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Abstract 6 

Particle swarm optimization (PSO) is a global optimization technique that works similarly to 7 

swarms of birds searching for food. A Matlab code in PSO algorithm is developed to estimate 8 

the depth to the bottom of a 2.5-D sedimentary basin and coefficients of regional background 9 

from observed gravity anomalies. The density contrast within the source is assumed to be 10 

varying parabolically with depth. Initially, the PSO algorithm is applied on synthetic data 11 

with and without some Gaussian noise and its validity is tested by calculating the depth of the 12 

Gediz Graben, Western Anatolia and Godavari sub-basin, India. The Gediz Graben consists 13 

of Neogen sediments and the metamorphic complex forms the basement of the Graben. A 14 

thick uninterrupted sequence of Permian-Triassic and partly Jurassic and Cretaceous 15 

sediments forms the Godavari sub-basin. The PSO results are better correlated with results 16 

obtained by Marquardt method and borehole information. 17 

Keywords: Particle swarm optimization, Sedimentary basin, Gravity anomaly, Inversion, 18 

Gaussian noise. 19 

 20 

Introduction 21 

Gravity method is a natural source method which helps in locating masses of greater or lesser 22 

density than the surrounding formations. It is used as a reconnaissance survey in hydrocarbon 23 

exploration. Sedimentary basins, which are characterized by negative gravity anomalies, are 24 
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the location of almost all of the world’s hydrocarbon reserves. Interpretation of gravity data is 25 

a mathematical process of trying to optimize the parameters of the initial model in order to 26 

get a good match to the observed data. Interpretation of gravity data is always associated with 27 

the ambiguity problem. Ambiguity in gravity anomalies can be overcome by assigning a 28 

mathematical geometry to the anomaly causing body with a known density contrast (Rama 29 

Rao and Murthy, 1978). Bott (1960) used stacked prism model to describe the cross-section 30 

of a sedimentary basin, whereas Talwani (1959) used the polygonal model to describe source 31 

geometry. The parabolic density function is used to remove the complications associated with 32 

exponential (Cordell, 1973), cubic (Garcia-Abdeslem, 2005) and quadratic (Gallardo-33 

Delgado et al., 2003) density functions. The Marquardt inversion through residual gravity 34 

anomalies delineates the structure of a sedimentary basin by estimating regional background 35 

(Chakravarthi and Sundararajan, 2007). Several authors have developed 2D/2.5D local 36 

optimization techniques over the 2D/2.5D sedimentary basin (Annecchione et al., 2001; 37 

Barbosa et. al, 1999; Bhattacharya and Navolio, 1975; Gadirov et. al, 2016; Litinsky, 1989; 38 

Morgan and Grant, 1963; Murthy et al., 1988; Murthy, and Rao, 1989; Won and Bavis, 1987) 39 

to interpret gravity anomalies with constant density function. In many publications over 3D 40 

gravity field computation with an approximation of geological bodies by 3D polygonal 41 

horizontal prism was applied (Eppelbaum and Khesin, 2004; Khesin et al. 1996). Rao (1990) 42 

used a quadratic density function, which is comparatively reliable to analyze gravity 43 

anomalies over basins having a limited thickness, whereas Chakravarthi and Rao (1993) have 44 

done in modeling and inversion of gravity anomalies with quadratic density function.  45 

Particle swarm optimization (PSO) is a robust stochastic optimization technique based 46 

on the movement and intelligence of swarms, which was developed by James Kennedy and 47 

Russell Eberhart (1995). PSO applies the concept of social optimization in problem solving in 48 

various fields. In this paper, a Matlab code based on PSO is developed to interpret the gravity 49 
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anomalies of 2.5-D sedimentary basins, where the density varies parabolically with depth. 50 

PSO analyzed results are consistent and more accurate with other techniques and also well 51 

agreement significantly with borehole information. 52 

 53 

Theory 54 

In the Bott’s approach, sedimentary basin is approximated by a series of vertical prisms. The 55 

gravity anomaly bg  at any point on the profile AA’ as shown in Figure 1.   56 
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The parabolic density function at any depth w  is given by 60 
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Finally, after integration of Chakravarthi and Sundararajan (2006), the equation (2) becomes 62 
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Where, 64 

           2 2 2 2 2 2 2 2
l 1 l 2 0K = x + L + z , p = x + L , p = L α +Δρ ,   65 
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Here, N is the number of observations, G is the universal gravitational constant, C and D are 68 

coefficients of regional background, c is half width of the prism, 1z  and 2z   are depths to the 69 

top and bottom of the basin, 2L is strike length of the prism, a is the offset of profile from the 70 

center of the prism and 0  and α   are constants of the parabolic density function at depth z. 71 

