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Abstract. In this study, we present a numerical inversion approach to detect and localize inclusions in thick walls under natural

solicitations. The approach is based on a preliminary analysis of the surface temperature field evolution with time (for instance

acquired by infrared thermography); after, this analysis is improved by taking advantage of a priori information provided by

ground penetrating radar reconstructions of the structure under investigation. In this way, it is possible to improve the accuracy

of the images achievable with the stand-alone thermal reconstruction method in the case of quasi-periodic natural excitation.5

1 Introduction

The issue of the integration of geophysical methods is a topic of timely interest and several fields can benefit of this strategy

such as monitoring of the environment, infrastructure protection, cultural heritage management.

In this scientific frame, several efforts have been made and interesting results and strategies are drawn in (Eppelbaum, 2014;

Alperovich et al., 2013)10

Here we propose to combine two complementary approaches by coupling thermal and electromagnetic reconstructions both

based on contact-less field measurements. The non-destructive diagnostic approach presented in this paper aims at detecting

and localizing inclusions in thick walls by exploiting surface thermal and ground penetrating radar measurements. Here, we

consider inclusions in the structure, which may represent for example delaminations or inner cavities, whose prompt identifi-

cation is crucial in structural health monitoring applications.15

The identification of thermal sources (heat flux) or thermal properties (thermal conductivity and/or capacity) of a material has

numerous applications. Indeed, a variation of the thermal parameters may be the signature of an inclusion and the identification

process is typically performed by solving an inverse thermal problem. Few reconstruction methods have been proposed to solve

the inverse thermal problem, either for source reconstruction (Beck J.V., 1985) or parameters reconstruction (Ozisik, 2000). In

both the cases, it is necessary to solve an optimization problem, involving the search of a global minimum of a cost function20

representing the difference between the collected measurements and the model data. Some optimization approaches based on

conjugate gradient or Levenberg-Marquardt algorithm and using adjoint state method have been developed in one dimensional

(Ozisik, 2000) or in multidimensional scenarios (Jarny et al., 1991).
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In this frame, a method based on adjoint state and finite element method has been developed in recent years by IFSTTAR

with the aim to reconstruct the thermal field over a given domain (Nassiopoulos, 2008; Crinière et al., 2014). Afterward, this

method has been extended to the reconstruction of the thermal properties of thick walls in two dimensional (Brouns, 2014;

Brouns et al., 2014) or three dimensional (Nassiopoulos and Bourquin, 2010) geometries. Nevertheless, the results obtained

with this method suffer of the large variations of the retrieved parameters near the instrument boundaries because of side effects5

(Brouns et al., 2014).

In order to reduce these spurious effects, we propose in this work to use the thermal reconstruction method by gaining

information by an electromagnetic diagnostics approach based on ground penetrating radar (GPR) surveys. To this end, the

data are collected by a long term thermal monitoring with an adapted infrared thermography system in combination with a

GPR.10

As well-known, GPR imaging has proved to be useful in several application fields, e.g. the detection of buried pipes, land-

mines, defects in structures like bridges or roads, the investigation of archaeological sites, etc. (Persico, 2014).

The working principle of the GPR is the same of the traditional radar save for the fact that wave propagation occurs in

a lossy dielectric medium instead of free-space. A wide-band electromagnetic pulse is radiated in the investigated medium

and, owing to the presence of subsurface anomalies, a part of this wave is scattered/reflected and the backscattered signal is15

collected by a receiving antenna (Daniels, 2004). Therefore, as for the thermal imaging, GPR imaging relies upon the fact that

the electromagnetic signal is capable to penetrate inside opaque materials. Starting from the knowledge of the scattered field,

a reconstruction of the dielectric properties of the investigated scene can be achieved by solving an electromagnetic inverse

scattering problem, which is is non-linear and ill-posed (Soldovieri et al., 2009).

The diagnostic approach proposed in this work couples both thermal and electromagnetic reconstruction methods and con-20

sists in three stages. First a preliminary thermal inversion is carried out to identify possible anomalies in the structure. After, a

GPR reconstruction is performed to refine the preliminary and rough localization of potential inclusions acheved by the thermal

method. Finally, the information about the scenario provided by GPR reconstructied image is exploited in the thermal inverse

modeling to improve the accuracy of this method.

The paper is organized as follows. The thermal inverse model is detailed in Sec. 2. After, Sec.3 deals with the electromagnetic25

inverse scattering approach. Sec. 4 describes the way in which the "geometrical" information provided by GPR is exploited for

the thermal data inversion. Numerical examples assessing the effectiveness of the proposed inversion approach are reported in

Sec. 5. Conclusions and perspectives are addressed in Sec. 6.

