
Treatment of deterministic perturbations and stochastic processes
within a quality control scheme
Birgit Eibl1 and Reinhold Steinacker1

1University of Vienna, Department for Meteorology and Geophysics, Althanstraße 14, 1090 Vienna, Austria

Correspondence to: Birgit Eibl (birgit.eibl@univie.ac.at)

Abstract. Meteorological in situ observational data comes with a variety of errors and uncertainties. Any further usage of this

data requires a sophisticated quality control to detect, quantify and possibly eliminate or at least to reduce errors and to increase

the value of the information. It must be assumed, that each observational value Ψobs is contaminated by errors Ψerr so that the

true state Ψtrue is not known. Different kinds of errors can be identified. Each of them has different characteristics and therefore

has to be detected through appropriate methods. For years, various methods as a self consistency test, clustering and nearest5

neighbour techniques have been implemented in the complex quality control scheme of the Vienna Enhanced Resolution

Analysis (VERA). Thereby former elaborations adressed the elimination and treatment of gross errors. In successioon the

present investigation adresses the determination of stochastic and deterministic perturbations. In a first step we implemented the

method to split up the observational value to smooth out the stochastic errors to the best and retain deterministic perturbations

thereafter. Through controlled experiments on two dimensions the performance and limitations of the complex quality control10

scheme has been investigated. The treatment of errors and signals on different scales and the limit of the usability of this

property is the main focus of the presented investigation. We highly recommend to use the method for data quality control

within a high resolution model analysing spatially distributed data in highly complex terrain.

1 Introduction

Meteorological observational in situ data comes with a variety of errors and uncertainties. Any further usage of this data re-15

quires a sophisticated quality control to detect, quantify and possibly eliminate or at least to reduce errors and to increase the

value of the information. Different methodologies for detecting, handling and eliminating different kinds of data have been

developed by for instance Gandin (1988) or Haiden et al. (2010). Phillips and Marks (1996), for example, suggest that for

every model using spatial interpolation, should include an uncertainty map for the results, as every interpolation introduces an

additional uncertainty to the original input values. Gandin (1988) suggests using a complex quality control able to treat all dif-20

ferent kinds of errors individually as they occur. Working with or handling observational data within a data assimilation system

of a weather analysis or prediction model requires individual quality control mechanisms according to different priorities.

The Vienna Enhanced Resolution Analysis (VERA) (Mayer and Steinacker, 2012) used in this work, is independet from any

prognostic model or model first guess field and focuses on the statistical behaviour and the spatial and temporal consistency of

observational data to detect and correct errors before the data is brought to a regular grid. Several models on the meso scale25
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work with data assimilation methods, where the detection of errors depends on the difference between observed and model

data. One such model is, for example, the Integrated Nowcasting through Comprehensive Analysis (INCA) system (Haiden

et al., 2011). High resolution prognostic models like those developed by the Consortium for Small Scale Modelling (COSMO)

(Schraff and Hess, 2012) or the Weather Research and Forecasting Model (WRF) (Wang et al., 2008) use different assimilation

schemes and first guess fields from global or lower resolution models to generate the initial condition. For the purpose of the5

presented investigation it is highly recommended to exclude errors that are introduced by model first guess fields.

The INCA system (Haiden et al., 2011) relies on the Numerical Weather Prediction (NWP) model output and uses operational

in situ data and additionally high resolution remote sensing data, to interpolate between observations. Analyses of INCA are

not used as an initial condition for NWP model integration (Haiden et al., 2010) but start instead with first guess fields com-10

ing from the ALADIN short-range forecast. This first guess is adjusted by the difference between observation and forecast at

the observational locations. The data quality control of the high resolution COSMO-model is performed by the observation

nudging technique for data assimilation before producing high resolution analyses. The initial conditions come from various

coarse-grid driving models (GME, EZMWF, COSMO-Model) or from the continuous data assimilation stream (Schraff and

Hess, 2012). As Haiden et al. (2011) pointed out, VERA is an analysis scheme which is independent from prognostic mod-15

els, whereas INCA relies on NWP model output. The downscaling in VERA is carried out with the aid of high resolution

patterns, generated by topography and land surface characteristic, INCA basically uses remotely sensed data and topographic

information. Both systems aim to create analysis fields as close as possible to observational data (Haiden et al., 2011), but

VERA is superior for model verification, because the model based background field of INCA does not allow an independent

comparison between analysis and model. (Troupin et al., 2012) proposed a similar interpolation method like VERA, based on20

the minimization of a cost function and a finite element solver. As Phillips (1986) pointed out, the meteorological noise in

the initial data can be reduced by adjusting amplitudes and phases of gravity modes, in this case, to values that are forced by

non-linear interaction between Rossby modes. This was an early attempt to suppress meteorological noise in fields, generated

by observational data.

