✿✿

time
✿✿✿✿✿✿

effects
✿✿✿✿

into
✿✿✿✿✿✿✿

account
✿✿

in

✿

a
✿✿✿✿✿✿✿

reverse
✿✿✿✿✿

order
✿✿✿✿

than
✿✿✿✿✿

what
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

conventional,
✿✿✿✿

thus
✿✿✿

we
✿✿✿✿✿

apply
✿✿

the
✿✿✿✿✿✿

effects
✿✿✿

of
✿✿✿

the
✿✿✿✿

dead
✿✿✿✿✿

time
✿✿

to
✿✿✿

our
✿✿✿✿✿✿

model

✿✿✿✿✿✿

instead
✿✿✿

of
✿✿✿✿✿✿

trying
✿✿

to
✿✿✿✿✿✿✿✿✿

“remove”
✿✿✿✿

the
✿✿✿✿✿✿

effects
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observed
✿✿✿✿

data
✿✿✿✿✿✿✿

points.
✿✿✿✿✿

Note
✿✿✿✿

that
✿✿

at
✿✿✿

no
✿✿✿✿✿

point
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✿✿✿

we
✿✿✿✿✿✿✿✿✿✿

manipulate
✿✿

or
✿✿✿✿✿✿✿

change
✿✿✿✿

the
✿✿✿✿✿✿

values
✿✿

of
✿✿✿✿

the
✿✿✿

real
✿✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿

data.
✿✿✿✿

This
✿✿✿✿

has
✿✿✿✿✿✿✿✿✿

profound
✿✿✿✿✿✿✿✿✿✿✿

implications

✿✿✿✿✿

which
✿✿✿

we
✿✿✿✿✿✿✿✿

address
✿✿✿✿

next
✿✿

in
✿✿✿✿✿

more
✿✿✿✿✿✿

detail.
✿

Assume that you have an observed peak shape Y0(t), where t represents a time bin. It is
a sum of the true unknown peak shape θ(t) and a noise term n0(t). If we have prior knowledge
of a likely beam shape we may assume this shape. It does not mean that we fix the beam shape
for good, as we can later apply other models and compare them objectively. This is one of
the benefits of Bayesian analysis. It is however good to have a reasonable starting model. The
simplest model is that there is no signal in the data and that at an

✿

a mass interval the y(t) is
constant. Using a single Gaussian added to a constant background will require 3 additional
parameters, the amplitude, the width and the center of line and for

✿✿✿✿✿✿✿

position
✿✿✿

of
✿✿✿

line
✿✿✿✿✿✿✿✿✿

position.
✿✿✿

For
each additional Gaussian we need three more parameters. In our model we need further to take
into account the dead-time effects which affect several bins at a time. Our model is thus of the
form

θ(t) =D(y(t,xn)), (4)

here θ(t) is the calculated model, D(.) is dead time effect, y is the model which is a function
of time, and n is the number of parameters, one for background and three additional parameters
for each Gaussian.

We will search for a solution from the values of model parameters θ = θ(i,xn) that best
describes the observed spectrum Y0(i), note

✿✿✿✿✿

Y0(i).
✿✿✿

As
✿

the time is discrete, we use now i instead
of the t for continuous time. To within a normalization constant we can directly calculate for
each point t

✿

i
✿

the probability p that our observed data Y (i) is explained by a given model θ.
Multiplying all these individually calculated probabilities we get the conditional probability
of our data given the model p(Y |θ). Note that this is a point where we differ e.g. from a χ2

minimization as we do not square deviations but rather calculate probabilities. We next
✿✿✿✿

Next

✿✿✿

we take into account any prior information we have of the parameters and their distributions.
This probability independent of the data is called the prior probability density p(θ). It can be
considered as the sampling

✿✿✿✿

joint
✿

probability space of the data in the parameters space of the
model. By multiplying these two probability densities we get the probability distribution of the
the values of θ that explain our data.
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Mathematically we are interested in knowing what is the best model θ that describes our data.

p(θ|Y )∝ p(θ)p(Y |θ) (5)

The posteriori density p(θ|Y ) describing the probability density function of the model parame-
ters is thus proportional to the product of the prior density of the model parameters p(θ) and the
probability of the sampling distribution, the data based on the model p(Y |θ). This is a simplified
version of the Bayesian inference (Gelman et al., 1995).

The prior densities p(θ) are selected such that the position has a uniform density in a mass
interval (m− 0.5,m+0.5]: the amplitude of the peak is not well determined in advance, so we
have given a prior distribution which is non-informative, i.e. flat in 10 log(amplitude+ 1). The
prior density for the peak width is somewhat cumbersome. We know that the value cannot be
negative, and not likely to be very wide. The FWHM of the peak of the COSIMA is expected to
be close to about 2.5 or a sigma of 1.1 TOF time bins. To take this into account we apply a prior
density distribution ∝ (lg(FWHM/2.5))−2

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∝ (lg(FWHM/2.5))−2.
✿

Note that this does not rule
our

✿✿

out
✿

solutions with single wide peaks. It biases also against identifying single high bins as
very unrealistic narrow peaks and against modeling a constant background as an extremely wide
Gaussian.