2 Thermal modeling

The 2D geometry relevant to the thermal reconstruction problem is sketched in Fig.1. It is assumed that temperature measure-30

ments are collected at the upper surface of the investigated structure, which is a rectangular wall containing few anomalies. The

acquisition of the surface temperature time-evolution can be carried out by infrared thermography coupled with environmental
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Figure 1. Geometry of the problem (MODIFY FIGURE ADDING AIR, WALL, AIR TO INDICATE THE THREE REGIONS. ADD ALSO

Γ0

sensors as presented in (Dumoulin et al., 2013; Dumoulin and Boucher, 2014). Such an outdoor experimental set-up permits

to survey and record the pseudo-periodic evolution of the temperature for several days under natural solicitations.

A direct thermal model is first established to get numerical temperature data at the surface of the investigated wall. Then,

a thermal inversion is performed with the adjoint state method in order to get the reconstruction of the shallower part of the

investigated wall. The direct and inverse thermal models are described as follows.5

2.1 Thermal state computation

As shown in Fig.1, the measurements are performed along the upper wall surface Γm. A heat flux, convective exchanges with

the ambient air, and radiative exchanges with the sky arise at this surface. On the other wall surfaces Γ0, an adiabatic constraint

has been imposed.

The heat equation for the investigated wall D is written as10





ρc∂T∂t −∇ · (k∇T ) = 0 for (x,t) ∈D× [0, ta]

k∇T ·n = Φs +h(Ta(t)−T (x,t)) +hrad (Ts(t)−T (x,t)) for (x,t) ∈ Γm× [0, ta]

k∇T ·n = 0 for (x,t) ∈ Γ0−× [0, ta]

T (x,0) = T0(x) for x ∈D

(1)

where T (x,t) is the temperature at the generic location x for the time t, ρc is the thermal capacity, k is the thermal con-

ductivity, φ is a thermal flux, h is the convective exchange coefficient, hrad is the equivalent radiative exchange coefficient

hrad = εσ(Tsurf +Ts)(T 2
surf +T 2

s ) (temperatures here in K). This coefficient is obtained with the linearization of the Stefan’s

law. Moreover, ε is the emissivity of the surface, σ is Stefan’s constant, Tsurf is the temperature at the surface, Ts is the sky15

temperature, Ta is the air temperature n is the outward-pointing normal, Γm is the boundary located at the surface of the

domain, where measurements are performed and Γ0 is the whole of the other boundaries.
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We denote with L2(Ω) the space of square integrable functions on Ω and H1(Ω) the Sobolev space

H1(Ω) = {f ∈ L2(Ω)} such as
1∑

k=0

∫

x∈Ω

(
∂kf

∂xk

)2

dΩ<∞ (2)

The variational and Dirichlet formulations (Gartling, 2010) allows to write, on an orthogonal basis (φi) of H1(Ω)

∑

i




∂Ti
∂t

∫

Ω

ρcφi(x)φj(x)dΩ +Ti



∫

∂Ω

hφi(x)φj(x)dΓ +
∫

Ω

k∇φi(x)∇φj(x)dΩ


−



∫

∂Ω

(ϕφj(x) +hφjTa)dx





= 0 ,∀j

(3)

For a numerical solution of the thermal problem, we consider a mesh of elements {Ωe} and nodes {N e}. The approximation5

T ≈ T̃ is made (Allaire, 2005), with T̃ ∈ V q the discrete space of piecewise polynomials of degree ≤ q in each mesh element

Ωe

V q = {f ∈H1(Ω) such as f|Ωe ∈ Pq} (4)

with Pq the space of piecewise polynomials of degree ≤ q. A basis of V q is the piecewise polynomials (φi) of degree ≤ q
such as10

φi(xj) = δij , ∀xj ∈N e (5)

where δij is the Kronecker symbol.

The equation (3) is still valid for T̃ written in the basis of (φi). Therefore, to simplify the notation, T will refer to the

approximated solution on the space V q .

From the equation (3), we get a differential equation on time for the temperature at the nodes {T}15

[M ]
∂{T}
∂t

+ [K]{T}= {Φ} (6)

This equation is temporally solved with an implicit Euler algorithm so the temperature is obtained at each node of the mesh

and for each time step. Finally, in order to provide a more realistic modeling, white Gaussian noise is added to the (measured

?) computed temperature.

