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Abstract 9 

Vegetation indices are mostly described as crop water derivatives. Normalized Difference 10 

Vegetation Index (NDVI) is one of the oldest remote sensing applications that widely used to 11 

evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI 12 

derivatives are exclusively used to assess crop water relationships. Four hydrological drought 13 

indices are examined in the current research study. Water Supply Vegetation Index (WSVI), Soil 14 

Adjusted Vegetation Index (SAVI), Moisture Stress Index (MSI) and Normalized Difference 15 

Infrared Index (NDII) are implemented in the current study as an indirect tool to map the effect 16 

of different soil salinity level on crop water stress in arid environments. In arid environments; 17 

such as Saudi Arabia, water resources are under pressure especially groundwater levels. 18 

Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. 19 

Heavy abstractions of groundwater; which exceed crop water requirements in most of the cases 20 

are powered by high evaporation rates in the designated study area because of the long days of 21 

extremely hot summer. Landsat OLI-8 data were extensively used in the current research to 22 

obtain several vegetation indices in response to soil salinity in Wadi Ad-Waser. Principal 23 

Component Analysis and Artificial Neural Network Analysis are complementary tools to 24 

understand the regression pattern of the hydrological drought indices in the designated study 25 

area.      26 

 27 

Keywords: Arid Environment, Remote Sensing techniques, Soil Salinity Mapping, Vegetation 28 

Indices. 29 
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1. Introduction  30 

Remote sensing data considered to be a convenient source to perfume several vegetation indices 31 

in either simple or complicated band ratio combinations. Satellite images offer a large amount of 32 

data that could be analyzed, processed and stored to better understand several vegetation indices 33 

based on the type of the satellite sensor used (Govaerts et al., 1999; Pinty et al., 2009). 34 

Hypothetical backgrounds have been implemented to improve and enhance the optimization of 35 

particular satellite sensor to support certain vegetation indices (Verstraete et al., 1996; Gobron et 36 

al., 2000; Psilovikos and Elhag, 2013). 37 

Spectral vegetation indices are mathematical combinations of different spectral bands mostly in 38 

the visible and near-infrared regions of the electromagnetic spectrum. Vegetation activities can 39 

be measured comprehensively through semi-analytical methods of spectral band ratios that have 40 

been extensively used to detect not only seasonal variability of the vegetation cover but also 41 

local scale spatial variability (Broge and Mortensen, 2002; Xiao et al., 2002). 42 

The generic principle of utilizing vegetation indices is to improve the interpretation of the 43 

spectral data reflected from a vegetation cover. Spectral reflectance variabilities tend to 44 

differentiate between different vegetation characteristics based on crop water relationships and 45 

other surrounding features of soil components and atmosphere based on the maximization of 46 

vegetation characteristics over the surrounding environments (Moulin and Guerif, 1999; Boegh 47 

et al., 2002). Color, roughness, and water content are mainly the soil components that affect soil 48 

spectral reflectance (Curran, 1983a, b; Bouman and Tuong, 2001).  49 

Soil parameter variation tends to draw a line on a plenary scattergram. Nevertheless, this line 50 

used as a reference point and known as “soil line” in vegetation studies involved both Red and 51 

Infrared spectral bands (Colombo et al., 2003, Elhag, 2014a, b). Utilization of vegetation indices 52 
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has been challenged always by the major difficulty which is the minimization of soil component 53 

interferences and sensitivity maximization of atmospheric variations (Leprieur et al., 1994; Qi et 54 

al., 1994). Atmospherically Resistant Vegetation Index (ARVI) developed by Kaufman and 55 

Tanré (1992) and the Global Environmental Monitoring Index (GEMI) developed by Pinty and 56 

Verstraete (1991) are the less sensitive vegetation indices to the atmospheric variation. On the 57 

other hand, Qi et al. (1994) reported that the (GEMI) is soil noise sensitive. Higher noise 58 

sensitivity of GEMI has completely disabled the index and classifies it to arid region inadequate.   59 

Implementations of vegetation indices are varied from a local leaf scale to continental vegetation 60 

scale. Moreover, certain indices tend to be site and/or species specific (Clevers, 1989; Elhag 61 

