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Abstract 7 

Identification of spatial variation of lithology as a function of position and scale is very critical 8 

job for lithology modeling in industry. Wavelet Transform (WT) is an efficacious and powerful 9 

mathematical tool for time (position) and frequency (scale) localization. It has numerous 10 

advantages over Fourier Transform (FT) to obtain frequency and time information of a signal. 11 

Initially Continuous Wavelet Transform (CWT) is applied on gamma ray logs of two different 12 

Well sites (Well-1039 & Well-1043) of Costa Rica Convergent Margin, Central America for 13 

identifications of lithofacies distribution and fracture zone later Discrete Wavelet Transform 14 

(DWT) applied to DPHI log signals to show its efficiency in discriminating small changes 15 

along the rock matrix irrespective of the instantaneous magnitude to represent the fracture 16 

contribution from the total porosity recorded. Further the data of the appropriate depths 17 

partitioned using above mathematical tools are utilized separately for wavelet based fractal 18 

analysis (WBFA). As consequences of CWT operation it is found that there are four major 19 

sedimentary layers terminated with a concordant igneous intrusion passing through both the 20 

wells. In addition of WBFA analysis clearly understand the fractal dimension value is 21 

persistent in first sedimentary layers and the last gabbroic sill intrusions Inconsistent value of 22 

fractal dimension is attributed to fracture dominant in intermediate sedimentary layers it is also 23 
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validate through core analysis. Fractal Dimension values suggest that the sedimentary 24 

environments persisting in that well locations bears abundant shale content and of low energy 25 

environments.  26 

      Key words: CWT, DWT, Fractal, Costa Rica. 27 

 28 

Introduction 29 

The nature of any log signal is fluctuating type in accordance to the subsurface geology. A 30 

gamma ray log is most vividly used log for lithology identifications. These signals are very 31 

noisy in some cases and highly fluctuating in another way. Manual interpretations of such 32 

signals are quite difficult and it needs more experience. These difficulties are minimized by 33 

kind of wavelet transform method. In our study Continuous Wavelet transform (CWT) is tested 34 

on generated synthetic signals and applied to field data. The analyzed results prove that the 35 

CWT is highly suitable in geophysical log signals whereas conventional Fast Fourier 36 

Transform (FFT) fails in this case because it considers the whole signal in a stationary form. 37 

Though WT provides unambiguous results in analyzing the noisy and non-stationary signals, 38 

its efficiency of extracting the information from the signal was seen through its wavelet 39 

coefficients (Hui and Zaixing, 2010) with wavelet scalogram. 40 

      Number of publication has come to identify the lithofacies boundary using various mother 41 

Wavelet transform and Fourier transform (Chandrasekhar et al., 2012; Coconi et al., 2010; 42 

Dashtian, 2011; Javid and Tokhmechi, Mansinha et al., 1997; Mansinha 2003, 2004; Pan et 43 

al., 2007, 2012; Pinnegar and Stockwell, 2007; Stockwell et al., 1996; Sahimi and Hashemi, 44 

2001; Tokhmechi et al., 2009a, b; Yue et al., 2004; Zhang et al., 2011). Some other authors 45 

worked on WT to describe the scaling property using magnetic susceptibility data (Fedi, 2003) 46 
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and Bansal et al., (2010) has determine the presence of fractures using power law scaling 47 

behavior of magnetic susceptibility and density variation in continental crust. 48 

In this paper, CWT and Discrete wavelet transform (DWT) are used separately for 49 

identifying the lithology using gamma ray log data of well site 1039 and 1043 obtained from 50 

Costa Rica Convergent Margin, Central America (expedition 308 scientists 2005) and 51 

computed wavelet scalograms. Moreover, the information of fractures zones is analyzed with 52 