2.2 Thermal reconstruction20

The aim of the inverse thermal problem is to get a reconstruction of the thermal capacity ρc and conductivity k in the investi-

gated domain. To achieve this goal, we introduce a functional J to be minimized (Brouns, 2014) (Nassiopoulos and Bourquin,
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2010). The minimization of this functional could be (or is ?) performed with the Levenberg-Marquardt algorithm. This algo-

rithm needs the computation, at each iteration, of the gradient of the locally linearized functional, which is carried out with

the adjoint state method. Note that, by using the adjoint state method, it is possible to get the adjoint equations which have a

similar structure to thermal direct equations (1). The functional J is expressed as

J : u 7→ 1
2
‖T (u)−Tm‖2M+

ε

2
‖u−u0‖2R (7)5

with u ∈ U being the vector of thermal parameters u= {k,ρc} and U the space of unknowns:

U =
(
L∞+ (Ω)

)2
, L∞+ (Ω) = {v ∈ L∞(Ω),v ≥ 0 a.e.} (8)

In the above formula, θ(u) is the thermal state associated to u, ε is the Tikhonov parameter, u0 is an a priori estimation of the

thermal parameters u, θm are the measures obtained with the direct model at the location Γm for time scale [0, ta]. Moreover,

M is the space of measuresM= L2(Γm,L2([0, ta])). The norm inM is defined as (Brouns, 2014)10

‖f‖2M =

ta∫

0

∫

Γm

f2(x,t)dΓdt (9)

whereR=
(
L2(Ω)

)2
is the regularization space.

The inverse problem consists in finding u ∈ U such as:

u= argmin
v∈U

J(v) (10)

To solve this non-linear optimization problem, we apply the Levenberg-Marquardt algorithm, which is frequently used to15

solve non-linear inverse problems, as thermal reconstruction (Jarny et al., 1991) or the reconstruction of electric conductivity

(Bal et al., 2012). At each iteration, the Levenberg-Marquardt algorithm linearizes locally the functional in order to find a

minimum point, which becomes the point around which the linearization occurs at the next iteration (Levenberg (1944)).

At each iteration, the functional J is linearized in J̃u next to the value of the reconstructed thermal parameters u at this

iteration. For a small variation δu of the thermal parameters, it follows that20

J̃u(δu) =
1
2
‖T (u) + δT (u)δu−Tm‖2M+

ε

2
‖u+ δu−u0‖2R+

ν

2
‖δu‖2R (11)

where ν is the damping parameter, which allows to define a confidence interval around u (Hanke, 2010).

The minimum of J̃u is reached in δu such as

δu= argmin
δv∈U

J̃u(δv) ⇐⇒ J̃ ′u(δu) = 0 (12)

5
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where J̃ ′u is defined as

J̃u(δu+ δũ) = J̃u(δu) + J̃ ′u(δu)δũ+ o(‖δũ‖U ) (13)

To minimize J̃u, we use the conjugate gradient method, which needs the computation of the differential J̃ ′u(δu).

The adjoint state method initially developed in the control theory (Lions (1971)) is also applied. Applying the adjoint method

allows to keep the same equation structure and also to use the same resolution method for the direct and the inverse problem5

(Jarny et al., 1991; Brouns, 2014). Such method consists in introducing and computing the adjoint operator of T ′(u). First, we

introduce δθ, i.e. the solution of the tangent linear model (14)





ρc∂δT∂t −∇ · (k∇δT ) =∇ · (δk∇θ)− δρc∂T∂t for (x,t) ∈ Ω× [0, ta]

k∇δT ·n =−δk∇T ·n− (h+hray)δT for (x,t) ∈ Γm× [0, ta]

k∇δT ·n =−δk∇T ·n for (x,t) ∈ Γ0× [0, ta]

δT (x,0) = 0 for x ∈ Ω

(14)

Then, we introduce δθ∗ i.e. the adjoint operator of δθ. This operator is the solution of the adjoint problem (Jarny et al., 1991)

(Brouns, 2014)10





−ρc∂δT∗∂t −∇ · (k∇δT ∗) = 0 for (x,t) ∈ Ω× [0, ta]

k∇δT ∗ ·n =−(h+hray)δT ∗+ (T + δT −Tm) for (x,t) ∈ Γm× [0, ta]

k∇δT ∗ ·n = 0 for (x,t) ∈ Γ0× [0, ta]

δT ∗(x,ta) = 0 for x ∈ Ω

(15)

The adjoint model (15) has the same structure than the tangent linear model (14) and the direct model (1). Therefore, the

adjoint and the tangent linear models can also be solved on the same mesh of the direct model with the same finite element

formulation.

