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Abstract. A robust Particle Swarm Optimization (PSO) investigation for magnetic data by a 2D dipping dike has been 

presented. The interpretive model parameters are: the amplitude coefficient (K), the depth to the top of the dipping 

dike (z), exact origin of the dipping dike (x0), and the width of dipping dike (w). The inversion procedure is actualized 

to gauge the parameters of a 2D dipping dike structures where it has been confirmed first on synthetic models without 

and with different level of random noise. The results of the inversion demonstrate that the parameters derived from 15 

the inversion concur well with the true ones. The root mean square (RMS) is figured by the strategy which is 

considered as the misfit between the measured and computed anomalies. The technique has been warily and effectively 

applied to real data examples from China and UK with the presence of ore bodies. The present technique can be 

applicable for mineral exploration and ore bodies of dike-like structure embedded in the shallow and deeper 

subsurface.  20 

 

1 Introduction 

These days, tremendous measure of potential field data, for example, magnetic, gravity and SP data are gathered for 

the environmental and geological applications, including mineral, ores, oil exploration and groundwater investigations 

(Reford and Sumner, 1964; Eppelbaum and Khesin, 2012; Essa et al., 2008; Holden et al., 2008; Paoletti et al., 2013; 25 

Mehanee, 2014a, Mehanee, 2014b; Pei et al., 2014; Eppelbaum, 2015; Mehanee, 2015; Mehanee and Essa, 2015; Abo-

Ezz and Essa, 2016; Essa and Elhussein, 2016a; Maineult, 2016). The intrigued data here are the magnetic data 

gathered over dikes which considered as the most well-known geologic features and mineral carriers (Abdelrahman 

and Essa, 2005; Abdelrahman and Essa, 2015; Essa and Elhussein, 2016b; Al-Garni, 2015). 

The estimation of model parameters (z, α, K, w, and x0) of a buried 2D dipping dike structure is an essential target in 30 

interpretation of magnetic data. Thus, many published methods have presented for interpreting magnetic data, for 

example, the graphical method (Peters, 1949; Koulomzine et al., 1970; Rao and Murthy, 1978), Curve matching 

techniques (Hutchison, 1958; McGrath and Hood, 1970; Dondurur and Pamukcu, 2003), Fourier transform method 

(Bhimasankaram et al., 1978), correlation factors and integration nomograms (Atchuta Rao and Ram Babu, 1981; 

Kara et al., 1996; Kara, 1997), the midpoint method (Murty, 1985), Hilbert transform method (Mohan et al., 1982; 35 
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Ram Babu and Atchuta Rao, 1991), Euler deconvolution method (Reid et al., 1990), Gauss- Newton method (Won, 

1981), complex gradient method (Atchuta Rao et al., 1981), relation diagrams (Ram Babu et al., 1982), the gradient 

methods (Rao et al., 1973; Abdelrahman et al., 2007; Essa and Elhussein, 2016b), damped least-square ridge 

regression (Johnson, 1969), Spectral analysis methods (Bhattacharya, 1971; Sengupta and Das, 1975; Cassano and 

Rocca, 1975), modular neural network inversion (Al-Garni, 2015),  an automated numerical method (Keating and 40 

Pilkington, 1990), a new semi-automatic technique (Cooper, 2012), a non-linear constrained inversion technique 

(Beiki and Pedersen, 2012). However, the drawbacks of these methods are that they are highly subjective where they 

can lead to substantial errors in parameter estimations, rely upon trial and error till achieve the best fit between the 

measured and computed anomaly, require initial starting models which are close enough to the true solution, depends 

on the precision of separation of regional and residual magnetic anomalies from the measured magnetic anomaly, 45 

either the dip of the dike or inclination of magnetic field is assumed for the guarantee of a good overall performance. 

In this study, PSO is utilized for the magnetic anomalies due to 2D dipping dike to calculate the interpretive 

model parameters (z, α, K, w, and x0). Our new approach was tested on synthetic data without and with different level 

of Gaussian noise (5%, 10%, 15%, and 20%).  Here, we apply the new calculation on magnetic data by utilizing two 

field cases from China and United Kingdom. So as to show the benefits the proposed design algorithm, the outcomes 50 

obtained are compared against borehole drilling information. 

 

2 The method 

The magnetic anomaly by a 2D dipping dike structure is given by (Hood, 1964; McGrath and Hood, 1970): 

T(xi , z, d, α) = 55 

   K [sin α (tan−1  ( 
xi + d

z
 ) – tan−1  ( 

xi − d

z
)) −

cos α

2
 ln (

(xi + d)2 + z2

(xi − d)2 + z2
)] ,                   

                                                                                                i = 1, 2, 3, 4, … … … … . N         (1)                     

where z is the depth (m) to the top, d is the half-width (m), α (deg.) is the index angle and K (mA/m) is the amplitude 

coefficient.  