Our result, will provide the probability density distribution of various parameters on the left
of the equation above. By finding the mode of this distribution we get the most likely value in
the model parameter space describing the data. Confidence limits to the model parameters can
be calculated from the posteriori probability distributions.

3.2 MCMC algorithms

Markov Chain Monte Carlo chains (MCMC)
✿✿✿✿✿✿✿✿✿

algorithms are very useful in determining the pos-
teriori probability space. A random walk in the parameter space is created. This chain converges
to the target distribution which multiplied by the priori distributions

✿✿✿✿

prior
✿✿✿✿✿✿✿✿✿✿✿

distribution will give
the posteriori distribution. In creating the random walk sequence the next draw from the param-
eter space depends on the position and the value of the previous sample.

10
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One widely used family of MCMC chains is the Metropolis algorithm. The core in these
algorithms is the decision of whether to accept the next move. Say, that one has calculated the
probability p(θi|Y ), we make a move from θi to θi+1 by selecting randomly a point from the
jumping distributions, which have to be symmetric. If the new θi+1 has a higher probability
p(θi+1|y), then we accept the move. If the probability is poorer it will be accepted if the ratio
p(θi+1|y)/p(θi|y)> a, where a is a random number drawn from a uniform distribution [0,1).
The selection of points of lower likelihood allows for an effective sampling of the posteriori
distribution. This central part of the decision is shared by many Markov chain algorithms that
carry different kinds of names.

We use the adaptive Metropolis algorithm (Haario et al., 2001). It has the same Metropolis
jumping criterion as above, but it has different means for selecting an optimized step size and
the jumping direction in the d-dimensional parameter space. This is done by means of the

✿✿✿

The
covariance matrix of the model parameters . The matrix is calculated from the ever refining
posterior distribution in the parameter space. The step size is obtained from the Cholesky de-
composition of the variance

✿✿✿✿✿✿✿✿✿✿

covariance matrix multiplied by a normalization factor sd = 2.42/d,
where d is the dimension of the free parameters.

11
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Xk =Xk−1+
√
sd Chol(Ck)G, (6)

here Xk is the parameter vector at step k, G is a random vector from a Normal distribution
N(0, 1) and Ck is the covariance matrix of the model parameters calculated from a suitable

✿✿✿✿✿✿✿

number
✿✿

of
✿

points, and d is the number of parameters in the model (Tamminen, 1994).
For simulated and real spectra we have used typically 200 iterations in the burn in phase and

20 000 in the main iteration phase. The upper limit of iterations is determined by convergence
to the posteriori distribution and the confidence levels needed.

4 Calculations
✿✿✿✿✿✿✿

Results
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

calculations

4.1 Effects of the dead time

We performed simulations to measure the effects of dead time in COSIMA. First, to obtain
a good handle on the effect

✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

dead-time
✿✿✿✿✿✿

effects
✿✿✿✿✿✿

cause
✿✿✿

the
✿✿✿✿✿✿✿

spectral
✿✿✿✿✿✿

peaks
✿✿

to
✿✿✿✿✿✿✿✿

become
✿✿✿✿✿✿✿

weaker,

✿✿✿✿

shift
✿✿✿

the
✿✿✿✿✿

peak
✿✿✿✿✿✿✿✿✿

maximum
✿✿

to
✿✿✿✿✿✿✿

smaller
✿✿✿✿✿✿✿

masses
✿✿✿

and
✿✿✿✿✿✿✿

distort
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿

small
✿✿✿✿✿

peaks
✿✿✿✿

that
✿✿✿✿✿

have
✿

a
✿✿✿✿✿

mass

✿✿✿✿✿✿✿

slightly
✿✿✿✿✿

larger
✿✿✿✿✿

than
✿

a
✿✿✿✿✿✿

strong
✿✿✿✿✿

peak.
✿✿✿

To
✿✿✿✿✿✿✿✿✿✿✿

characterize
✿✿✿✿

the
✿✿✿✿✿✿

effects
✿

of dead time and second to verify

✿✿

on
✿✿✿✿✿✿✿✿✿

COSIMA
✿✿✿✿✿✿✿

spectra
✿✿✿✿

and
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿

understand
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿

in
✿✿✿✿✿

detail
✿✿✿✿

we
✿✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿✿✿✿✿✿

simulation.