25

For a better understanding of the methodology in section 2, a brief description of the error detection and eliminating procedure

is being given. When it comes to gross error detection, and the overall complex quality control system, a detailed description

can be found in (Mayer et al., 2012). This paper focusses on the further development of the complex quality control system

within VERA and the possibility of the added value that can be gained when used in complex terrain. Different types of errors

and noise are being separated and filtered to obtain a pure signal in meteorological fields. The described method within the30

VERA quality control scheme wants to preserve not only the synoptic scale, but also small scale orographically induced signals

in the data. Therefore the accuracy of high resolution prognostic models could be enhanced if the quality controlled data is

used within or as a part of a data assimilation process. We recommend to use the proposed scheme for the highly complex

terrain and a high resolution model. But on the global scale and on flat terrain the 4D-VAR data assimilation scheme will be

the better choice, as the model first guess field deliver a robust basis for data analysis on flat terrain. A positive impact on the35
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WRF performance in the Alpine region, when using VERA quality controlled data, has been observed recently (pers. comm.

Mayer, 2016).

The main goal of this paper is to investigate the performance, uncertainty and limitation of the proposed complex quality

control by carrying out controlled experiments on two dimensions over complex terrain. An expansion to three dimensions5

as is common for regional models like INCA, WRF or COSMO could easily be carried out. The more the (wanted) signal is

preserved and the more (unwanted) noise is filtered out from the data, the better the performance of the quality control scheme

is. Section 2 explains the methodology, used data and performed controlled case studies are presented in Section 3, followed

by the presentation and discussion of the results in Section 4. Conclusions and outlook finalize the paper in Section 5.

2 Methodology10

Before irregularly distributed data are interpolated to a regular grid, complex quality control should be performed, to eliminate

or correct errors (Gandin, 1988). According to the methodology of Steinacker et al. (2000), Sperka and Steinacker (2011) and

Mayer et al. (2012), it must be assumed that each observational value Ψobs is contaminated by errors Ψerr so that the true state

Ψtrue is not known.

Ψobs = Ψtrue + Ψerr (1)15

As we normally only have observations available at discrete intervals, at stations at specific distances from each other, we

can only derive those scales of the true field, which are much larger than the average station distance. We call this resolvable,

generally smooth part of the field "synoptic" Ψsyn and denote the unresolvable rest by the term "sub scale" Ψsub. Concerning

sub scale patterns, a downscaling, which is performed in the VERA-system by the so called fingerprint technique, can be

carried out, if access to additional information is available. Fingerprints Ψfp are high resolution - with regard to the station20

distance - fields, for example, from remote sensing platforms like radar for precipitation, satellite infrared radiometric informa-

tion for temperatures, high resolution topographic or land type information for parameters, which are correlated to elevation

or other topographic and land type features, etc. The strength cfp of the fingerprint pattern has to be calibrated (weighted) by

observations through statistical regression. The stronger the fingerprint pattern is present in the observational data, the higher

the weighting factor cfp is. Several different fingerprints may be offered to the system. Fingerprints have some similarities to25

EOFs, but are physically, rather than statistically, determined .

Sub scale signals can also be investigated by a multivariate approach. If Ψ for example is the precipitation rate, cases are com-

monly found, in which just one station reports precipitation in a larger area without any precipitation. Without any additional

information it is impossible to decide, whtether the precipitation report is erroneous or if a local shower really has occurred

just at the one station. If we consider the fact, that during a typical shower the temperature drops, humidity rises, wind speed30

increases, wind direction changes, pressure rises, etc., we can get a more robust estimate of whether the value represents a

signal or just a random error, when we also consider the spatial structure of the other mentioned parameters. The difference
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to the fingerprint technique is that despite we can distinguish between signal and error or noise by the multivariate approach

we cannot derive the scale of the phenomenon or the sub scale spatial pattern. Sub scale signals, uncovered by a multivariate

approach are denoted by Ψsubsig . The residual of Ψsub, which is neither detectable by the fingerprint nor by the multivariate

approach is denoted by meteorological noise Ψmn. The error part of the observations Ψobs, which may be caused by a sensor

calibration error, wrong reading, error introduced during transmission, coding or decoding, etc., can be split up into random5

errors Ψre, systematic errors (bias) Ψse and gross errors Ψge. Hence it is possible to split up each observational value into a

number of parts:

Ψobs = Ψsyn +
∑

i

(cfpΨfp)i + Ψsubsig + Ψmn + Ψre + Ψse + Ψge (2)

It should be noted here, that the scale separation between the large (synoptic) scale and the subscale depends on the station

density. If the mean station distance is in the order of 100 km, the large scale basically covers extra tropical cyclones and10

anticyclones. If an observational micro-net with a 1 km station distance is available, even convective systems or urban heat

islands may become "synoptic" features. Furthermore it is impossible to separate the meteorological noise and random errors

which we therefore combine to Ψmn + Ψre = Ψnoise. Hence an observational value can be split up into 6 separable parts:

Ψobs = Ψsyn +
∑

i

(cfpΨfp)i + Ψsubsig + Ψnoise + Ψse + Ψge (3)

Normally, with the exception of Ψge, the amplitude of Ψsyn is larger than the amplitude of the other components of Ψobs.15

After the removal of gross errors, a low pass spectral, Gaussian, Laplacian or other adequate spatial filter will therefore create

a field which is close to the synoptic component. The problem thereby is that such a filter will not only dampen random errors

but also the meteorologically relevant smaller scale patterns. What we usually want are both the "clean" synoptic and the sub

scale patterns as well. The difference between the observed value at a station and the filtered value Ψobs−Ψsyn ("deviation")

represents the basis for the error detection and qualification scheme of VERA. The whole procedure to separate the terms of 320

has to be carried out iteratively:

– Iteration I (gross error detection): Many gross errors can be detected, when the deviation exceeds certain physical

or statistical limits. VERA uses the following criterion: If the deviation at one station exceeds physical limits or (for

normally distributed variables) the three-fold long term interquartile range of the same station, the observation is treated

as a gross error. To avoid the impact of gross errors on the spatial analysis in the next iteration, observations characterized25

as gross errors are omitted in the further analysis.

Ψobs = Ψsyn +
∑

i

(cfpΨfp)i + Ψsubsig + Ψnoise + Ψse (4)

– Iteration II (systematic error /bias correction): If the temporal mean value of the deviations over a long time (e.g. a

month) at a station is different from zero, such a mean deviation is characterized as a bias. In the next iteration the data

set of observations is corrected with regard to the detected biases.30

Ψobs−Ψse = Ψsyn +
∑

i

(cfpΨfp)i + Ψsubsig + Ψnoise (5)

4

Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2017-42
Manuscript under review for journal Geosci. Instrum. Method. Data Syst.
Discussion started: 21 December 2017
c© Author(s) 2017. CC BY 4.0 License.



– Iteration III (finger print elimination): To be able to detect deterministic small scale patterns in the field, we need

suitable fingerprints as mentioned above. We can offer the analysis system several possible fingerprints, for which the

weights are determined by regressions. If a pattern is recognized in the data, the weight will be positive, if it is not

recognized, the weight will be zero. A negative weight means that the inverse of a given pattern has been recognized.

In addition subtracting the deterministic small scale components in the form of weighted fingerprints from the observed5

value equation (5) yields

Ψobs−Ψse−
∑

i

(cfpΨfp)i = Ψsyn + Ψsubsig + Ψnoise (6)

– Iteration IV (multivariate small scale signal elimination): If single subscale signals, found by a multivariate approach in

a scale are kept, the corresponding deviations from the left side of equation (6) can be subtracted to obtain:

Ψobs−Ψse−
∑

i

(cfpΨfp)i−Ψsubsig = Ψsyn + Ψnoise (7)10

Alternatively if it is desired that these sub scale signals are filtered, Ψsubsig can be left on the right hand side as part of

Ψnoise:

Ψobs−Ψse−
∑

i

(cfpΨfp)i = Ψsyn + Ψnoise (8)

– Iteration V (random error elimination): Now the noise can be eliminated from the field by applying a suitable filter.

VERA takes an overlapping spatial Laplace filter (Mayer et al., 2012) to quantify the deviations, which are interpreted as15

random errors. By subtracting the latter from the left hand side of equation (7) or equation (8) the "clean" deterministic

large scale (synoptic) part of the observation can finally be obtained.