Since profile AA’ does not pass through the centers of each prism, equation 4 has to 72 

be calculated twice by putting L-a and L+a for L and taking the average. The initial depths of 73 

the basin calculated using observed anomaly 0g , is given by as  74 

           
 

 
0 i 0

i 2
0 0 i

g x Δρ
d = , i = 2,3, .........,N - 1

41.89Δρ +αg x
     (5) 75 

Profile AA’ entirely covers the lateral dimensions of the sedimentary basin, therefore the 76 

depth of the basin on either side of the profile become zero. So, 1 Nd = 0 = d   77 

 78 

Particle Swarm Optimization 79 

PSO uses a number of particles (solutions) that constitute a swarm, moving around in the 80 

search space looking for the best solution. Each particle adjusts its “flying” according to its 81 

own flying experience as well as the flying experience of other particles. Each particle keeps 82 

track of its coordinates in the solution space which is associated with the best solution 83 

(fitness) that has achieved so far by that particle. This value is called personal best, Pbest. 84 

Another best value that is tracked by the PSO is the best value obtained so far by any particle 85 

in the neighborhood of that particle. This value is called global best, Gbest. The basic idea of 86 

PSO lies in accelerating each particle towards its Pbest and the Gbest locations with a random 87 

weighted acceleration at each time step (Mohapatra and Das, 2013). 88 

              k k-1 k k
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         where k is the number of iterations; t is the particle number; k
tV  is the velocity of the tth 91 

particle at k iterations; k
tX  is the position of tth particle at k iterations; tPbest is the best 92 

position of individual tth particle (Local best position); Gbest is the best position of all 93 

particles (Global best position); 1rand  and 2rand  are the independent uniformly random 94 

numbers in the range [0,1]; 1c  and 2c   are the positive learning factor which controls the 95 

maximum step length; w is the inertial weight factor that controls the speed of the particles. 96 

Equation (7) gives the updated velocity based on the current velocity, current position, local, 97 

best position and global best position. This process is repeated until the desired result is 98 

obtained. The schematic diagram/flow chart of PSO algorithm is shown in Figure 2. 99 

 100 

Examples 101 

The Matlab code based on PSO is applied to a synthetic model of a sedimentary basin and 102 

real field data sets from Gediz Graben, Western Anatolia and Godavari sub-basin, India. 103 

 104 

Synthetic Example 105 

We have used a synthetic gravity anomaly of 
345×10 m  length at 

31×10 m   station interval. 106 

In Bott’s algorithm, the prism will be of equal width of 
31×10 m  but with different strike 107 

lengths. Here parabolic density function is used with the constants 0Δρ = 3 3-0.65×10 Kg / m  108 

andα = 3 30.04×10 Kg / m  per 1000 m. The profile does not bisect the strike lengths of prism 109 

and so offset distance of the profile from the  centre of each prism is mentioned in the code. 110 

We have added an interference term, Ax+B, with A = - 0.007 mgal per 1000 m and B = -10 111 

mgal for the regional background. Required result is found at 15 iterations with RMS error of 112 

2.9369e-006 from Marquardt algorithm. 113 
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            We have used the same synthetic gravity anomaly for PSO algorithm. The Figure 3 114 

shows the learning process of Pbest and G Best in terms of error and iterations. The best 115 

result is found with 57 iterations and 50 numbers of models (Figure 3). So it is seen that after 116 

57 iterations and 50 models, the calculated anomalies match the synthetic anomaly and 117 

estimated depths coincide with the actual structure where RMS Error is 2.8383e-004. 118 

Gaussian noises of 5% and 10% are added to the synthetic data to perceive the robustness of 119 

the PSO algorithm. PSO does not find the true depths, but give values close to the true 120 

depths. The upper part of Figure 4 shows the synthetic and PSO calculated gravity anomalies 121 

of a synthetic model of a 2.5-D sedimentary basin and the lower part shows the inferred depth 122 

structure obtained from PSO and Marquardt algorithm for synthetic data. Figure 5 and  123 

Figure 6 shows the synthetic data with 5% and 10% Gaussian noises and calculated gravity 124 

anomalies obtained from PSO algorithm and inferred depth structure obtained by PSO and 125 

Marquardt algorithm.  126 

                                              127 

Field Example 128 

Gediz Graben, Western Anatolia 129 

The first field case study of the interpretation of gravity anomalies has been taken from Gediz 130 

Graben, Western Anatolia. The PSO technique has been applied using 29 vertical prisms, 131 

each with equal width of 
32×10 m  but with different strike length, whereas Chakravarthi and 132 