DWT using density logs data for both wells that provides well featured whereas the log data 53 

doesn’t carry information of fracture remains featureless. Afterward, a linear relationship is 54 

obtained between the fracture density obtained through DWT and identified fractures from 55 

water saturation logs using above methods. Apart from wavelet analysis, one of the approach 56 

wavelet based fractal analysis (WBFA) techniques applied to attribute the 57 

roughness/smoothness of the fractures. The obtained suggest that wavelet transform acts as a 58 

microscope to delineate the high and low frequency hidden in the signal separately, 59 

wavelet/holder exponent and fractal dimension are highly useful in identification of lithofacies 60 

and spatial distribution of fractures. 61 

       62 

Mathematical Background 63 

Wavelet Transform 64 

Wavelet transform is mathematical tool that can be used to analyze both stationary and non-65 

stationary signals (Daubechies 1990, 1992) and expand time series into time frequency space. 66 

Therefore, this method can find localized intermittent periodicities. For analyzing stationary 67 

or non-stationary signal proper mother wavelet has to be substituted and the operation of 68 

continuous wavelet transform (CWT) proceeds as the convolution between time series of our 69 
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interest. The Discrete wavelet transform (DWT) is very useful in case of noisy data it 70 

compresses the data by reducing noise and improves the resolution whereas the application of 71 

CWT prefers to extract the lithological feature from data. As it exposes the signal to high and 72 

low frequency filters to form approximate and detailed coefficients traces out the abrupt 73 

changes in the signal. Basically, in geophysical well logs the abrupt change corresponds to its 74 

own individual parameter changes which provide us more information about the subsurface 75 

stratigraphy. This methodology pertaining to DWT allows us to locate the high frequency 76 

changes immersed in the log which cannot be identified manually. For example, gamma ray 77 

log is a good lithology indicator but in certain conditions it is highly fluctuating in nature. This 78 

nature sometimes perturbs its evaluation. Apart from lithology identification, DWT provides 79 

an advantage of analyzing the fracture identifications. Choice of mother wavelet is important 80 

factor for analyzing the non- stationary signal. As number of mother wavelets were tested to 81 

select the optimum wavelet using well logs signal (Lopez 2006). In this method analysis is 82 

based on linearity between logarithm of wavelet coefficients (log σ) and scale. Regression 83 

Coefficients R2 for all log signal from each well has been calculated and linear fit was obtained 84 

for Coiflet 4 wavelet. The wavelets do not give the significant change in wavelet coefficients 85 

to identify stratigraphy boundary. Thus Coiflet 4 wavelet is best for analysis of this well log 86 

data. 87 

 88 

      2.2 Continuous Wavelet Transform 89 

The concept of continuous wavelet transform can be explained by a basic equation given 90 

below: 91 

𝑊(𝑎, 𝑏) =
1

𝑎𝑛 ∫ 𝑓(𝑥)𝜑 (
𝑥−𝑏

𝑎
) 𝑑𝑥 

∞

−∞
     (1) 92 
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      Where, f(t) is the time series of our interest, φ(t) is the mother wavelet, a is the scaling 93 

parameter which is inverse of frequency, b is the translation parameter directly proportional to 94 

time and n is the normalizing parameter which is equal to 1 (say). The variance of Wavelet 95 

coefficients follows power law relation with the scale which can be given by a simple equation 96 

given below; 97 

𝑣 = 𝑥ℎ 98 

Here v is the variance of wavelet coefficients, x is the scale and h is the holder/wavelet 99 

exponent. 100 

Holder/Wavelet exponent provides the measure of roughness/smoothness. If the holder 101 

exponent values are high, it accounts for smoothness whereas low values of holder exponent 102 

emphasis more roughness. After obtaining the holder exponent it can be substituted in the 103 

equation given below to obtain the fractal dimension value; 104 

2𝐷 = 5 − ℎ 105 

Where D is the fractal dimension (FD) that is computed using the holder exponent and variance 106 

of Wavelet coefficient known as Wavelet based fractal analysis (WBFA).  107 

       108 

2.3 Discrete Wavelet Transform 109 

One- dimensional Discrete Wavelet Transform has been carried out in this task as per the 110 

datasets, which are discrete and one dimensional. For the construction of DWT one sets, a = 2j 111 

and b = 2jk, where j and k are both integers. 1-D DWT is given by the following equation, 112 