The differential of Ju can be computed with the optimal control theory by estimating (Brouns, 2014)15

J ′u(δu)δũ=−
ta∫

0

∫

Ω

δk̃∇T · ∇δT ∗dΩdt−
ta∫

0

∫

Ω

δρ̃c
∂T

∂t
δT ∗dΩdt

+ ε

∫

Ω

δk̃
(
k+ δk− k0

)
+ δρ̃c

(
ρc+ δρc− ρc0

)
dΩ + ν

∫

Ω

δk̃δk+ δρ̃cδρcdΩ (16)

The conjugate gradient algorithm is applied at each iteration of the Levenberg-Marquardt algorithm. With J ′u(δu)δũ, we can

get a reconstruction of the thermal parameters k and ρc in the investigated domain.

6
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3 Electromagnetic modeling

The GPR imaging of an unknown wall requires recording electric field measurements at the air-wall surface. The GPR is

composed by a transmitting and a receiving antenna having a spatial common offset, which are moved simultaneously to

gather data along a line. The transmitting antenna radiates an electromagnetic signal in the wall and a part of this signal is

reflected by buried anomalies and detected by the receiving GPR antenna.5

3.1 Electric field computation

For GPR signal modeling, we consider a 2D geometry consisting in a three-layered medium where the upper medium is free-

space, the central medium is a lossy dielectric wall, and the lower medium is free-space (see fig.1). It is supposed that the upper

air/wall interface is located at z = 0, having assumed an x−z coordinate system with the x axis directed parallel to the air/wall

surface and the z axis normal to it. The free-space is characterized by dielectric permittivity and magnetic permeability equal10

to ε0 and µ0. The wall has a relative dielectric permittivity equal to εb and an electrical conductivity equal to σb. All media are

supposed to be non-magnetic (Soldovieri et al., 2007).

As well-known, the space-time behavior of the electromagnetic field in all mediums is governed by the Maxwell’s equations

(17) (Balanis, 2012)





∇∧E =−∂B
∂t

∇∧B = ∂D
∂t + Jc + Js

∇ ·D = ρ

∇ ·B = ρm

(17)15

where E is the electric field vector, H is the magnetic field vector, Jc is current density vector induced by the electric field,

Js is the impressed current density vector, B is the magnetic induction vector, D is the electric induction vector, ρ is the

electric charge density and ρm is the magnetic charge density.

In isotropic media, Jc, B, and D are related to E, and H by the constitutive laws (Balanis, 2012)





Jc = σE

D = εE

B = µH

(18)20

In order to get the electric field at the measurement points along the air/wall surface, the direct problem has to be solved based

on the known geometrical and electromagnetic properties of the scenario. This problem is herein solved numerically by using

the popular GprMax tool developed by Giannopoulos (Giannopoulos, 2005). The code discretizes Maxwell equations in space

and time by means of the Finite Difference Time (FDTD) method based on the Yee’s algorithm. The antennas are modeled

7
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as electric line sources assumed invariant along the y-axis (Soldovieri et al., 2007). The perfectly matched layers (PMLs) are

used to the terminate the computational domain in order to prevent spurious reflections of the electromagnetic waves from the

outer boundaries. At each time step, the electric field measurements are recorded at the receiving antenna location. Moreover,

a simulation is carried out for each position of the transmitting and receiving antennas in order to compute GPR data in the

multi-bistatic configuration. Finally, in order to account for the effects of measurement noise, a white Gaussian noise is added5

to the computed electric field.

3.2 Electromagnetic inverse problem

The goal of GPR imaging is to reconstruct the dielectric properties of the investigated domain D plane starting from the

knowledge of the scattered field measurements taken at the surface of the structure under test.

Due to the linearity of Maxwell’s equations (17), the electric field E at each measurement point can be decomposed into an10

incident and a scattered component. The first one Einc is the electric field in absence of buried anomalies, while the second

Es is originated by the variation of subsurface dielectric properties with respect to background (Persico, 2014).

The scattering phenomenon can be conveniently described in terms of the electric contrast function χ (Persico and Bernini,

2005; Persico, 2014; Soldovieri et al., 2009):

χ(x,z) =
εeq(x,z)− εeqb

εeqb
(19)15

where

εeq(x,z) = ε0εr(x,z)− j
σ(x,z)

2πf
(20)

and

εeqb = ε0εb− j
σb

2πf
(21)

are the equivalent complex dielectric permittivities of the target and the wall, respectively, and σb and εb are the conductivity20

and the relative dielectric permittivity of the wall.

The scattered electric field is related to the unknown contrast function χ by the integral equation (Persico, 2014)

Es(xs) = k2
s

∫ ∫

D

Ge(xs,x′,z′)E(xs,x′,z′)χ(x′,z′)dx′dz′ (22)

where Es is the scattered field datum probed at xs, ks is the wavenumber in the wall, Ge is the external Green’s function,

and E is the total field in D.25

8
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The electromagnetic inverse scattering problem is non-linear and ill-posed. This fact implies the necessity to apply a reg-

ularization scheme in order to obtain a stable solution. Furthermore, the non linear nature of the problem brings additional

difficulties related to the avoidance of false solutions (local minima).