✿✿✿✿✿✿✿✿✿✿✿

Furthermore
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

were
✿✿✿✿

run
✿✿

to
✿✿✿✿✿✿✿✿

validate that the equations we use in applying the dead
time effect are suitable

✿✿✿✿✿✿✿

derived
✿

for our Bayesian simulations
✿✿✿✿✿✿✿

method
✿✿✿✿✿

from
✿✿✿✿

first
✿✿✿✿✿✿✿✿✿✿

principles
✿✿✿

are

✿✿✿✿

valid.
We assume a dead time of 10 ns with a total blockage between the first ion and the subsequent

ions. After this dead time, a new ion can be measured initiating a new dead time. From different
total secondary ion counts and indium shots we calculate the probability of various numbers of
shots from this line. We simulate each shot separately. The number of secondary ions is obtained
by drawing a random number from ([0, 1), which is a map of

✿

a
✿✿✿✿✿✿✿✿

mapped
✿✿

to
✿

the cumulative
probability distribution of the number of Poisson shots. So a random number ranging from zero
to a certain value represents the interval of P (n= 0 ions) give the mean yield of shots. The next

12
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interval represents the range for one secondary ion etc. This gives us a number which can be
interpreted as the probability in the Poisson sample space. Thus the value tells us how many
secondary ions result for each shot. For these ions we draw the analogue of a flight time from
Gaussian distribution with a FWHM of 5 ns (or 2.5 time bins). If two or more shots

✿✿✿✿✿✿✿✿✿

secondary

✿✿✿✿

ions occur, we determine the ions for which the dead time applies. Finally we calculate
✿✿✿✿

from

✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

simulations
✿

two separate line shapes. First a line with no dead time correction applied and
a second one where it has been applied (Fig. 1).

From these simulations we derive some relevant statistical properties of the dead time effects.
We can confirm the equations derived purely on statistical grounds by Stephan et al. (1994),

Icor =N ln(1− Iexp/N), (7)

where N is the number of shots in the spectrum and Icor is the original count with no dead time
effects and Iexp is the observed line with dead time effects in place. If we have a small yield,
i.e. if the ratio of the number of secondary ions integrated over to shots is less than about 1/4,
which corresponds to a peak value of 1/15 of the number of shots, then the intensity of the peak
is reduced by the the dead time by about

δI =

(

− I

2N

)

. (8)

This is the case for most lines observed in COSIMA. For example if a spectrum results from
360 000 shots, and has an integrated secondary ion count of 24 000, it will loose

✿✿✿✿

lose about 800
counts or 3 % due to the dead time effects.

The dead time shifts the peak position by about

∆=−0.3 · Iexp/N, (9)

where ∆ is in units of TOF time bins. Alternatively this can be expressed as ∆=−0.12 ·
FWHM · Iexp/N . The shift has a statistical standard deviation of about σ∆ = 1/

√
ND within

10 %. For large yields and at large count values ∆ has an important contribution for the position
determination

✿✿✿✿✿✿✿✿✿✿✿✿

determination
✿✿

of
✿✿✿

the
✿✿✿✿

line
✿✿✿✿✿✿✿✿

position.
13
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Our Bayesian approach is not affected by the two problems described above as our approach
can be considered as an inverse solution

✿✿✿✿✿✿✿✿✿

calculated
✿

by fully forward sub solutions. In our simu-
lation it is better that we use a model for the dead time. The magnitude of the dead time depends
on the number of counts in the previous bins as the follows. A count will be recorded if there
are no counts earlier in the same bin or in the previous 10 ns. This is covered by the taking into
consideration half of the counts in the bin in question, and previous 5 full bins and 0.65 of the
bin 5 time steps earlier. Effectively, this is calculating the conjugate of the probability of no ions
in the previous bins, and thus independent of previous derivations. Using this simple formula
we can model the effect of dead time effects in our simulations

Idead = I0 ·
(

1− exp

(

−
0.5I0+

∑

−1

i=−5 Ii+0.65I−6

N

))

. (10)

4.2 One weak line – analytic estimates, special case

First we make a simple example. We follow the Bayes approach, but because of the simplicity
of the problem we need no simulations. We assume no background counts and a line with
a total integrated number of counts as A and with internal Poisson noise only. Here we calculate
the posteriori distribution, directly from a family of Poisson distributions by evaluating the
likelihood of the original measured value. We give in Table 1 the median value of the distribution
with confidence limits. In the case of a very low background, these values are approximately
correct for a given peak. This posteriori distribution is to high degree identical to a full posteriori
distribution with position and beam width parameters marginalized, with a non-informative
prior, and with no dead time effects taken into account.

The differences in the mode, median and mean are important, but fortunately for our case
they are not of big concern as the differences are at the most 1 count. More important for us is
the asymmetry of the distributions in the case of small peaks.

If background counts are present, e.g. 10 counts in addition to a line of 20 counts, then the
distribution above will be the joint distribution.

14
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4.3 Simulated data
✿✿✿✿✿

Grid
✿✿✿✿✿✿✿✿✿✿✿

simulations
✿

-
✿✿✿✿✿✿✿✿✿✿

validation

We calculated a set of artificial one and two peak cases to validate our method. The exact shape
of the line is not critical. For simplicity we chose a Gaussian. We selected an array of 20 time
bins and drew a random position for the peak randomly from [−5,5]. In the case of two peaks
we placed them both within that interval. We drew the amplitudes randomly from a uniform
distribution in lg(N +1) space from N = 0 to N = 9999. The position of the peaks were drawn
randomly from a uniform distribution between [−10, 10]. The FWHM was fixed to 2.5 time
bins.