 Kennedy and Eberhart, (1995) created a PSO-algorithm. It depends on the reproduction of the obvious social conduct 60 

of birds, fishes and insects in nourishment searching. PSO-calculation effectively connected and applied in many 

disciplines, like model development (Cedeno and Agrafiotis, 2003), biomedical pictures (Wachowiak et al., 2004), 

electromagnetic optimizations (Boeringer and Werner, 2004), hydrological issues (Chau, 2008), and different 

geophysical application (Alvarez et al., 2006; Shaw and Srivastava, 2007). In this calculation the birds representing 

the particles or models, every particle has an area vector which represent the parameters value and a speed vector. For 65 

instance, for a five dimensional optimization issue, every particle or individual will have an area in a five dimensional 

space which represent an answer (Eberhart and Shi, 2001). Every particle changes its position at every  
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progression of the operation of the calculation, this position is updated during the iteration process considering the 

best position came to the particle which is known as the Tbest model and the best area acquired any particle in the group 70 

which is known as the Jbest model, this update is described in equation 2 and 3 (Sweilam et al., 2007) 

 

Vi
k+1 = c3Vi

k + c1rand()(Tbest − Pi
k+1) + c2rand()[(Jbest − Pi

k+1)Pi
k+1] = Pi

k + Vi
k+1 ,   (2) 

xi
k+1 = xi

k + vi
k+1.                                             (3) 

where vi
k is the speed of the particle i at the kth iteration, 

k

iP is the current position of the ith particle at the kth iteration, 75 

rand() is a random number between 0 and 1, c1 and c2 are positive constant numbers known as cognitive coefficient 

and social coefficient, respectively, which control the individual and the social conduct, they are normally taken as 2 

(Sweilam et al., 2007) yet some late researches provide that choosing c1 greater than c2 but c1+c2 ≤ 4 may give better 

results (Parsopoulos and Vrahatis, 2002), c3 is the inertial coefficient which control the speed of the particle, since the 

large values may make the particles miss up the good solutions and the small values may result in not enough search 80 

space for investigation (Sweilam et al., 2007), its typically taken less than 1, 
k

ix  is the position of the particle i at the 

kth iteration. 

The five controlled-model parameters (z, K, θ, xo, and w) can be estimated by applying the PSO-algorithm on the 

following objective function (Santos, 2010) 

 85 

Q =
2 ∑ |Ti

m − Ti
c|N

i=1

∑ |Ti
m − Ti

c|N
i=1 + ∑ |Ti

m + Ti
c|N

i=1

 ,                                                                           (4) 

 

where N is the number of reading points, Ti
m is the measured magnetic anomaly at the point xi, Ti

c is the calculated 

magnetic anomaly at the point xi. 

The magnetic anomaly from equation 1 is calculated at each iterative step for each xi using the PSO-algorithm, Figure 90 

1 represents the work flow of the PSO-algorithm, the RMS between the observed and calculated data is computed 

from the following formula: 

RMS = √
∑ [T(xi) − Tc(xi)]2N

i=1

N
 ,                                         (5) 

where T(xi) is the measured field and Tc(xi) is the computed field. This is considered as the misfit between the 

observed and calculated anomalies. 95 
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3 Results 100 

In this paper, noisy free and contaminated data with different level of random noise (5, 10, 15, 20%) are utilized to 

exhibit the execution and appropriateness of the proposed technique. 

3.1 Noise free data 

The PSO-technique was applied to synthetic magnetic anomaly by a dipping dike with the following parameters; K = 

795.78 mA/m, z = 8 m, α = 40 o, d = 3, xo = 0 m, and profile length = 80 m. In this situation, there is no noise in the 105 

data, so we begin test our procedure utilizing 100 models. The best model was come after 700 iterations and the ranges 

of the parameters are appeared in Table 1. The inverted-parameters that controlled the body dimensions have a good 

correspondence with the theoretical values (Table 1) which the percentage errors in the inverted-model parameters 

equal zero.  

3.2 Contaminated synthetic data 110 

Noisy-data considered as a critical part in geophysics. With a specific end goal to investigate the conduct of noise 

corrupted data. 

At the principal, we forced 5% of arbitrary Gaussian noise on the magnetic data of the dipping dike model (Figure 2).  

The inverted-parameters (K, z, α, and d) are given in Table 1. Table 1 demonstrates that the rate of error in the inverted-

model parameters are 10%, 1.25%, 1.725%, 16.67%, respectively, and the RMs error is 3.49 mA/m.  115 

Besides, we imposed 10% of arbitrary Gaussian noise on the same synthetic anomaly (Figure 3). The inverted-

parameters (K, z, α, and d) are given in Table 1. Table 1 shows that the percentage of error in the inverted-model 

parameters are 13%, 1.25%, 0.9%, 20%, respectively, and the RMs error is 7.32 mA/m.    