In order to avoid the non-linearity problem and reduce the computation complexity of the related data processing algorithms,

the Born approximation is applied to linearize the problem and get a unique solution. According to Born approximation, strictly5

holding in the case of weakly scattering targets, the total field in D is approximated as the incident field, i.e. E ≈ Einc. Then,

the scattering phenomenon is governed by the linear integral equation (22), (Leone and Soldovieri, 2003; Persico and Bernini,

2005; Soldovieri et al., 2007)

Es(xs) = k2
s

∫ ∫

D

Ge(x,x′,z′)Einc(xs,x′,z′)χ(x′,z′)dx′dz′ (23)

In order to retrieve the unknown contrast function χ, the singular value decomposition (SVD) of the linear operator defined10

by the equation (23) is evaluated. Specifically, the singular system {σn,un,vn} is introduced with {σn} being the sequence

of singular values sorted in decreasing order, {un} being the basis function in the unknown space, and {vn} being the basis

functions in the data space. The regularization of the solution is achieved by means of the truncated SVD algorithm (Leone

and Soldovieri, 2003; Persico and Bernini, 2005; Soldovieri et al., 2007).

χ=
N∑

n=1

1
σn
〈Es,vn〉un (24)15

where 〈,〉 denotes the scalar product in the data space and N is a truncation index fixed usually fixed at the knee of the

singular value curve in order to find a good compromise between accuracy and stability of the solution.

4 Coupling of thermal and electromagnetic methods

The GPR imaging method has some drawbacks. First of all, the retrieved contrast function depends on the electrical properties

of the background (Soldovieri et al., 2011). Moreover, due to the application of the Born approximation, the reconstruction are20

only qualitative, i.e. they provide an indication about the position and approximate shape of the targets(Leone and Soldovieri,

2003; Persico and Bernini, 2005). It must be further stressed that some distortions unavoidably arise in GPR images due to

multipath clutter (Gennarelli and Soldovieri, 2015).

The thermal reconstruction method also presents some drawbacks. The effusivity ratio has an important effect on the quality

of the reconstructions (Crinière et al., 2014). The defect area can be overestimated for some kinds of inclusions. The recon-25

struction is also sensitive to the side effects (Brouns et al., 2014) and to the noise (Nassiopoulos and Bourquin, 2013).

In this work, we propose to reduce the area of the thermal investigation domain in order to mitigate the side effects and

noise sensitivity if there is no inclusion close to the measurement points. This decrease of the investigation domain extent is

performed when the GPR image indicates that there is no inclusion near the measurement points.

9
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Accordingly, we first perform a reconstruction of the wall with the GPR. This reconstruction allows defining a smaller

investigation region where an inclusion is likely to be located. After, a thermal reconstruction is performed over this smaller

domain.

To get a first location of the inclusions with the GPR, the spatial map defined by the normalized amplitude of the contrast

function χ̂ is considered (Soldovieri et al., 2009)5

χ̂(x,z) =
|χ(x,z)|

max
(x,z)∈D

|χ(x,z)| (25)

This function is null where the dielectric permittivity is equal to that of the background and different from zero over target

regions. A threshold Tm is also introduced to get the characteristic function Ur (Soldovieri et al., 2009)

Ur(x,z) =





1 if χ̂(x,z)≥ Tm
0 else

(26)

which defines a binary image of the probed scene on the basis of the amplitude of the retrieved contrast function.10

Based on the information retrieved from GPR images, we define three useful sub-domains for the thermal reconstruction

(see figure 2).

The first sub-domain D1 contains the elements of the thermal mesh located close to the points having a characteristic function

equal to 1. This sub-domain is most likely to contain the discontinuities or inclusions detected with the GPR.

The second sub-domain D2 contains the elements of the thermal mesh where the characteristic function is equal to 0;15

inclusions are supposed not to be located in this sub-domain.

To reduce the discontinuity between the two others sub-domains, we add a third sub-domain D3 located between D1 and

D2. This sub-domain aims at being an area in which an inclusion might be retrieved. D3 is however different from D1 insofar

as the thermal reconstruction performed in this area takes into account the fact that the probability for an inclusion to be in this

area is lower than in D1.20

Let us define A the set of points (x,z) such as Ur(x,z) = 1 and B the set of mesh element centroids used for the thermal

reconstruction.