2014a) and it can’t be applied not only to different species but also different leave structure and 62 

canopies geometry (Xiao et al., 2002).  Scholarly work of Kerr, and Ostrovsky (2003), Pettorelli 63 

et al. (2005), Huete et al. (2008) and Elhag (2014b) reported that several vegetation indices used 64 

to estimate different vegetation parameters extensively includes: Leaf Area Index (LAI), 65 

Fractional Vegetation Cover (FC), Crop Water Shortage Index (CWSI), Drought Severity Index 66 

(DSI) and Water Supply Vegetation Index (WSVI). 67 

Soil salinization is a dynamic process arises basically when an excess of irrigational water is 68 

frequently used in the drainage capacity of the fields (Wardlow and Egbert, 2010). 69 

Implementations of remote sensing techniques in soil salinity mapping achieved comprehensive 70 

results on the regional scale (Montandon and Small, 2008). Brightness Index (BI), Normalized 71 

Difference Salinity Index (NDSI) and Salinity Index (SI), are widely distinguished in soil salinity 72 

mapping in an arid environment (Douaoui et al., 2006; Jiapaer et al., 2011). Current research 73 

aims to evaluate the suitability of different vegetation indices for a different level of remotely 74 

sensed soil salinity with contrasting to crop water relationships in Wadi Ad-Wasser. 75 
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2. Materials and methods 76 

2.1. Study area  77 

The study area, Wadi Ad Dawasir town is located in the plateau of Najd at Lat 44o 43' and Lon 78 

20o 29'; about 300 km south of the capital city Riyadh. The study area illustrated in Figure 1 is 79 

comprised of gravelly tableland disconnected by insignificant sandy oases and isolated mountain 80 

bundles. Across the Arabian Peninsula as a whole, the tableland slopes toward the east from an 81 

elevation of 1,360 meters in the west to 750 meters at its easternmost limit. Wadi Ad Dawasir 82 

and Wadi ar Rummah the most important pattern of the ancient riverbeds remains in the study 83 

area. Wadi Ad Dawasir and Najran regions are the major irrigation water abstraction from Al-84 

Wajid aquifer. Agriculture in Wadi Ad Dawasir area consists of technically highly developed 85 

farm enterprises that operate modern pivot irrigation system. The size of center pivot ranges 86 

from 30 ha to 60 ha with farms managing hundreds of them with the corresponding number of 87 

wells. The main crop grown in winter is wheat and occasionally potatoes, tomatoes or melons. 88 

All year fodder consists of alfalfa, which is cut up to 10 times a year for food. Typical summer 89 

crops for fodder are sorghum and Rhodes grass, which is perennial, but dormant in winter. The 90 

shallow alluvial aquifers could not sustain the high groundwater abstraction rates for a long time 91 

and groundwater level declined dramatically in most areas. Meteorological features of the area 92 

are speckled.  Five elements of meteorology are constantly recorded through fixed weather 93 

station located within the study area.  Temperature varies from 6o C as minimum temperature to 94 

43o C as maximum temperature. Relative humidity is mostly stable at 24 %. Solar radiation of 95 

average sunrise duration is generally 11 hrs/day. Average wind speed is closer to 13 km/hr and 96 

may reach up to 46 km/hr in thunderstorm incidents. Finally, mean annual rainfall is about 37.6 97 

mm (Al-Zahrani and Baig, 2011). 98 
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Figure 1. Location of the study area (Elhag, 2016). 99 

2.2. Methodological framework 100 

The current research work is based on assessing a regression correlation between different 101 

vegetation indices and their spatial corresponding soil salinity values conducted from satellite 102 

images. Principal Component Analysis is the undertaken tool to envisage the impacts of Soil 103 

Salinity on the current vegetation.  104 

2.3. Estimation of vegetation indices 105 

2.3.1. Water Supply Vegetation Index (WSVI): 106 

𝑊𝑆𝑉𝐼 =  𝑁𝐷𝑉𝐼 𝑇𝑠⁄                                                                                                                        (1) 107 

