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The authors would like to thank the reviewer for the comments which have significantly
improved the quality of the paper.

Comment: 1) To improve the dissemination of the manuscript, please add a paragraph
describing the physical phenomenon at the basis of the sensing.

Response: The authors have added the following paragraph to the paper in Section
3.1. Remote sensing of water vapor and temperature is based on the measurement
of microwave radiation emitted by water vapor and oxygen molecules. The emission
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and absorption of microwave radiation due to water vapor and oxygen in each tropo-
spheric layer change the microwave radiation that reaches the ground. This variation in
radiation is due to the concentration of water vapor in the atmosphere and the temper-
ature at various altitudes. Therefore, these microwave radiation reaching the ground
are source of information about the humidity distribution and temperature variation in
the atmosphere at different heights. Measurement of this radiation at the weak wa-
ter humdity absorption line (centred at 22.235 GHz) is used for the sensing of water
vapor profile variation. This is based on humidity absorption line broadening. This
broadening is due to motion of the water molecules and their collisions with other wa-
ter molecules and is known as pressure broadening. Thus change in pressure has a
significant impact on the width of the absorption lines as well as the absorption values.
So, a decrease in the atmospheric pressure reduces the line width and increases the
water vapor absorption line strength which is most prominent at 22.235 GHz (the center
of the absorption line). Therefore, closer the proximity of the measurement frequency
to the weak water vapor resonance frequency higher the sensitivity to water vapor at
high altitudes. As the pressure increases the absorption line widens resulting in re-
duced sensitivity to water vapor at high altitudes. However, frequencies farther away
from the center frequency are more sensitive to water vapor changes close to ground
level. This is again proven by the weighting functions at various frequencies. Weighting
functions closest to the water vapor resonance frequencies are almost twice more sen-
sitive to water vapor at 8 km than near ground level. While frequencies further way from
the resonance peak are most sensitive to changes close to ground level. Therefore,
a combination of various frequency measurements is able to detect the profile infor-
mation about water vapor. Similarly, microwave radiation from oxygen at the 60 GHz
absorption complex can be used for retrieving temperature profile information because
atmospheric absorption in the 50-75 GHz range is primarily due to oxygen molecules.
The absorption due to oxygen molecule is due to magnetic moment 33 spin-rotational
lines between 51.5-67.9 GHz. These spin-rotational lines blend together at lower alti-
tude due to the pressure broadening of the lines. This blended absorption lines has a
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shape similar to an absorption band centered at 60 GHz. However, the absorption line
intensity is not the simple addition of isolated line intensities but the "overlap interfer-
ence” which gives rise to a very complex absorption band called the oxygen complex.
As a result the opacity at the 60 GHz is significantly higher than that at 50 GHz, so the
radiometer just observes the radiation emitted close to the ground surface. To sample
the whole troposphere measurements need to be performed at a number of frequen-
cies away from the center frequency. Since, oxygen is the most well mixed gas in the
atmosphere and its proportion in the atmosphere is almost constant and altitude inde-
pendent from ground level to 80 km, the microwave radiation at the oxygen absorption
lines contains atmospheric temperature profile information.

Comment: 2) For the Bayesian Optimal Estimation section: 2.1 If the equation (1) is
the updating iterative minimization step of the cost function in eq. (2), it is necessary
to deïňĄne ïňĄrst the cost function and after to provide the minimization step. In other
words, please eq.(1) becomes eq.(2) and eq.(2) becomes eq. (1).

Response: Eq. (2) has become Eq. (3). The authors agree that the iterative minimiza-
tion step of the cost function in Eq. (3) comes after the definition of the cost function.
However, the authors would like to stress that the first step is to determine the updated
water vapor and temperature profiles using the iterative process Eq. (1) which are then
validated using the cost function Eq. (3) as well as the convergence criterion Eq. (4).
Therefore, the sequence of the equations is maintained as it is.

Comment: 2.2 How do you choose the value of m in eq. (3) to deïňĄne the conver-
gence criterion?

Response: Eq. (3) has become Eq. (4). The following has been added to Section 3.2.1
line 12 of Page 7. “Eq. (4) determines the termination of the iterative process. The
iteration stops when Eq. (4) reaches a value q which is very small in comparison to m.
Therefore, the value of q is chosen to be 0.05 and 0.07 for water vapor and temperature
profile retrieval, respectively, which is 1/100 times the number of measurements used).”
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Comment: 2.3 Please, comment more in detail about the effect of parameter γ on the
local minima problem.