Ψsyn = Ψobs−Ψse−
∑

i

(cfpΨfp)i−Ψsubsig −Ψnoise (9)

or

Ψsyn = Ψobs−Ψse−
∑

i

(cfpΨfp)i−Ψnoise (10)20

The field of the quality checked and corrected "clean" synoptic and the deterministic subscale patterns can be re-

combined in the corresponding parts:

Ψsyn +
∑

i

(cfpΨfp)i + Ψsubsig = Ψobs−Ψse−Ψnoise (11)

or

Ψsyn +
∑

i

(cfpΨfp)i = Ψobs−Ψse−Ψnoise (12)25
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For a simple one dimensional example and for a data set without gross errors and biases the result of the filter process is shown

in Fig. 1. As one can easily recognize, the filter response strongly depends on the scale and the amplitude of the synoptic

pattern, and the amplitude of the noise (signal to noise range) with regard to the station distance. The VERA scheme published

by (Steinacker et al., 2011) and (Mayer et al., 2012) executes the whole quality control package before calculating the spatial

analysis fields. The presented quality control scheme within the analysis process is shown in (Fig.2) and allows small scale5

deterministic signals in meteorological fields to be conserved.

 

Figure 1. One dimensional example (observational along a space coordinate s) of the effect of filtering observational data with and without

consideration of small scale patterns (fingerprints). When observational data are filtered directly (dotted curve), much of the deterministic

small scale pattern is lost. When filtering the observed data without the fingerprint pattern (dashed curve), we damp only the noise. The

sum of the filtered synoptic part and the fingerprint part (continuous curve) results in a pattern, where small scale deterministic features stay

unfiltered despite the efficient noise filtering.

Figure 2. Process of the quality control scheme. Ψobs is the initial data at irregularly distributed observational station coordinates. Ψana

is the analysed value, where possible deterministic, physically explicable patterns (ΨFP ) are extracted and weighted with the calculated

factor c. Ψsyn+noise (large scale signal and meteorological noise) is the part of the analysed initial data that is unexplained by deterministic,

physically explicable patterns. Ψ′syn+noise is the quality controlled part of the initial data.
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3 Data

The performance of the presented quality control scheme cannot seriously be verified when solely error afflicted operational

in situ data sets are used. For verification purposes the generation of data is proposed. The presented data processing makes

it possibele to calculate the exact signal to noise ratio and therefore the exact mean and standard deviation of the desired

atmospheric information and the noisy part of data. If not generated, the statistical terms of the components described in5

equation (2) are not known a priori. To prove the technical accuracy of the method and outline a sharp control it is indispensable

to generate the different components of an observational value seperately and then analyse them. Therefore control experiments

have been performed, where the set of non-dimensional components in equation (2) were generated. Data sets without any

gross errors and biases were assumed, because the gross error detection and bias correction procedure is described in detail

and extensively tested in (Mayer et al., 2012). For simplicity reasons we just take one fingerprint pattern (ΨFP ). Anexemplary10

presentation is shown in (Fig.3) . Furthermore subscale signals were not separated from random errors and hence it is possible

to stick with the formulations of equations 8, 10 and 12. Then equation (2) reduces to

Ψobs = Ψsyn + cfpΨfp + Ψnoise (13)

The synoptic part of the field is analytically generated by a two dimensional, smooth, chess pattern wave system

Ψsyn =A ∗ (sin(µxx+µyy)) +A ∗ (sin(µxx−µyy)) (14)15

The amplitude A of the wave pattern is set arbitrarily to 1 and the wave numbers µx and µy vary for the different experimental

settings between 0.005 km−1 for large scale waves and 0.04 km−1 for meso-β scale waves, which corresponds to wave lengths

λx and λy of approximately 1250 km and 150 km respectively. For the fingerprint pattern the thermal fingerprint (Steinacker

et al., 2006) and (Bica et al., 2006) has been chosen, which indicates the different heating/cooling pattern induced by lowlands,

mountains and water bodies (Fig. 3). In the setting for the discussed examination, the dimensionless values of Ψfp vary between20

0 and 1. The weight cfp of the thermal fingerprint varies for the experimental settings between 1 and 5. The noise part of the

field has been produced by a random generator leading to spatially uncorrelated Gaussian distributed numbers with a mean of 0

and a standard deviation between 0.2 and 2 and represents the roughest part of the field. Due to the variable settings of the wave

length of the synoptic part, the amplitude of the fingerprint part and the amplitude of the noise part with regard to the amplitude

of the synoptic part (signal to noise ratio) we can investigate, how well and effective the suggested quality control procedure25

can filter and eliminate the noise and retain the synoptic and fingerprint parts of the field and if or under what conditions there

are limits of its applicability.