Where  108 

Ts is the brightness temperature channel or related remote sensing imagery estimated. The 109 

smaller this index is, the more severe the drought is. 110 

2.3.2. Soil Adjusted Vegetation Index (SAVI): 111 

𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅−𝑅)

(𝑁𝐼𝑅+𝑅)∗(1+𝐿)
                                                                                                              (2) 112 

Where,  113 

NIR is the Near Infrared band 114 

R is the Red band 115 

L is the is the soil brightness correction factor, commonly L = 0.5, (Huete, 1988). 116 

 117 

 118 
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2.3.3. Moisture Stress Index (MSI): 119 

𝑀𝑆𝐼 =
𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅
                                                                                                                              (3)  120 

Where  121 

SWIR1 is the Short-wave Infrared band 1 122 

NIR is the Near Infrared band 123 

2.3.4. Normalized Difference infrared Index (NDII): 124 

𝑁𝐷𝐼𝐼 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅1)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅1)
                                                                                                               (4) 125 

Where  126 

NIR is the Near Infrared band 127 

SWIR1 is the Short-wave Infrared band 1. 128 

 129 

2.4. Estimation of soil salinity index  130 

Soil salinity indices are principally adjusted to detect salt mineral in soils based on the different 131 

responses of salty soils to various spectral bands. The following equation to map soil salinity was 132 

used after Elhag (2016): 133 

𝑆𝐼 = (𝐺 ×𝑅)/𝐵                                                                                                                           (5)  134 

Where,  135 

B is the Blue band 136 

G is the Green band 137 

R is the Red band 138 
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2.5. Regression Analyses 139 

The purpose of the regression analyzes is to envisage the regression potentials between soil 140 

salinity index from one side and the rest of the hydrological drought indices from the other side. 141 

Principle Component Analysis (PCA) and Artificial Neural Network (ANN) were the 142 

implemented approaches. The PCA is to transform a set of likely correlated with unlikely 143 

correlated variables. Principal components number is less/equal to the variables original number. 144 

Following Lorenz (1956), PCA fundamental equations are: 145 

First vector W (1) has to be answered as following: 146 

𝑤(1) =  arg 𝑚𝑎𝑥‖𝑤‖=1 {∑ (𝑡1)(𝑖)
2

𝑖 } =  arg 𝑚𝑎𝑥‖𝑤‖=1 {∑ (𝑥𝑖  . 𝑤)2
𝑖 }                            (6) 147 

The matrix form of the above equation gives the following: 148 

𝑤(1) =  arg 𝑚𝑎𝑥‖𝑤‖=1 {‖𝑋𝑤‖2} =  arg 𝑚𝑎𝑥‖𝑤‖=1 {𝑤𝑇  𝑋𝑇  𝑋𝑤}                              (7) 149 

W (1) has to be answered as following: 150 

𝑤(1) = arg 𝑚𝑎𝑥 {
𝑤𝑇 𝑋𝑇 𝑋𝑤

𝑤𝑇 𝑤
 }                                                                               (8) 151 

Originated w(1) suggests that first component of a data vector x(i) can then be expressed as a score 152 

of t1(i) = x(i) ⋅ w(1) in the transformed co-ordinates, or as the corresponding vector in the original 153 

variables, {x(i) ⋅ w(1)} w(1). 154 

The neural network regression model is written as: 155 

𝑌 = 𝛼 + ∑ 𝑤ℎ𝜙ℎ(𝛼ℎ + ∑ 𝑤𝑖ℎ𝑋𝑖)
𝑝
𝑖=1ℎ                                                           (9) 156 

Where 157 

𝑌 = 𝐸(𝑌|𝑿) .   This neural network model has 1 hidden layer but it is possible to have additional 158 

hidden layers. 159 
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The 𝜙(𝑧) function used is hyperbolic tangent activation function. It’s used for logistic activation 160 

for the hidden layers.   161 

𝜙(𝑧) = tanh(𝑧) =
1−𝑒−2𝑧

1+𝑒−2𝑧
                                                                                      (10) 162 