The sub-domain D1 is made of the elements of centroid (x,z) ∈ B such as

∃(x0,z0) ∈ A such as




|x−x0| ≤ l1x
−l1z− ≤ z− z0 ≤ l1z+

(27)

10
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Figure 2. thermal sub-domains

The sub-domain D2 is made of the elements of centroid (x,z) ∈B such as

∀(x0,z0) ∈ A such as




|x−x0| ≥ l2x
z0− z ≥ l2z− or z− z0 ≥ l2z+

(28)

Where l1x, l2x, l1z+, l1z−, l2z+ and l2z− are length such as :





l1x ≤ l2x
l1z+ ≤ l2z+
l1z− ≤ l2z−

(29)

The lower part of the inclusion can be badly located (Persico and Bernini, 2005). To take into account this effect, we add the5

following condition:




l1z+ ≤ l1z−
l2z+ ≤ l2z−

(30)

The sub-domain D3 is constituted of the elements of the thermal mesh which are not in D1 neither in D2.

The location of these sub-domains is shown in figure 2.
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In the case D3 6= ∅, we define on D3 the norm ‖ · ‖D3 relative to the scalar product 〈·, ·〉D3 defined such as

〈a,b〉D3 =
∫

D3

a(x)b(x)dΩ (31)

We propose to take into account the a priori information coming from the electromagnetic characteristic function Ur by the

following way (see Fig.3).

The sub-domain D2 is far from the a priori location of inclusions or discontinuities. The assumption is made that no defect5

is located in D2. Consequently, we suppose that there is no inclusion in this sub-domain and that the thermal properties u in

this sub-domain are those of the background u0.

∀x ∈D2,u(x) = u0(x) (32)

To take into account the fact that the sub-domain D3 is located between D1, where the inclusions have been reconstructed

with the GPR reconstruction, and D2, where we have made the assumption that there is no inclusion, we suppose that for10

sub-domain D3 the thermal properties are close to those of the background. Anyway, we let the option that thermal parameters

could not be equal to the background parameters in order to be able to reveal a potential inclusion which would have been

located wrong or not identified with the GPR. To do that, we add to the functional J a constraint term :

µ

2
‖u−u0‖2D3

(33)

Where µ is a scalar allowing to adjust the intensity of the constraint.15

We define U ′ the subspace of U such as ∀(x,z) ∈D2,u(x,z) = u0(x,z)

The optimization problem becomes: find u ∈ U ′ such as

u= argmin
v∈U′

J(v) (34)

where

J(u) =
1
2
‖T (u)−Tm‖2M+

ε

2
‖u−u0‖2R+ +

µ

2
‖u−u0‖2D3

(35)20

To minimize J , the differential J ′u(δu)δũ, introduced in section 2.2 needs to be evaluated. This differential has been evalu-

ated, without constraint term, in equation (16) and becomes
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Figure 3. Joint thermal and electromagnetic imaging approach.

Table 1. Thermal and electric properties of the materials

material ρc [J ·K−1 ·m−3] k [W ·m−1 ·K−1] εr σ [S ·m−1]

limestone 2420× 855 2.22 8 0.01

wood 600× 1900 0.15 5 10−8

J ′u(δu)δũ=−
ta∫

0

∫

Ω

δk̃∇T · ∇δT ∗dΩdt−
ta∫

0

∫

Ω

δρ̃c
∂T

∂t
δT ∗dΩdt+ ε

∫

Ω

δk̃
(
k+ δk− k0

)
+ δρ̃c

(
ρc+ δρc− ρc0

)
dΩ

+ ν

∫

D3

δk̃
(
k+ δk− k0

)
+ δρ̃c

(
ρc+ δρc− ρc0

)
dΩ + ν

∫

Ω

δk̃δk+ δρ̃cδρcdΩ (36)

This new formulation of the functional J has to be compared to the first one (16) expressed in section 2.2, as it integrates

now a new constraint term. This term will allow us to exploit a priori information retrieved from GPR data inversion.

5 Numerical tests5

The numerical examples reported in this study is concerned with a limestone wall containing a wood inclusion (see fig.4).

The electric and thermal properties of these materials can be found in the pertinent literature 1, (Dumoulin et al., 2010)

(Giannopoulos, 2005) and are listed in Tab.1. The wall has a length of 2m, a height of 1.5m, and the wood inclusion is 1m long

and 10cm thick. The top of this inclusion is located at depth of 40cm.
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Figure 4. Geometry of the simulated scenario

Table 2. Lengths used to generate the three sub-domains

parameter l1x l1z+ l1z− lx l1z+ l1z−

length [m] 0.1 0.05 0.8 0.1 0.05 0.8

The synthtetic GPR data are computed thanks to GPRMax code, by considering a Ricker pulse radiated at the central

frequency of 1300MHz. The data are gathered along the observation line ranging from x= 0.1m to x= 1.9m with a step of

3cm.