Before our full Bayesian tests we performed a brute force calculation. The best fit parameters
were calculated at 0.1 bins in time and 20 intervals per dex in log space(,

✿✿✿✿

i.e.
✿

a
✿

resolution
of a factor 101/20 or 1.122). In total we calculated the likelihood in (100× 60)2 = 36000000
separate data points per cases. One double peak model takes about 9.7 effective minutes to
calculate on a desktop computer (ADM

✿✿✿✿✿

AMD
✿

Athlon (tm) IIX(4) 630 Processor 2.79GHz).
We calculated a total of 3300 cases with a variable background noise and different separa-

tions. The major systematic source of error is the discretization of the solutions of the data into
the subbins

✿✿✿✿✿✿✿

sub-bins. This is an effect that shows the weakness of the direct grid calculation of
the probabilities.

4.4
✿✿✿✿✿✿✿✿

Bayesian
✿✿✿✿✿

case
✿✿

of
✿✿✿✿

one
✿✿✿✿

line

A faster and more accurate estimate of the line parameters lines is obtained by the Bayesian
method. The additional benefit is that we obtain

✿✿✿✿✿✿✿✿✿✿✿✿

automatically
✿

a distribution of
✿✿✿

for the various
parameters of the solution . As an example we

✿✿✿✿✿✿✿

without
✿✿✿✿✿✿

having
✿✿

to
✿✿✿✿✿✿

resort
✿✿

to
✿✿

a
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿✿✿

calculation.

✿✿✿

We
✿

show an example of a real line from the COSIMA full spectrum. The example of line
shown in Fig. 2 is a relatively weak line with a total number counts of about 100. The line mass
is derived from the in flight

✿✿✿✿✿✿✿

in-flight
✿

measurements of constants a and b and is caused by 19F+,
which originates from the fuel of the spacecraft.
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The solution for a single Gaussian gave us a mass of 19.0056u is within of 0.0077u or about
1.1 TOF time bin of F+ 18.9979u. This is slightly more than expected. This could be explained
by systematic errors or small fluctuation in the acceleration voltage.

4.5
✿✿✿✿✿✿✿✿

Bayesian
✿✿✿✿✿

case
✿✿

of
✿✿✿✿

two
✿✿✿✿✿

lines

A simulated two line case is shwon
✿✿✿✿✿✿

shown
✿

in Fig. 3. The two simulated Gaussian peaks have
Poisson noise added to each point. The Gaussians in this simulation have a FWHM 2.5 time
flight bins or 0.031u at mass 100u. Both test cases have a peak with an amplitude of 1000 and
a second

✿✿✿✿

peak
✿✿✿✿✿

with an amplitude of 100 and and
✿✿✿✿

100.
✿✿✿✿

The
✿

total line counts of
✿✿✿

are
✿

5250 and 525.

✿✿✿✿

525,
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿

The general peak finding algorithm detects one peak, but a two peak fit gives
a better result. The x axes if

✿✿

in
✿

Fig. 3 show the time of flight bin around mass 100, with 100u
equal to bin number 40 in these plots. In our simulation 1 time bin corresponds to 0.0125u.
The main component has tails extending over 10 time flight bins and the secondary peak is not
obvious from the line shape as a primary

✿✿✿✿✿

strong
✿

maximum. The y axes show the total count
of the line. In Fig. 3a the peaks are centered on mass 100.000 and 100.070, respectively. This
corresponds to a separation of 6 bins in the peak locations. The total count is 5774.

✿✿✿✿✿

5775.
✿

The
figure shows the simulation with total counts given as a function of bins. The calculated center
of lines are 100.001 and 100.076, the amplitudes are 988 and 107. The total counts are 5286
and 508, the sum of which, 5794, is very close to the original value. In Fig. 3b the peaks are
centered on mass 100.000 and 100.050, respectively. This corresponds to a separation of 4 bins
in the peak locations. The Bayesian solution shows lines centered on 100.001 and 100.059, the
amplitudes are 1024 and 77.4. The total counts are 5521 and 397, the sum of which is 5918,
close to the original value.

✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

posteriori
✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿✿

density
✿✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿✿✿

with
✿✿✿✿✿

their
✿✿✿✿✿✿✿✿

complex

✿✿✿✿✿✿

shapes
✿✿✿

are
✿✿✿

the
✿✿✿✿✿

very
✿✿✿✿✿✿✿✿

property
✿✿✿✿✿✿✿✿✿✿

obtainable
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

Bayesian
✿✿✿✿✿✿✿✿

methods.
✿✿✿✿✿

This
✿✿

is
✿

a
✿✿✿✿✿✿✿

feature
✿✿✿✿

that
✿✿✿✿✿

could
✿✿✿

be

✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

complement
✿✿✿

the
✿✿✿✿✿✿✿✿✿

otherwise
✿✿✿✿✿✿✿✿

methods
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

seminal
✿✿✿✿✿

paper
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Stephan et al. (2001) .
✿
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4.6 Bayesian case of two lines

We ran 10 000 two line simulations and modeled them with one and two peaks and investigated
which of the model was correct

✿✿✿✿✿✿

models
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿✿✿

identified
✿

by our Bayesian analysis. The
results were quite clear cut. Two nearby peaks are not identified correctly in the presence of
Bayesian

✿✿✿✿✿✿

Poisson
✿

noise if the following limitations are met: smaller peak has an amplitude of
< 7 (or a total count of about 30), the separation is < 4.5 time bins, or the ratio of the counts
of the two lines is > 1000. These limits are for general guidance only, and need to be solved
separately in each case. In our present algorithm we have a freely variable line width. With these
conditions we tested a few specific interesting pairs of lineswe .