It is significant that the final outputs to be linear not to constrain the predictions to be between 0 163 

and 1.  A simple diagram of a skip-layer neural network is illustrated in Figure 2. The equation 164 

for the skip-layer neural network for regression is shown below. 165 

𝑌 = 𝛼 + ∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1  + ∑ 𝑤ℎ𝜙ℎ(𝛼ℎ + ∑ 𝑤𝑖ℎ𝑋𝑖)

𝑝
𝑖=1ℎ            (11) 166 

It should be clear that these models are highly parameterized and thus, will tend to overfit the 167 

training data.  Cross-validation is, therefore, critical to make sure that the predictive performance 168 

of the neural network model is adequate.   169 

 Figure 2. Artificial Neural Network scheme with 1 hidden layer and 3 nodes. 170 

Recall the skip-layer neural network regression model looks like this: 171 

𝑌 = 𝛼 + ∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1  + ∑ 𝑤ℎ𝜙ℎ(𝛼ℎ + ∑ 𝑤𝑖ℎ𝑋𝑖)

𝑝
𝑖=1ℎ                                                            (12) 172 

However, this model most likely overfits the training data.  Consequently, determination of the 173 

adequate performance of the ANNs model is a must. Five different criteria are used: the Pearson 174 

coefficient of correlation (R), the root mean square error (RMSE), the mean absolute Deviation 175 

(MAD), the negative log-likelihood and the unconditional sum of squares (SSE). Basically, 176 

RMSE is the examined parameter for comparability reasons.  RMSE can be computed as:  177 

𝑅𝑀𝑆𝐸 =  √
1

𝑇0
∑ (𝑦1 − ý1)2𝑇0

𝑡=1                                                                                             (13) 178 

Where t is the time index, ŷt 
and yt  are the simulated and measured values. Principally, the higher 179 

value of R and smaller values of RMSE ensure the better performance of the model. 180 
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3. Results and Discussion 181 

Realization of the hydrological drought indices was exercised after a comprehensive remote 182 

sensing data correction. Basically, atmospheric correction and spatial enhancement were 183 

practiced utilizing Landsat 8 data acquired over the designated study area.  The four hydrological 184 

drought indices were shown in Figures 3 to 6. Stochastic algorithms of WSVI and SAVI 185 

mapping (Figures 3 and 4) showed spatial coherence with a higher drought indices value within 186 

the agricultural area rather than the surrounding (Ceccato et al., 2001; Daughtry et al., 2004). 187 

On the contrary, MSI exercised as a deterministic drought index, it’s nearly unaffected by 188 

changing water content. Conducted results showed two classes of stresses, stressed and no stress. 189 

The no stress class located within the agricultural area and the stressed area represented along the 190 

agricultural peripheral areas (Figure 5) where higher values indicate greater water stress and less 191 

water content. This could be explained rationally by the presence of irrigational sprinkles (Hunt 192 

et al., 1989; Ceccato et al., 2001).  NDII is also a stochastic algorithm and was exercised in the 193 

current research due to the higher sensitivity of Infrared band to detect changes in water content 194 

of plant canopies (Hardisky et al., 1983). Spatial distribution of NDII (Figure 6) was mapped 195 

accordingly with WSVI and SAVI indices, in which higher NDII values means higher water 196 

content (Jackson et al., 2004).    There are several algorithms to map soil salinity based on 197 

utilization of different remote sensing data as well as different ecological systems. An adequate 198 

NDSI algorithm was carried out according to Elhag (2016) findings in arid ecosystems. In Figure 199 

7, NDSI was mapped in the designated study area showed spatial variation of salted soils, 200 

especially the new agricultural expansion at the southern west part of the designated study area 201 

due to the sprinkle movement drove the accumulation of excess waters at the peripherals of the 202 

agricultural areas (Lunetta et al., 2002; Konukcu et al., 2006). 203 
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Figure 3. Water Supply Vegetation Index (WSVI) thematic map over the study area. 204 

 205 

Figure 4. Soil Adjusted Vegetation Index (SAVI) thematic map over the study area. 206 

 207 

Figure 5. Moisture Stress Index (MSI) thematic map over the study area. 208 

 209 

Figure 6. Normalized Difference Infrared Index (NDII) thematic map over the study area. 210 