𝐷𝑗(𝑘) = 2−
𝑗

2 ∫ 𝑓(𝑡)
∞

−∞
𝜑(2−𝑗𝑡 − 𝑘)𝑑𝑡    (2) 113 
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Where f(t) is the time series of our interest and k = 1, 2, 3...., n where n being the discrete 114 

data array of maximum size. Time series data of our interest is decomposed to approximate 115 

and detailed coefficients providing both lower and higher frequency information respectively.  116 

      117 

 3.0 Results and Discussions 118 

3.1 Application to Synthetic data 119 

A Synthetic signal is generated with three different frequencies such as 3Hz, 5Hz and 10Hz 120 

and analyzed by CWT and also applied to synthetic signal added with 25% Gaussian white 121 

noise. The result obtained is shown in Figure 1. As the signal is free from noise possessing 122 

only its own frequencies the mathematical tools didn’t posed any difficulty and the information 123 

required are derived without any ambiguity. When the same signal analyzed by the above 124 

mentioned techniques after mixing noise, it provides large difference in the results which are 125 

shown in Figure 2. The CWT provides an acceptable picture in analyzing the non-stationary 126 

as well as the same non-stationary signal mixed with noise. CWT not only removes the 127 

ambiguity through by forming wavelet modulus maxima but also through its Wavelet 128 

Coefficients. Also it provides a picture of the Time-Frequency localization in interpretable 129 

form. An advantage pertaining to wavelet transform is that the Wavelet coefficients records 130 

the exact information of the signal even it is noisy. This notion regarding CWT proves it as a 131 

good tool for identification of lithology in Well logs. Therefore, this technique can be used in 132 

all circumstances to derive the exact information in the signal. 133 

 134 

Mostly, Porosity logs are used for this approach and the fluctuating nature of the porosity logs 135 

can be correlated to both pores distribution and the fracture (major as well as several micro 136 

Depth 

Signal 
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fractures) as well. DWT differentiates both fractures and the characteristics of the pores in the 137 

detailed coefficients (Sahimi and Hashemi, 2001). For demonstration of the techniques, we 138 

have generated two type of synthetic well logs (i) assuming well site is fractureless and (ii) 139 

well site is fractured. Now wavelet detail coefficient (WDC) for both well site are calculated 140 

as sown in in Figure 3(a & b) and Figure 3(c & d). We observed from WDC analysis that will 141 

be containing highly differentiable features in terms of spikes or local maxima as shown in 142 

Figure 3(d). The noisy data points pertaining to the uniform distribution constitute both low 143 

and high values in comparison with its surrounding data points. DWT differentiates these 144 

particular locations by means of a spike irrespective of the magnitude of the data points 145 

replaced. DWT exposes the signal to low and high frequency filters produces detailed and 146 

approximate coefficients respectively. 147 

 148 

3.2 Application of Field Data: Costa Rica Convergent Margin, Central America 149 

Costa Rica Convergent Margin in Central America is due to the convergence of Cocos and 150 

Caribbean Plates. A seismic migrated section over the region is shown in the Figure 4 showing 151 

Well sites 1039, 1040 and 1043. Among these wells sites 1039 and 1043 are taken for study 152 

whereas the site 1040 is omitted as it is not passing through certain major litho-units. Logs 153 

such as gamma ray and density are taken for study and the gamma ray signals exhibiting sharp 154 

spikes which are attributed to presence of interbeded ash layers. From the gamma ray log 155 

various lithology are identified and correlated with site adjacent to it. Density Logs are used 156 

for identification of spatial distribution of fractures along the rock matrix using DWT. Also 157 

the analysis of fractal dimension value through WBFA indicates the presence of fracture in 158 

lithology. Core Analysis reports the presence of four sedimentary layers terminated by a 159 
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concordant Igneous Intrusion Gabbroic Sill. Well site 1039 is taken as the reference and 160 

lithology identified through Wavelet Transform are correlated to the site-1043 and the result 161 

confirms the subduction zone. As conventional technique such as Fast Fourier Transform fails 162 

in providing the time-frequency localization. So the application of wavelet Transform is the 163 

only way to find the proper time-frequency localization. The results obtained from CWT 164 

analyzed using log data sets prove the lithological successions. This result is significant in 165 

certain scale range only. Since scale is inverse of frequency thus small scale and high scale 166 

shows high frequency component and low frequency component of signal. Wavelet analysis 167 

of signal at small scale shows the very small changes in data which may be associated with 168 

noise also while large scale shows the outspread view of signal. The multiscale analysis has 169 

important role in computation of wavelet coefficients (Dimri et al., 2005). The scale is linear 170 

in a particular range is determined by log(var(cofficients)) versus log(scale) as shown in  171 