The investigation domain for GPR reconstruction has the same size of the wall and it is discretized with a step of 1.4cm in

both directions. For the GPR recosntruction, we exploit a frequency band [100,2600] MHz, which is discretized with a step5

equal to 30MHz.

The TSVD algorithm is applied with a threshold on the singular values equal to −30dB, i.e. the singular values larger than

0.0316 times the maximum singular value are retained.

Then, to get the three investigation sub-domains, we use the parameters summarized in tab.2

As regards with the thermal direct model, we define the following synthetic periodic thermal loading at the monitored surface10

Γm





Ta(t) = 12 + 5sin(ωt−φ)

Ts(t) =−5 + 12sin(ωt−φ)

Φrad(t) = 250× 1
2 (sin(ωt−φ) + |sin(ωt−φ)|)

(37)

where Ta and Ts are expressed in ◦C and Φrad in W ·m−2. The measurements are collected over a time interval of five days.

The convective exchange coefficient is equal to h= 10 Wm−2K−1. The equivalent radiative exchange coefficient is evaluated
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Figure 5a. Reconstructed conductivity Figure 5b. Reconstructed capacity

as hrad = σε(Tsurf +Ts)(T 2
surf +T 2

s ), where Tsurf is equal mean air temperature and Ts to the mean of sky temperature. A

white Gaussian noise with an amplitude equal to 0.5◦C is added to the data calculated in accordance with the direct model.

The reconstructed fields for thermal parameters without a priori information (not geometry information inferred by GPR

inversion) are shown in figures 5a and 5b, respectively.

In order to analyze these images in a simple but quantitative way, we implement the following approach to identify the5

contour shape of the reconstructed anomaly. To this end, we analyze both the values of the reconstructed thermal parameters

and their gradients. An element of the mesh is part of a contour if both reconstructed values, k and ρc, are distant by at least

a % of the background parameters. This criterion aims at excluding from the inclusion all the elements having reconstructed

parameters close to the background parameters. The threshold a= 10% is chosen for this study.

We suppose that the thermal parameters have a strong variability along the contour of the inclusion and assume that, at the10

contours of the inclusion, the gradient norms of both reconstructed parameters are higher than elsewhere in the investigated

domain. On the basis of this consideration, we assume that a point (x,z) belongs to the contour of an inclusion only if





‖∇k(x,z)‖
k0(x,z) ≥ b
‖∇ρc(x,z)‖
ρc0(x,z) ≥ b

(38)

After processing, closed contours that verified the above condition (38) are kept and their interior constitute a set of sub-

domains that belongs to defective area. At that stage, no filtering on the size of defective area is applied, to preserve multiple15

detection possibilities.

In order to have a first estimation of the contours, we initiate the threshold b to 0 and select the points of the investigated

domain satisfying both criteria. After, we increase the value of b until significant variations in the size or the number of the

reconstructed inclusions occur. Beyond this critical value b0, we observe that at least one main contour which exists with b < b0

is not closed yet. Here, we have empirically chosen a threshold b= 0.5. (this sentence is not clear)20

With both criteria, we get the reconstruction of the inclusion without a priori information shown in figure 6.
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Figure 6. Reconstruction of inclusion with thermal method without a priori information

Figure 7a. Reconstructed contrast function (caption checked

too)

Figure 7b. Reconstructed characteristic function

Let us turn to consider the case if the thermal reconstruction when the information about the geometry is gained by GPR

reconstruction. The reconstructed (normalized) contrast function is shown in figure 7a and the corresponding geometry of the

inclusion is highlighted by the characteristic function in fig. 7b.

The deduced thermal sub-domains are shown in figure 8. The thermal reconstruction applied on the sub-domains D1, D2

and D3 lead to the thermal fields presented on figures 9a for the conductivity and 9b for the capacity.5

The reconstruction of the inclusion is shown on figure 10, in this case we have empirically chosen a gradient threshold

b= 2.2.