 211 

Figure 7. Normalized Difference Salinity Index (NDSI) thematic map over the study area. 212 

 213 

Further statistical analyzes were carried out to construe the correspondences between salted soils 214 

and different horological drought indices. Regression analysis demonstrated in Figure 8 showed 215 

that salinity increases with lower WSVI and SAVI (Figure 8 a, b) which explained due to salt 216 

accumulation in soils. Under salinity stress conditions, there is no enough available water in soils 217 

for proper vegetation growth (Lunetta et al., 2002; Yang et al., 2011). 218 

Generally, MSI values (Figure 8 c) are high in the study area because of the excess irrigation 219 

regime adopted to overcome the high evaporation rates (Elhag and Bahrawi, 2014; Elhag, 2016). 220 

Excess irrigation regimes in poor drain soils lead to waterlogging problems and salts accusation 221 

(Elhag, 2016).     222 

Due to NDII higher sensitivity to water, NDII values increases with higher NDSI values. Salts 223 

accumulation caused by excessive irrigation is the driving force behind the proportional 224 

increment of NDII values in conjunction with NDSI values demonstrated in Figure 8d (Jackson 225 

et al., 2004; Shishi et al., 2015).  226 
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Figure 8. Regression analyzes pf NDSI (ppm) against horological drought indices. 227 

 228 

Figure 9 demonstrated the Principal Component Analysis along with the Factor Analysis. 229 

Moreover, eigenvalue decomposition is also demonstrated. WSVI and SAVI were grouped 230 

together. On the other hand, NDII and MSI were individually plotted against the former indices. 231 

 232 

Figure 9. Principle Component Analysis. 233 

 234 

Similar results conducted from the Scatter Plot Matrix and the companion correlation matrix 235 

shown in Figure 10 and Table 1. A high correlation is distinguished between WSVI and SAVI 236 

while negative correlation noted between WSVI and SAVI from one side and MSI AND NDII 237 

from the other side.  238 

Figure 10. Scatterplot Correlation Matrix. 239 

 240 

Table 1. Correlation matrix.  241 

 242 

In Table 2, NDSI regression analysis shows that NDII is the proper fit based on different 243 

regression parameters (Rodgers and Nicewander, 1988). Spearman’s correlation demonstrated in 244 

Table 3 supports PCA results. Hydrological drought indices were classified into two categories, 245 

MSI, and NDII in one category and WSVI and SAVI in the other one. The elements of each 246 

category are positively correlated. MSI and NDII were significantly correlated; WSVI and SAVI 247 

were highly correlated. Moreover, any other combinations of the four hydrological drought 248 

indices were not correlated.  249 
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The ANN analysis was carried out under 1 hidden layer, 3 nodes, and hyperbolic tangent 250 

activation function conditions. These conditions were carefully exercised to prevent the 251 

algorithm overfitting, ANN analysis is demonstrated in Table 4. NDII expressed the highest 252 

RMSE which indicates that NDSI and NDII are statistically the best fit ((Jiang, 2013). SAVI 253 

comes at the second best fit followed by WSVI. MSI failed to fit NDSI values comprehensively 254 

like the former hydrological drought indices (Jones and Marshall, 1992; Jiapaer et al., 2011).   255 

Table 2. Regression analysis.  256 

 257 

Table 3. Spearman’s correlation. 258 

 259 

Table 4. Neural Network Analysis . 260 

 261 

4. Conclusion 262 

The findings of the current research emphasized on the importance of the horological drought 263 

indices to envisage the adverse effects of salts accumulation in poorly drained soils. Remote 264 

Sensing techniques were satisfactory implement and interpreted in term of soil salinity mapping 265 

in consort with hydrological drought indices. Normalized Difference Infrared Index was 266 

statistically proved to be the Normalized Difference Salinity Index profound, followed by Soil 267 

Adjusted Vegetation Index and Water Shortage Vegetation Index respectively. Principal 268 