✿✿✿✿

We are able to separate 26Mg
from 12C2H2

26Mg
✿✿✿✿

from
✿

12C2H2. Other nearby pairs such
✿✿

as
✿

13C vs. 12CH, 14N vs. 12CH2,
25Mg vs. 12C2H, 24Mg vs. 12C2 are not separated properly at present, agreeing with the limits
from a larger set of simulations. We will investigate this in subsequent papers by fixing the
position, the width or the shape of the individual spectral lines. Furthermore if the b term is

✿✿✿✿

were
✿

larger then the resolution improves
✿✿✿✿✿✿

would
✿✿✿✿✿✿✿✿

improve slightly rendering better results.
✿

,
✿✿✿

but

✿✿✿✿✿✿✿✿✿✿✿✿

unfortunately
✿✿✿

the
✿✿✿✿✿

mass
✿✿✿✿✿✿✿

scaling
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

are
✿✿✿✿✿✿

rather
✿✿✿✿✿

fixed
✿✿✿

for
✿

a
✿✿✿✿✿✿

given
✿✿✿✿✿✿✿✿✿✿

instrument.
✿

5 Full COSIMA spectrum

The conventional analysis of resolved time of flight mass spectrum starts with the observed
spectrum, applies a correction term in order to correct for (i.e.remove) the dead time effects,
and then possibly remove a background and then treat the remainder as the real line. Our
analysis is nearly reverse in many aspects. We start from selecting a model from a large set
of models of a beam shape, amplitude and background, after which we apply the effects of
the dead time and obtain a model for an observed spectrum. Assuming a Poisson distribution
for the model we then calculate the likelihood that this model explains the observations. We
then iterate the solution. There are two details we should emphasize here. Our calculation is
a forward calculation. For this reason we take the dead time effects into account in a reverse
order than is conventional, thus we add the effects of the dead time to our model instead of trying
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to “remove” the effects from the observed data points. Note that at no point we manipulate or
change the values of the real observed data. This has profound implications which we address
next in more detail.

5.1
✿✿✿✿✿✿✿✿

Analysis
✿✿

of
✿✿✿✿

real
✿✿✿✿✿✿✿✿

spectra

Analysis of real spectra

To analyze real COSIMA spectra we make an assumption of the line shape. We have chosen
as options a Gaussian shape but on occasions a 80 % Gaussian and 20 % Lorenzian

✿✿✿✿✿✿✿✿✿

Lorentzian
combination is an option that is suitable for modeling lines in positive

✿✿✿✿✿✿✿✿✿

COSIMA
✿

spectra. If an
asymmetry in

✿✿

of
✿

the peak develops in COSIMA for any reason
✿

, we will be able to take this
into account. Negative ion spectra are more complicated as an additional signal before the main
peak is created from by the electrons sputtered off the grids inside the reflectron. We will not
discuss negative spectra in this paper in detail.

We first estimate the line amplitude and width from the observed line. To the estimated line
we then apply the analytic dead time correction and obtain a model line that we can compare
to the observed line. Note that here we can use the information that the probability distribution
of the counts follows a Poisson distribution. With the Bayesian adaptive metropolis algorithm
described earlier we can obtain the posteriori distributions of

✿✿✿✿

both
✿

the parameters of the original
line and

✿✿

of
✿

the observed dead time effected line. These will include automatically the proper line
positions and amplitudes. The total counts are obtained by summing discrete counts from the
continuous model curves, so as such the fitted amplitudes of the continuous Gaussian do not
represent a real quantity, but just a mathematical aid for measuring the total count from discrete
abscissa values.

If we are able to give good guesses for the initial starting pointsfor algorithm it
✿

,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

algorithm
tends to converge better

✿✿✿✿✿

faster
✿

to a good solution. This is not necessary for the method but aids
in reducing the computing time considerably particularly in

✿✿✿✿✿

when
✿

estimating multiple spectral
lines simultaneously.
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The analysis of the lines provides
✿✿✿✿✿✿✿

provide a complicated challenge. Some lines are clear and
isolated, often two separate lines occur

✿✿✿✿✿✿✿✿

together. If they are sufficiently far apart, they can be
treated as single isolated lines. Occasionally a section occurs in the spectrum where several lines
appear to be present and mixed in. Sometimes the background levels are somewhat elevated
mimicking multiple merged lines. Our approach is the following: we create a running 5 pixel
boxcar sum of the spectrum of the original spectrum ,

✿✿✿✿

and find the local maximum by comparing
the the adjacent smoothed pixel sums. We then accept as good guesses as

✿✿✿

the points where this
maximum has a value which is larger than the background. The background is defined as the
smallest of two background measurements. One background estimate is obtained from the 5
pixel sum 20 pixels earlier and the second background 20 pixels of

✿✿

on
✿

the other side of the
maximum. If this difference of the boxcar of the sum and the background sum is over a certain
limit we accept this point as a guess for a component. We have used an ad hoc

✿✿✿✿✿

lower
✿

limit of 5
counts. This is not a critical limit as it is only a first guess for our Bayesian analysis.