To complete our study, we focus on the case the inclusion is constituted of air or steel instead of wood. The air is characterised

by a relative dielectric permittivity equal to 1, eheras the steel can be assumed as a perfectly electrical conducting object. The

thermal properties of these materials are described in table 4, (Dumoulin et al., 2010; Giannopoulos, 2005).10

As can be observed, the location and the shape of the inclusion are better identified with a priori information. The area of

the reconstructed inclusion is lower with a priori information and closer than the area of the initial inclusion, regardless the

nature of the inclusion.
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Figure 8. Reconstruction of inclusions with thermal method without a priori information

Figure 9a. Reconstructed conductivity with a priori information Figure 9b. Reconstructed capacity with a priori information

In practice, we focus the minimization of the functional J on two sub-domains when we have a priori information. These

two sub-domains do not include here the part of the initial investigated domain located close to the surface, so the side effects

are highly reduced with the GPR information. In particular, the variations of the thermal parameters close to the surface, visible

on figures 5a and 5b do not interfere if we use a priori information. In fact, with the GPR reconstruction, we get the information

that there is no inclusion close to the surface, so there is no research of inclusion next to the surface. The noise added to thermal5

measurements have quite no effect on the reconstruction because the high-frequency of this noise cannot propagate far from

the surface effect (the thermal diffusion from surface act as a low pass filter). The coupling of these two methods allows to

highly reduce the side effects and to get an improvement of the shape of the reconstructed inclusion.

However, we can notice that the reconstructed thermal properties (thermal conductivity and heat capacity) values encompass

the location of the inclusion, but also connected areas in the non affected part of the material matrix. The relative differences10

between the reconstructions and the targets are reported in table 4. The relative errors for the heat capacity are significantly

improved by using the joint approach excepted for inclusion filled with air. The relative errors for the thermal conductivity
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Figure 10. Reconstruction of inclusions with thermal method with a priori information

Table 3. Thermal and electric properties of the materials

material ρc [J ·K−1 ·m−3] k [W ·m−1 ·K−1] εr σ [S ·m−1]

air 1.225× 1006 0.0242 1 0

steel 8055× 480 15.1 1 1.11× 106

remain important, but care must be taken while making that analysis as the inclusion nature have low thermal conductivity

excepted for steel. For instance, air thermal conductivity is very low and small numerical error will affect significantly the

relative error. Nonetheless, the reconstructed parameters are coherent : the reconstructed values are higher than those of the

background for steel, and lower for wood and air, as it was expected. Finally, the inclusion shape reconstruction is enhanced,

though this reconstruction phase could take benefit of more advanced post-processing approaches. In particular, we want to5

Figure 11a. Reconstructed inclusion of air without a priori in-

formation

Figure 11b. Reconstructed inclusion of air with a priori infor-

mation
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Table 4. Properties of the reconstructed inclusions

material ρc ρc error(ρc) k k error(k) S S (target) error(S)

wood (no GPR) 1.89× 106 1.14× 106 66 % 2.00 0.15 1233 % 0.63 0.10 530 %

wood (GPR) 1.05× 106 1.14× 106 -7.9 % 1.00 0.15 566 % 0.30 0.10 200 %

air (no GPR) 1.83× 106 1.23× 103 1.5× 105 % 1.78 0.0242 7255 % 0.46 0.10 360 %

air (GPR) 7.59× 105 1.23× 103 6.2× 104 % 0.820 0.0242 3288 % 0.41 0.10 310 %

steel (no GPR) 2.24× 106 3.87× 106 -42 % 2.40 15.1 -84 % 0.71 0.10 610 %

steel (GPR) 2.94× 106 3.87× 106 -24 % 2.87 15.1 -81 % 0.29 0.10 190 %

Figure 12a. Reconstructed inclusion of steel without a priori

information

Figure 12b. Reconstructed inclusion of steel with a priori in-

formation

point out results obtained for the steel inclusion for which it can be observed that the joint thermal and electromagnetic approach

allows us now to better reconstruct the inclusion and not only detect it by signal processing approach.

6 Conclusions

In this numerical study, we have proposed a diagnostic approach for thick wall structures combining thermal and GPR imaging

approaches in order to improve the fidelity of the reconstruction results obtained with only one method.5

The thermal method is based on the minimization of a functional, which is achieved with the Levenberg-Marquardt algorithm

by computing a gradient with the adjoint state method.

The GPR imaging problem has been formulated by resorting to a linearized inverse scattering model based on the Born

approximation. The resulting linear problem has been inverted via the truncated singular value decomposition scheme.

The combination of both reconstruction methods has been then presented. Based on GPR reconstruction, three sub-domains10

have been identified. The first one is the most likely to contain inclusions, the second one is far from potential inclusions
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revealed by the GPR. The third one is located among the previous ones. A constraint term has been added to the functional to

minimize in order to take into account the a-priori information provided by GPR images.

Numerical examples have been reported and confirmed improved performance in terms of location of the inclusion, shape of

the inclusion, area, and thermal parameters. However, the thermal conductivity is still far from the true inclusion conductivity.

The future research work will focus on the validation of the proposed approach against experimental data on a dedicated test5

site in outdoor conditions.
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