Thirdly, we embed 15% of random Gaussian noise on a similar synthetic anomaly (Figure 4). The inverted-parameters 

(K, z, α, and d) are given in Table 1. Table 1 shows that the rate of error in the inverted-model parameters are 16.5%, 120 

0%, 1.35%, 23.33%, respectively, and the RMs error is 13.59 mA/m.    

At last, we imposed 20% of random Gaussian noise on a similar synthetic anomaly (Figure 5). The inverted-parameters 

(K, z, α, and d) are given in Table 1. Table 1 shows that the percentage of error in the inverted-model parameters are 

20%, 2.5%, 1.2%, 16.67%, respectively, and the RMs error is 15.68 mA/m.  

From the above outcomes, the estimations of the inverted-model parameters (K, z, α, d and xo) for the synthetic 125 

example without and with various level of noise are in good correspondence with the true-values.  

 

 

 

 130 
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4 Field examples 

Keeping in mind the end goal to inspect the productivity and the legitimacy of the suggested method, we have 

connected our new calculation to two real field cases with expanding complexity of the geological models taken from 

the published literature. 135 

4.1 Magnetic anomaly of Magnetite Iron Deposit, China 

Figure 6 demonstrates the measured magnetic anomaly profile M163-1 in the magnetite iron deposit, Western Gansu 

Province, China (Guo et al., 1998) of length 222.5 m and the sampling interval is 2.78 m. This magnetic field anomaly 

is interpreted by the proposed method. Table 2 shows the ranges and results of estimated parameters (K = 8116.91 

mA/m, z = 22.24 m, α = 57.99o, d = 9.174, xo = 0.01 m). The evaluated model has been computed and contrasted with 140 

the true ones (Figure 6). The final outcomes computed are contrasted with the borehole drilling information (z = 20-

25 m and d = 9 m) as far as various parameters (Table 3).  

4.2 Magnetic anomaly in Red Hill Farm, UK 

In this part, we will utilize a PSO algorithm to evaluate the interpretive model parameters of magnetic anomaly profile 

taken in south of Red Hill Farm, Millom, United Kingdom (Hallimond and Whetton, 1939). The length of the profile 145 

is 61 m and the digitizing interval is 0.76 m (Figure 7). This magnetic field anomaly is interpreted by the proposed 

method. Table 4 demonstrates the ranges and outcomes of estimated parameters (K = 175.07mA/m, z = 19 m, α = 

75.6o, d = 2.28 m, xo = -0.1). The estimated model has been computed and contrasted with the true ones (Figure 7) 

There is a good correlation between results assessed from our technique and the borehole drilling information 

published in Hallimond and Whetton (1939) (where z = 18.29 m and d = 2.29 m).  150 

At last, we assess the adequacy and proficiency of our technique, we additionally contrast its execution with some 

state of art algorithms. Tables 2 and 4 condense the inverted results. As can be found in these tables, surprisingly, our 

inversion algorithm significantly outperforms the up-to-date model parameters estimation for two field examples. For 

all field example, our inversion gives a full picture of the model parameters rather than other methods which did not 

give a fully interpretation.  155 

  

 

 

 

 160 
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5 Conclusions 

This paper illustrated the utilization of new algorithm in assessing the model parameters (z, xo, d, α and K) of a 2D 

dipping dike model. The viability of the suggested algorithm is exhibited on five troublesome examples including 165 

noisy free data, contaminated data, and two real field data. The new approach has the ability to get the better quality 

solution, and has better convergence characteristics and computational efficiency. The comparison of the results with 

drilling information reported in the literature demonstrated the prevalence of the suggested method and its potential 

for solving magnetic problem. From the outcomes obtained, it is finished up new inversion algorithm is a promising 

technique for solving the quantitative interpretation of magnetic data. In the future work, we will attempt to propose 170 

some enhanced version of this new inversion algorithm to solve the problem. 

 

6 Data availability 

First our algorithm is applied on synthetic data created from equation 1 with and without Gaussian noise (Hood, 

1964; McGrath and Hood, 1970), the results were given in section 3. Then the proposed algorithm applied to two 175 

field examples the first one is profile over the magnetite iron deposit, Western Gansu Province, China (Guo et al., 

1998) of length 222.5 m (Figure 6) and the sampling interval is 2.78 m, while the second one was magnetic anomaly 

profile taken in south of Red Hill Farm, Millom, United Kingdom (Hallimond and Whetton, 1939). The profile 

length is 61 m and the sampling interval is 0.76 m (Figure 7). 