Response: As per the reviewer suggestion the calculation of γ has been discussed
in detail and has been illustrated with Figure 4.The following has been added Section
3.2.1 Page 6 line 26. γ is the LM factor and the value of γ is updated at each iteration
based on value of J(x) from Eq. (3). Various initial values of γ in the range of γ=1 and
γ=∞ have been considered for starting of the iteration. For γ = 1, the iteration might
move towards a local minima while in case of γ=∞ the iteration immediately moves
towards the global minima which gives a solution which does not converge. Therefore,
the initial value of γ is assumed to be one. It was observed that the algorithm did not
converge with a valid output for this initial value of gamma so the initial value of gamma
is increased at regular intervals to check the convergence. It was found empirically, that
gamma with an initial value of 5000 converges the algorithm for all cases. As part of
the iteration if the value of J(x) increases, then the iteration is discarded and the value
of γ is increased 10 fold and the iteration is repeated. This is done so as to discard
any invalid output which could be close to one of the local minima. If value of J(x)
decreases, then the iteration is valid and the value of γ is reduced by a factor of 2 for
the next iteration even if the convergence criteria is not satisfied (Hewison, 2007). This
process is followed until the convergence criterion is validated by the output profile.
This process is illustrated in Figure 4. It can be observed that as the cost function
decreases, the gamma value decreases and vice versa. At local minima of the cost
function the gamma value also reduces.

Comment: 3) The section about the Neural Network (NN) estimation should be en-
larged. What is the number of the unknowns searched for in the NN estimation? How
long was the time to train the network?

Response: As per the suggestion of the reviewer the following detail has been added
to the neural network retrieval technique in Section 3.3. “Estimation of water vapor and
temperature profiles from microwave radiometer brightness temperatures is done us-
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ing a proprietary neural network method (NN) developed by Radiometrics Corporation
(Solheim, et al., 1998). NN zenith estimation of temperature, water vapor density, rel-
ative humidity, and liquid water content proïňĄles are performed simultaneously from
the radiometer measurements plus the infrared (IR) channel. The retrieved profiles
are estimated at 58 height levels, with 50 meter steps from the surface up to 500 m,
then 100 m steps to 2 km, and 250 m steps from 2 to 10 km. However, it has to be
noted that above approximately 7 km, the atmospheric water vapor density and tem-
perature approach the climatological mean values. As part of the retrieval process the
NN is trained using a back-propagation algorithm and radiosonde data which has been
collected over a period of time i.e., usually 4 to 5 years using. The radiosonde data
that is used for training the network is taken from one or more sites with the same
climatological conditions as the observation site. The radiosonde profiles are used for
simulating the brightness temperature using absorption models and radiative transfer
equations. The NN estimation uses a standard feed-forward network (Radiometrics
Corporation, 2008) to retrieve the temperature, humidity and liquid water profile that is
most consistent with the atmospheric conditions and radiometric measurements. How-
ever, in this case sufficient radiosonde profiles were not available for Mahabubnagar,
so a slightly different approach was used in this study for neural network estimation of
profiles. Radiosonde profiles were still used as training dataset but these were taken
from areas which had similar weather conditions and same altitude and latitude (but
different longitude) as Mahabubnagar, Hyderabad. However, two sites at the same al-
titude and longitude may have significantly different weather depending on the general
conformation of the mountains in the area, the marine currents as well as the advection
processes. This could lead to biases in the training of the radiometer algorithm which
in turn would increase the error of the retrieved profile.”

Comment: 4) By looking to ïňĄgure 8, please comment the fact (maybe, by providing
a “physical justiïňĄcation”) that the RMS error for NN estimation, has a decreasing
behaviour with kilometres for the water content proïňĄle whereas increases with the
distance for the temperature proïňĄle.
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Response: Figure 8 has become Figure 11. The following discussion has been added
as the last paragraph of Section 4.3 on page 12 line 1. “It has to be observed that
that the RMS error for NN estimated water vapour density profile has a decreasing
behaviour with altitude whereas the temperature profile RMS error increases with the
height for the temperature proïňĄle. This is because NN algorithm used to retrieve
the water vapor and temperature profiles has been trained using a data set which
has been taken from areas which had similar weather conditions as the radiometer
observation site. However, two sites at the same altitude and longitude may have
significantly different weather depending on the general conformation of the mountains
in the area, the marine currents as well as the advection processes. This could lead to
biases in the training of the radiometer algorithm which in turn would increase the error
of the retrieved profile. This is what is causing the retrieval errors for both the water
vapor and temperature profiles at the lower altitudes. However, at high altitudes the
range of water vapor density values which are possible are limited and close to zero
as they cannot be less than zero, (obviously the climatological mean) due to which
the error levels reduce at high altitudes as shown in Figure 11(a). This is not the case
for temperature profiles which can have really low values at high altitudes based on
training data. Therefore, the temperature profiles have a high level of bias, hence the
increase in error as the altitude increases.”

Please also note the supplement to this comment:
http://www.geosci-instrum-method-data-syst-discuss.net/gi-2016-16/gi-2016-16-AC6-
supplement.pdf

Interactive comment on Geosci. Instrum. Method. Data Syst. Discuss., doi:10.5194/gi-2016-
16, 2016.
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Figure 4. The value of cost function and gamma with respect to number of iterations are
shown in the top and bottom figure, respectively.
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Fig. 1. Figure 4
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