Component Analysis and Artificial Neural Network Analysis are complementary tools to 269 

understand the regression pattern of the hydrological drought indices in the designated study 270 

area. Further work needs to be considered towards the restrictiveness of the drastic effect of salts 271 

accumulation within the study area.  272 
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Figure 1. Location of the study area (Elhag, 2016). 428 
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 432 

Figure 2. Artificial Neural Network scheme with 1 hidden layer and 3 nodes. 433 
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 436 

Figure 3. Water Supply Vegetation Index (WSVI) thematic map over the study area. 437 
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 440 

Figure 4. Soil Adjusted Vegetation Index (SAVI) thematic map over the study area. 441 
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 444 

Figure 5. Moisture Stress Index (MSI) thematic map over the study area. 445 
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 448 

Figure 6. Normalized Difference Infrared Index (NDII) thematic map over the study area. 449 
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 452 

Figure 7. Normalized Difference Salinity Index (NDSI) thematic map over the study area. 453 
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 462 

Figure 8. Regression analyzes pf NDSI (ppm) against horological drought indices. 463 
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 464 

Figure 9. Principle Component Analysis. 465 
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 473 

Figure 10. Scatterplot Correlation Matrix. 474 
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List of tables 486 

Table 1. Correlation matrix.  487 

 NDII MSI SAVI WSVI 

NDII 1 0.7182080406 -0.708975719 -0.703572559 

MSI  1 -0.888156103 -0.88249756 

SAVI   1 0.9977255509 

WSVI    1 
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Table 2. Regression analysis.  507 

 NDII MSI SAVI WSVI 

RSquare 0.798566127 0.254999657 0.246131379 0.243463225 

RSquare Adj 0.797205088 0.249965871 0.241037672 0.23835149 

Root Mean Square Error 31.88199207 0.384262574 0.202130562 0.000447112 

Mean of Response 124.5466667 0.733333333 0.286361262 0.000611978 

Observations (Sum Wgts) 150 150 150 150 
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Table 3. Spearman’s correlation. 529 

Variable  By Variable  Correlation  Count  Lower 95% Upper 95% Significance probability  

MSI NDII 0.7182 150 0.6305 0.7878 * 

SAVI NDII -0.7090 150 -0.7805 -0.6191 NS 

SAVI MSI -0.8882 150 -0.9178 -0.8487 NS 

WSVI NDII -0.7036 150 -0.7763 -0.6124 NS 

WSVI MSI -0.8825 150 -0.9136 -0.8412 NS 

WSVI SAVI 0.9977 150 0.9969 0.9984 ** 

* is significant, ** is highly significant, NS is non-significant 530 
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Table 4. Neural Network Analysis.  544 

 

 
Training Measures Validation Measures  

N
D

II
 

RSquare 0.7574526 0.6698156 

 

RMSE 0.0999530 0.0972931 

Mean Abs Dev 0.0571881 0.0436599 

 -LogLikelihood -88.411680 -45.554430 

SSE 0.9990600 0.4732975 

Sum Freq 100 50 

 

   

M
S

I 

RSquare 0.3032101 0.0893892 

RMSE 0.2388872 0.1869959 

Mean Abs Dev 0.1203075 0.0628425 

 -LogLikelihood -1.2825260 -12.886510 

SSE 5.7067096 1.7483727 

Sum Freq 100 50 

 

   

S
A

V
I 

RSquare 0.7565419 0.6698155 

RMSE 0.1499295 0.1459397 

Mean Abs Dev 0.0857822 0.0654899 

 -LogLikelihood -47.865170 -25.28115 

SSE 2.2478847 1.0649203 

Sum Freq 100 50 

 

   

W
S

V
I 

RSquare 0.7533827 0.6619429 

RMSE 0.0003280 0.0003226 

Mean Abs Dev 0.0001876 0.0001451 

 -LogLikelihood -660.35100 -331.01460 

SSE 1.08E-05 5.20E-06 

Sum Freq 100 50 

 545 

 546 

 547 

Geosci. Instrum. Method. Data Syst. Discuss., doi:10.5194/gi-2016-39, 2016
Manuscript under review for journal Geosci. Instrum. Method. Data Syst.
Published: 8 December 2016
c© Author(s) 2016. CC-BY 3.0 License.