 180 
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Table 1. Numerical results for a 2D dipping dike model without and with various level of 5%, 10%, 15%, and 

20% of Gaussian noise (K = 795.78 mA/m, z = 7 m, α = 40 o, d = 3, xo = 0 m, and profile length = 80 

m).   

Type of body Parameters Used ranges Result 
e  

(%) 

RMS  

(mA/m) 

Dipping dike 

without random Gaussian noise 

K (mA/m) 397.89-1591.55 795.78 0 

0 

z (m) 1-12 8 0 

α (o) 10-60 40 0 

d (m) 1-8 3 0 

xo (m) -80-30 0 0 

with 5% random Gaussian noise 

K (mA/m) 397.89-1591.55 875.35 10 

3.49 

z (m) 1-12 8.1 1.25 

α (o) 10-60 39.31 1.725 

d (m) 1-8 2.5 16.67 

xo (m) -80-30 0.11 ------ 

with 10% random Gaussian noise 

K (mA/m) 397.89-1591.55 899.23 13 

7.32 

z (m) 1-12 8.1 1.25 

α (o) 10-60 40.36 0.9 

d (m) 1-8 2.4 20 

xo (m) -80-30 -0.08 ------ 

With 15% random Gaussian noise 

K (mA/m) 397.89-1591.55 927.08 16.5 

13.59 

z (m) 1-12 8 0 

α (o) 10-60 39.46 1.35 

d (m) 1-8 3.7 23.33 

xo (m) -80-30 0.10 ------ 

With 20% random Gaussian noise 

K (mA/m) 397.89-1591.55 954.93 20 

15.68 

z (m) 1-12 7.8 2.5 

α (o) 10-60 40.48 1.2 

d (m) 1-8 2.5 16.67 

xo (m) -80-30 -0.25 ------ 

 335 
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Table 2. Numerical results for the magnetite iron deposit field example, China. 

 

 340 

 

 

 

 

Table 3. Correlation between numerical results obtained from drilling data and our method for magnetite iron 345 

deposit field example, China. 

 

  

Parameters Used Ranges Result 
RMS 

(mA/m) 

K ( mA/m) 79.58-1591.55 8116.91 

198.73 

z (m) 16-28 22.24 

α (o) 20-80 57.99 

d (m) 5-12 9.174 

xo (m) -10-10 0.01 

       Method 

 

 

Parameters 

Drilling data, Guo, 

et al. (1998) 
Present method 

K ( mA/m) ------- 8116.91 

z (m) 22-25 22.24 

α (o) ------- 57.99 

d (m) 9 9.174 

xo (m) -------- 0.01 
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Table 4. Numerical results for magnetic anomaly in Red Hill Farm, UK field example. 
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 375 

 

 

Parameters Used Ranges Result 
RMS 

(mA/m) 

K (mA/m) 79.58-795.78 175.07 

0.74 

z (m) 20-30 19 

α (o) 20-90 75.6 

d (m) 1-10 2.28 

xo (m) -10-10 0.1 
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Figure 1: work-flow of PSO-algorithm applied to magnetic anomalies interpretation 
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Figure 2: Total magnetic anomaly of a buried dipping dike-like a geologic structure with K = 795.78 mA/m, z 

= 8 m, α = 40o, d= 3, xo = 0 m, and profile length = 80 m, without and with 5% random Gaussian 430 

noise. 
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 435 

Figure 3: Total magnetic anomaly of a buried dipping dike-like a geologic structure with K = 795.78 mA/m, z 

= 8 m, α = 40o, d= 3, xo = 0 m, and profile length = 80 m, without and with 10% random Gaussian 

noise. 

 

440 

Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2017-39
Manuscript under review for journal Geosci. Instrum. Method. Data Syst.
Discussion started: 21 July 2017
c© Author(s) 2017. CC BY 4.0 License.



17 
 

 

Figure 4: Total magnetic anomaly of a buried dipping dike-like a geologic structure with K = 795.78 mA/m, z 

= 8 m, α = 40o, d= 3, xo = 0 m, and profile length = 80 m, without and with 15% random Gaussian 

noise.  
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Figure 5: Total magnetic anomaly of a buried dipping dike-like a geologic structure with K = 795.78 mA/m, z 

= 8 m, α = 40o, d= 3, xo = 0 m, and profile length = 80 m, without and with 20% random Gaussian 

noise.  450 
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Figure 6: A total magnetic anomaly profile over a magnetite iron deposit, Western Gansu Province, China 475 

(open circle) and the estimated magnetic anomaly (black circle) using PSO-algorithm. 
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Figure 7: A vertical magnetic anomaly profile over southern Red Hill Farm, Millom, United Kingdom (open 505 

circle) and the estimated magnetic anomaly (black circle) using PSO-algorithm. 
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