The Bayesian approach provides solid confidence limits for the time of flight and total counts.

5.2
✿✿✿✿✿✿✿✿✿✿✿✿✿

Normalization
✿✿✿✿✿✿✿

issues,
✿✿✿✿

and
✿✿✿✿

line
✿✿✿✿✿✿

ratios

6 Normalization issues, and isotope ratios

A general normalization is often performed by dividing the count of the spectral lines by a cer-
tain constant or line, e.g. Si+ or In+. This is usually

✿✿✿✿✿✿✿✿✿✿

sometimes
✿

preceded by a removal of
a variable background. This is fine for rough line identification, but possesses a problem when
confidence limits are derived for the measured values. In removing and subsequent ignoring the
background one obtains better looking spectra, but in this process one is introducing a poorly
behaving error term on top of the noise created by the “Poisson noise”. Poisson noise is additive
but not subtractive. Furthermore, in calculating the ratios of lines the determination of the con-
fidence limits becomes formally ill behaved, as the divider, the reference line has in principle
a probability distribution which includes zero. These are serious issues when any one of the
lines is a weak one. If the lines in question are strong, and in particular

✿

if
✿

the reference line is
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a strong one, say at least a thousand counts , then the the distortion may not be serious,
✿✿✿

and
✿

if
the background counts are

✿✿✿✿

level
✿✿

is
✿

at the same time low, say less than 50.
✿✿

50
✿✿✿✿✿✿✿

counts,
✿✿✿✿✿

then
✿✿✿

the

✿✿✿✿✿✿✿✿

distortion
✿✿✿✿✿

may
✿✿✿

not
✿✿✿

be
✿✿✿✿✿✿✿

serious.
✿

The proper way to normalize is to build a model where the line ratio
✿✿✿✿✿

ratioq is solved for.
Take a guess of the stronger integrated line count, make a good guess of the background, and
apply an isotope

✿

a
✿✿✿✿✿

good
✿✿✿✿✿✿

guess
✿✿✿

for
✿✿✿✿

the
✿✿✿✿

line ratio. You have now calculated two integrated line
counts. Using the Poisson distribution calculate what is the likelihood that the observe

✿✿✿✿✿✿✿✿

observed
lines are explained by the given model. Continue with the Bayesian principles of searching
for the posteriori probability distribution. Finally marginalize (integrate) over background and
amplitudes to get the likelihood of the isotope distribution .

✿✿✿✿

line
✿✿✿✿

ratio
✿✿✿✿✿✿✿✿✿✿✿

distribution

6 Line identifications of specific lines

5.1
✿✿✿✿

Line
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

identifications
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

examples
✿✿✿

of
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿

isotope
✿✿✿✿✿

lines

The spectra are provided with an initial estimate of the scaling
✿✿✿✿

mass
✿✿✿✿✿✿✿✿✿✿

calibration
✿

parameters, a
and b. We have built a simple line identification scheme with the elemental lines and a small set
of simple organic lines. These can be applied to the observed values and further improvement
with a larger set of lines is possible removing systematic trends evident in the original spectra
as shown in Figs. 2 or 4.

In this study we have considered so far all lines as independent in the sense that the back-
ground level, the line width, position and the maximum amplitude of the peak have been free
parameters. However, if we wish to ask a specific question such as does certain mass contain
lines at predefined exact masses, we can employ different variations to the analysis. For exam-
ple, if we see separately 24Mg and 12C2

24Mg
✿✿✿

and
✿

12C2, we may want to ask whether mass 25
contains 25Mg+, 24MgH+ and 12C2H

+. We can then fix the interval of the lines in mass and
solve for the background level, a single mass offset, and the amplitudes (and the widths) of the
three peaks. This reduces the adjustable parameter space from 10 to 8 or 5.