Figure 5. 172 

       The stratigraphic interfaces occurring in the Well log-1039 (Figure 6) appears in the Well 173 

log-1043 (Figure 7) after having disruptions in the middle. From the seismic section it is seen 174 

that there are four major lithology running from the Well -1039 to Well - 1043 and terminated 175 

as Gabbroic Sill. The Well-1040 crossed the above mentioned strata very mildly and it didn’t 176 

reach the concordant intrusive structure as reached by the Wells-1039 and 1043. Therefore, for 177 

interpretation point of view only the Wells-1039 and 1043 are used. The major successions 178 

mentioned after drilling is that the four sedimentary interfaces followed by a Gabbroic sill. The 179 

sedimentary succession obtained underneath the reference site-1039 situated in the Cocos Plate 180 

found to occur in the site-1043 without any disruption. It is also noted from the observation 181 

made by Eric et al., (2000) as the Cocos Plate subducting under the Caribbean Plate the off 182 
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scarping of the sediments in the Cocos Plate should occur on the overriding plate but on 183 

analyzing the chemical composition it was mentioned the sediment lying on the overriding 184 

plate was of different composition. This analysis comes in support of the effort of framing the 185 

subducting system of Costa Rica using CWT spectrum, it is observed that the sedimentary 186 

succession in the site-1039 over the subducted Cocos Plate continuing through the site-1043 187 

without any disruption situated over the overriding Caribbean plate. In accordance to the 188 

locations of the Wells and the continuity of the sedimentary successions existing in the both 189 

sites (1039 and 1043) as traced by correlation of Wavelet scalogram (Figure 8) where  190 

Figure 8 suggests that the Cocos plate is being subducted under the Caribbean plate. 191 

Application of DWT applied to porosity log  of both the well 1039 & well 1043 to identify the 192 

presence of fracture in lithology figure  9 (a & b).  193 

The lithology identified through time and frequency localization tools are used for the 194 

WBFA by taking their data points separately. Table 1 shows the FD values of various 195 

lithofacies over both wells. The FD values are computed these varies from 1.21 to 1.49 in the 196 

well-1039 and 1.20 to 1.44 in the well-1043 and associated coefficient of determination, R2 197 

(%) are also calculated for both wells. We observed the FD and coefficient of determination 198 

over both wells and found that there are transitional changes between sandy shale and shaly 199 

sandstone due to variation in FD values and this variation corresponds to a gradual transition 200 

between different sedimentary environments. Hence, the FD values can be used as a well log 201 

attribute. 202 

Here the FD values are greater than 1.2 that emphasize the presence of high shale content 203 

and  low energy environment in depth range 210 to 330m and 315 to 430m as reported by 204 

(Lopez 2006) in the presence of sandstone over the well sites 1039 and 1043 respectively 205 
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(Figure 10 &11). In spite of the presence of sandstone, the FD values are exceeding 1.2 206 

indicating the dominance of shale content and these values are found to be not consistent from 207 

reference and 1043 site. In prior depth ranges, the inconsistency of FD values are attributed to 208 

the presence of fractures from the structural observations obtained in well site but in the above 209 

mentioned depth ranges the inconsistency as well as from the holder exponent values it is noted 210 

that the roughness exists in the particular lithology. The analyzed results are well correlated 211 

with the core samples. 212 

      213 

7. Conclusions 214 

Lithology identification is a tedious job in well logging and it is the most important one for 215 

reservoir characterisation. To identify Presence of structural feature such as fracture by quick 216 