Sundararajan (2007) used same prism and interpreted gravity anomaly by Marquardt 133 

algorithm using a parabolic density function whose constants are 0Δρ = 3 3-1.407×10 Kg / m  134 

andα = 3 32.26935×10 Kg / m per 1000 m.. .  135 

We have used a similar number of prisms in PSO to improve the results. So with 65 136 

iterations and 50 models, we achieve a good fit between observed and PSO analyzed gravity 137 
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anomalies with RMS error of 0.0083. The maximum thickness of the graben is inferred as 138 

31.87×10 m  that matches well with 31.8×10 m as estimated by Sari and Salk (2002) as 139 

compared to 31.64×10 m  obtained by Chakravarthi and Sundararajan (2007). The upper part 140 

of Figure 7 shows the observed and PSO calculated gravity anomalies over Gediz Graben, 141 

Western Anatolia and the lower part show the inferred depth structure obtained from PSO 142 

and Marquardt algorithm.  143 

                                        144 

Godavari sub-basin 145 

The Godavari sub-basin is one of the major basins of Pranhita-Godavari valleys (Rao, 1982), 146 

whose approximate strike length is 
3220×10 m . The gravity profile is taken for study from 147 

the residual bouguer gravity anomaly map of the Godavari sub-basin as shown in Figure 8. 148 

We have used 29 vertical prisms, each with equal widths of 
32×10 m  but with different 149 

strike length for sedimentary basin modeling. The constants of parabolic density functions 150 

used for Godavari sub-basin are 0Δρ = 3 3-0.5×10 Kg / m and α = 3 30.1518259×10 Kg / m  151 

per 1000 m (Chakravarthi and Sundararajan, 2004). So with 71 iterations and 45 models, we 152 

achieve a good fit between observed and PSO analyzed gravity anomalies. The RMS error is 153 

0.0099. The maximum depth of the basin, obtained from PSO is 
34.09×10 mwhich is quite 154 

close to the borehole information (Agarwal, 1995). Chakravarthi and Sundararajan (2005) 155 

obtained maximum depth of 
34.0×10 m  whereas Ramanamurty and Parthasarathy (1988) 156 

suggested 
34.5×10 m  as the thickness of the basin. The upper part of Figure 9 shows the 157 

variation of observed and PSO calculated gravity anomalies of Godavari sub-basin and the 158 

lower part shows the inferred structure obtained from PSO and Marquardt algorithm.  159 

                                                                                       160 

 161 



8 

 

Conclusions 162 

Particle swarm optimization (PSO) on Matlab environment is developed to estimate the 163 

model parameters of a 2.5-D sedimentary basin where the density contrast varies 164 

parabolically with depth. We have implemented the PSO algorithm on synthetic data with 165 

and without Gaussian noise and two field data sets. An observation has made that PSO is 166 

affected by some levels of noise, but estimated depths are close to the true depths. The results 167 

obtained from PSO using synthetic and field gravity anomalies are well correlated with borehole 168 

samples and provide more geological viable. Despite its long computation time, PSO is very 169 

simple to implement and is controlled by only one operator.  170 
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 260 

Figure Captions 261 

Figure 1.  The 2.5-D sedimentary basin and its approximation by juxtaposing prisms. 262 

Figure 2. The detail schematic diagram/flow chart of PSO techniques. 263 

Figure 3. Iteration verses RMS error of Pbest and Gbest using PSO technique through 264 

synthetic gravity anomaly. 265 

Figure 4. Synthetic and Calculated gravity anomalies with parabolic density function due to a 266 

synthetic model of a 2.5-D sedimentary basin, obtained from PSO algorithm and 267 

inferred depth structure obtained from PSO and Marquardt algorithm. 268 

Figure 5. Synthetic data with 5% Gaussian noise and calculated gravity anomalies obtained 269 

from PSO algorithm and inferred depth structure obtained from PSO and Marquardt 270 

algorithm. 271 

Figure 6. Synthetic data with 10% Gaussian noise and calculated gravity anomalies obtained 272 

from PSO algorithm and inferred depth structure obtained for PSO algorithm and 273 

Marquardt algorithm. 274 

Figure 7. Observed and calculated gravity anomalies with parabolic density function, Gediz 275 

Graben, Western Anatolia obtained from PSO algorithm and Inferred structure 276 

obtained from PSO and Marquardt algorithm. 277 

Figure 8. Residual bouguer gravity anomaly map of Godavari sub-basin (modified after 278 

Chakravarthi and Sundararajan, 2005) and gravity anomaly profile taken for study. 279 
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Figure 9. Observed and calculated residual bouguer gravity anomalies of parabolic density 280 

function of Godavari sub-basin obtained from PSO algorithm and inferred depth 281 

structure from PSO and Marquardt algorithm. 282 
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