✿✿

11
✿✿

to
✿✿

9
✿✿✿

or
✿✿

6.
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An additional set up can be created between the above multiline kind example and isotope
ratios. Consider e.g. the lines 12C+, 13C+, 12CH+. We can use a model where the ratio of
13C+/12C+ has a cosmic value, so that is not a free parameter. Two free parameters are the
position and the amplitude of 12C+. One free parameter is the position and amplitude of 12CH+.
The isotope ratio fixes the amplitude of 13C+, and the mass is fixed by mass differencethe mass,
so unless we consider the width of the line being an additional free parameter, it will have really
no free parameters , and this whole modelwill have 5 (or ,

✿✿✿

so
✿✿✿✿

this
✿✿✿

line
✿✿✿✿✿✿

would
✿✿✿✿✿

have
✿✿✿

no
✿✿✿✿✿✿✿✿✿

additional

✿✿✿

free
✿✿✿✿✿✿✿✿✿✿✿

parameters.
✿✿

If
✿✿✿

we
✿✿✿✿✿✿✿✿✿

consider
✿

a
✿✿✿✿✿✿✿✿

common
✿✿✿✿

line
✿✿✿✿✿✿

shape
✿✿✿✿

then
✿✿✿✿

we
✿✿✿✿

have
✿✿✿✿✿

only
✿✿

6
✿✿✿✿

free
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

for

✿✿✿

the
✿✿✿✿✿✿

whole
✿✿✿✿✿✿

model.
✿✿✿✿

We
✿✿✿

can
✿✿✿✿✿

build
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

elaborate
✿✿✿✿✿✿✿

models
✿✿

by
✿✿✿✿✿✿✿

finding
✿✿✿✿✿✿✿✿

solutions
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

positions
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿✿

amplitudes.
✿✿

If
✿✿✿

we
✿✿✿✿✿

keep
✿

a
✿✿✿✿✿

fixed
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿

isotope
✿✿✿✿✿

ratio
✿✿✿

we
✿✿✿✿

will
✿✿✿✿

have
✿✿✿

an 8) free parameters
✿✿✿✿✿✿✿✿✿

parameter

✿✿✿✿✿

model.
Investigating the full parameter space of all possible models is beyond the scope of this

paper, but we wish to point our
✿✿✿

out the generality of the Bayesian method. These kind
✿✿✿✿✿

kinds of
analyses are not easy to do with conventional means, and the posteriori probability distributions
are then

✿

in
✿✿✿✿✿

those
✿✿✿✿✿✿

cases
✿✿✿

are
✿✿

at
✿✿✿

the
✿✿✿✿

best
✿

only guesses. We thus provide posteriori distributions and
confidence limits for the

✿✿

all
✿

measured parameters.

6 Conclusions

We have discussed the basic principles of applying a Bayesian approach to the analysis of
COSIMA spectra. We address is

✿✿✿

the
✿

accuracy, the fundamental principles and discuss the
possibilities that analysismethod has

✿✿

of
✿✿✿✿✿✿✿✿✿

Bayesian
✿✿✿✿✿✿✿✿

analysis.
✿✿✿✿

We
✿✿✿✿✿

show
✿✿✿✿

that
✿✿✿✿

one
✿✿

is
✿✿✿✿

able
✿✿✿

to
✿✿✿✿✿✿

obtain

✿✿✿✿✿✿✿✿

posteriori
✿✿✿✿✿✿✿✿✿✿✿

distibutions
✿✿✿✿

for
✿✿✿✿✿✿✿✿✿

integrated
✿✿✿✿

line
✿✿✿✿✿✿✿

counts,
✿✿✿✿

line
✿✿✿✿✿✿✿✿✿

positions,
✿✿✿✿

and
✿✿✿✿

line
✿✿✿✿✿✿

widths
✿✿✿

in
✿✿✿✿✿✿✿✿

systems
✿✿

of

✿✿✿

one
✿✿✿

or
✿✿✿✿✿✿

several
✿✿✿✿✿

lines.
✿✿✿✿✿

Even
✿✿

if
✿✿✿✿✿✿

some
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿

may
✿✿✿✿

turn
✿✿✿

out
✿✿

to
✿✿✿✿✿✿✿✿

produce
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿

correlation

✿✿

or
✿✿✿✿✿✿✿✿✿✿

degeneracy
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

solution,
✿✿✿

its
✿✿✿✿✿✿✿

severity
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿✿✿✿✿✿

bayesian
✿✿✿✿✿✿✿✿

analysis.
The instrumental properties pf

✿✿

of COSIMA that simplify our analysis are the long time in-
terval between the shots so that the secondary ions formation and flight time of the ions can
be considered usually statistically independent from shot to shot. Second, the shortness of the
pulse and the well calibrated instrument means that not only each mass line but often the organic
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and mineral components can be analyzed separately. Third, the dead time is relatively short and
quite nicely matched with the line width, so the dead time effects will not leak to neighboring
lines. The narrow line shape means that the the spectra cannot be well modeled by a line shape
derived from the spectrum.

✿✿✿✿

Our
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿

methods
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

generalized
✿✿✿

to
✿✿✿✿

data
✿✿✿✿✿

with
✿✿✿✿✿

other
✿✿✿✿✿

sorts
✿✿✿

of
✿✿✿✿✿

noise
✿✿✿✿✿✿✿✿✿✿

properties,
✿✿✿✿

and

✿✿✿✿✿

nearly
✿✿✿✿

any
✿✿✿✿✿

kind
✿✿

of
✿✿✿✿

line
✿✿✿✿✿✿✿

shapes.
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Table 1. Posteriori distributions of a Poisson peak with a given amplitude Aobs, and no background noise.