look interpretation methods is very difficult using well log data. Formation micro imager (FMI) 217 

log often used to identify it is very expensive. Thus methodology used for lithology and 218 

fracture identification using wavelet transform and wavelet based fractal analysis using holder 219 

exponent can be a useful stuff to extract the different lithological feature as well as stratigraphy 220 

feature.  221 

For structural feature identification from various lithology holder exponent and fractal 222 

dimension values can be utilised and in the presence of some extra information as that of the 223 

structural observations from well sites the results can be more promising. In order to avoid the 224 

assistance of extra information more datasets are needed from the same area so that on 225 

application of WBFA on various lithologies passing through the area provides concrete idea 226 

on lithology and Structural features using holder exponent and fractal dimension values. 227 

      228 
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 232 

Figure and Table Captions 233 

Figure 1: Shows the Continuous Wavelet Transform (CWT) using a synthetic time series data. 234 

Figure 2: Shows the Continuous Wavelet Transform (CWT) of a synthetic noisy time series 235 

data.  236 

Figure 3: (a) synthetic well logs data over the fractureless well site, (b) Discrete wavelet detail 237 

coefficient (DWC) of fractureless well site, (c) synthetic well log data over the 238 

fractured well site, and (d) Discrete wavelet detail coefficient (DWC) of fracture less 239 

well site. 240 

Figure 4:  Shows the seismic migrated section showing the Wells (after Erik et al, 2000) 241 

Figure 5:  shows the scale of interest shows variance of wavelet coefficients versus scale of 242 

gamma ray of well site 1039 and 1043. 243 

Figures 6: showing Continuous Wavelet Transform (CWT) using gamma ray signal and the    244 

Wavelet Coefficient at an altitude-32 of the gamma ray log of the Well location-1039 245 

Figure 7: showing Continuous Wavelet Transform (CWT) using gamma ray signal and the    246 

Wavelet Coefficient at an altitude-32 of the gamma ray log of the Well location-1043 247 

Figure 8: Represents the lithology identification using the gamma ray log of the Well site 1039  248 

and 1043 by the lines drawn on the scalogram and it represents the subduction zone in 249 

the areas obtained from the seismic migrated section. 250 



12 
 

Figure 9: (a) Shows the discrete detailed and approximate coefficients and the spikes represents 251 

the possible fractures at well location 1039, (b) shows the Discrete detailed and 252 

Approximate coefficients and the spikes represents the possible fractures at well 253 

location 1043  254 

Figure 10: Shows variance of Wavelet coefficients versus scale of density log of well site-1039 255 

and 1043 which shows consistent holder exponent and fractal dimension values 256 

indicating that wells contains similar sedimentary environment. 257 

Figure 11: Shows the FD values of both well sites of 1039 and 1043. 258 

Table 1: Shows the FD values of the appropriate lithology identified and the circled depth 259 

ranging and its appropriate fractal dimension values showing deviation of the vales 260 

from the reference site 1039. 261 

Table 2: Shows the ranges of fractal dimension values. 262 
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Figure 10 547 
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Figure 11 571 
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Table 1 594 
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 614 

 615 

 

Lithofacies 

Depth Range (m.) Fractal Dimension Coefficient of 

determination, R2 (%) 

Well 1039 Well 1043 Well 1039 Well 1043 Well 1039 Well 1043 

Shale with 

interbeded ash 

layer 

20-80 60 - 130 1.21 1.22 99.441 99.5988 

Shaly sandstone 80 -160 130 - 260 1.36 1.43 99.3234 99.3375 

Sandy shale 

with interbeded 

ash layer 

160 - 210 260-315 1.26 1.44 99.0514 98.8141 

Sandstone 210 - 330 315-430 1.49 1.39 98.8141 98.791 

Gabbroic sill 330 - 400 430-450 1.20 1.20 99.1356 96.96441 
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 616 

Table 2 617 

   618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

Fractal Dimension Interpretation 

< 0.9 High sand content and high energy environment 

0.9 to 1.2 Inter-bedded sand and shale 

> 1.2 High shale content and low energy environment 