Aobs 2 3 5 7 10 15 20 30

Alow 99 0.1 0.6 1.5 2.5 4.3 7.5 11.0 18.5
Alow 90 0.3 1.3 2.6 3.9 6.1 10.0 14.1 22.4
Alow 68 1.7 2.0 3.6 5.2 7.7 12.0 16.4 24.4
Alow 50 1.7 2.6 4.2 5.8 8.6 13.1 17.7 27.0
Amode 2.0 3.0 5.0 7.0 10.0 15.0 20.0 30.0
Amedian 2.5 3.5 5.5 7.5 10.5 15.5 20.5 30.5
〈A〉 3.0 4.0 6.0 8.0 11.0 16.0 21.0 31.0
Ahigh 50 3.8 5.1 7.4 9.6 13.0 18.4 23.8 34.5
Ahigh 68 4.6 5.9 8.3 10.7 14.2 19.9 25.5 36.5
Ahigh 90 5.3 7.7 10.5 13.1 16.9 23.0 29.0 40.6
Ahigh 99 12.0 10.9 14.0 17.1 21.3 28.1 34.6 47.2
√
Aobs 1.4 1.7 2.2 2.7 3.2 3.9 4.5 5.5

We should note that although the single highest probability Amode is the same as the
observed value, the median value has a bias of +0.5 and the mean of the distribution has an
even larger positive bias of 1.0. The total width of the 68 % confidence limits agree within
roundoff errors with

√

A. The median point is not centered on the limits. Other low and
high confidence limits are shown. Note that as they are asymmetric both lower and higher
limits are shown for the important confidence limits. The distributions are clearly
asymmetric with a positive skew.
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Figure 1. Effects of dead time in COSIMA. The effect is shown on for two artificial Gaussian lines. The
strongest line has a total yield of 50 %. The fainter line has a yield of 5 %. The top most curve (green
stars and dot dash line) shows the original 50 % curve, the second curve (red crosses, dash line) show
how the dead time effect has changed the curve. This is in principle the observed line. Note how the
maximum and correspondingly the total line count has decreased. Also note how the line center and
peak has shifted to the left. This is particularly noteworthy on the right side of the line. The lower two
curves show similar cases for the 5 % line with blue squares, purple crosses, respectively.

25



D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

Figure 2. An example of the posteriori distribution of a weak line at mass 19. The background around
the line is very low, the .

✿✿✿✿

The
✿

weak line has an observed maximum of 16 counts. The top panel shows
the posteriori distributions in total count vs. time flight bin. The red curve contains 50 % posteriori
confidence limits, green curve 68 %, dark blue 90 % and the light blue 95 % limits. Note that the most
likely value has a rather symmetric distribution with 68 % confidence width of about 0.34 TOF time bins
or 0.002u in mass, and integrated mean count of 113±11 counts. The mass 19.0056u is within 0.0077u
or F+ 18.9979u. The line does not agree quite as well with heavy water HDO+ of mass 19.0162u nor
the hydrogenated water ion (hydronium) H3O

+ with a mass of 19.0178u. These are off by which by
0.0106 and 0.0122u respectively from the calculated line position. The expected hydronium line would
have a time of flight bin of 9929.53, not in agreement with the posteriori distribution of the upper panel.
The spectrum used here is from the flight model CS_2D8_20100509T194035_SP_P.TAB.

26



D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

Figure 3. Two examples of the posteriori distributions of the amplitudes and positions. The two simulated
Gaussian peaks have Poisson noise added to each point. The Gaussians have a FWHM 2.5 time flight
bins or 0.031u at mass 100u. Both test cases have a peak with an amplitude of 1000 and a second an
amplitude of 100 with total

✿✿✿

100.
✿✿✿✿✿

Total bin counts of
✿✿✿

are 5250 and 525, respectively. In the first case the
peaks are located are separated by 6 bins and in the second similation

✿✿✿✿✿✿✿✿

simulation
✿

by 6
✿

4
✿

bins
✿

,
✿✿✿✿✿✿✿✿✿✿

respectively.
The red curve contains 50 % posteriori confidence limits, green curve 68 %, dark blue 90 % and the light
blue 95 % limits. Note that the distribution maxima are well defined and close to the initial values. Note
that the distributions have a low density tails which reflect the fact that there is mild degeneracy in the
solution

✿

.
✿✿✿✿✿

These
✿✿✿✿✿

kinds
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

distributions
✿✿✿

are
✿✿✿

not
✿✿✿✿✿

found
✿✿✿✿✿✿✿

trivially
✿✿

by
✿✿✿✿✿✿✿✿✿✿

convetional
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿

methods.
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Figure 4. An example of the the mass 53 spectral lines in a RM spectrum
CS_45D_20110309T074148_SP_P.TAB. The model fit here is a two Gaussian model and a con-
stant background. The observed line is shown with the red stars and the fit with green circles. The
masses derived are 52.967 and 53.055u. The masses suggest a systematic error of +0.022u in mass and
an identification of 53Cr+ at 52.9401u and C4H

+

5 at mass 53.0386u.
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