3.1 Test Domain

In Fig.4 the location of 1311 observational stations within the European domain is shown.

The test domain encompasses a large part of Europe and North Africa and is shown in Fig.4. The station location has been30

taken from the an available set of surface weather stations on a particular day. The density of observation sites is high in Central
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Figure 3. Thermal fingerprint of Europe as used in the VERA downscaling procedure. Contour lines are dimensionless and range between 0

and 10 in the operational setting.

Figure 4. Distribution of 1311 observational stations within the European section.
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Europe, whereas in Scandinavia, on the Iberian peninsula and especially over the oceanic areas it is much lower. The mean

distance between two adjacent stations in the whole domain is close to 90 km. In Central Europe it is around 30 km and in the

data sparse maritime areas several hundred km.

3.2 Case Studies

For the evaluation of the performance of the filtering of the noisy part of the data, various case studies with different settings of5

parameters were performed. The settings of these case studies are listed in (Tab.1) and the associated statistics in (Tab.2). The

designation of the case studies consists of the three parts that build the generated data value, characterized by different capital

letters W, N and FP. W stands for the wavenumber, N for the noisy part and FP for the "fingerprint". The numbers directly

following the capital letters indicate the weight (for FP) or the standard deviation (for the noise) or the applied wavenumer (for

W). Within the quality control scheme the Bias correction and gross error correction was switched off. These parts have been10

extensively tested in previous elaborations (Steinacker et al., 2011) and (Mayer et al., 2012).

Table 1. Conditions and characteristics of initial data components (Ψsyn, Ψnoise, Ψfp) for various case studies. The designation of the case

studies consists of the capital letters W, N, FP; following numbers indicate either the applied weight, standard deviation or wavenumber.

µx,µy = wavenumber, STD=standard deviation of randomly distributed data (mean=0), cfp=weighting factor.

Case study Ψsyn Ψnoise cfpΨfp

µx,µy STD cfp

W001N02FP1 0.0015 km−1 0.2 1

W001N1FP1 0.0015 km−1 1 1

W001N5FP1 0.0015 km−1 5 1

W001N5FP5 0.0015 km−1 5 5

W001N1FP5 0.0015 km−1 1 5

W005N1FP1 0.005 km−1 1 1

W005N02FP1 0.005 km−1 0.2 1

W005N5FP5 0.005 km−1 5 5

3.3 Statistics

For a robust interpretation and evaluation of the filter and its performance and limits, statistical analyses were performed.

Formulas from (Wilks, 2006).

– Noise ratio (NR)15
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– Regression

– Correlation Coefficient (CC)

– Spectral analysis

As there are several signals involved in a single initial data set, the calculation of a noise ratio (NR) is crucial. NR=
STDΨnoise

STDΨ(syn+noise)
where STDΨ(syn+noise) is the standard deviation of the input signal before the application of the quality5

control and STDΨnoise
the standard deviation of the noisy part of the initial signal. For calculating the ratio with quality

controlled data, the STDΨ′
(syn+noise)

which is the standard deviation of the output signal after the initial data was quality

controlled can be applied in the formula. Therefore the NR could be described as the power of the noise devided by the power

of the signal Kieser et al. (2005).

10

The correlation coefficient (CC) indicates, how well two series of data fit together. The squared CC gives the fraction of the

variance, which is statistically explained by the regression CC2 =
∑n

j=1[yj−ȳ][ŷ(xj)−ȳ]√∑n
j=1[yj−ȳ]2

∑n
j=1[ŷ(xj)−ȳ]2

where yj are the observed

values, ȳ their mean value and ŷ(xj) the predicted values by the regression (Wilks, 2006). The correlation coefficient between

the initial data Ψsyn+noise and the quality controlled data Ψ′(syn+noise) is shown in Tab.3 in column CC. The correlation

between the Ψsyn+noise and the Ψsyn part within the same case study and Ψ′(syn+noise) with Ψsyn of the same case study is15

depicted in Tab.2 (column C1) respectively in Tab.3 in column C2.

For the spectral analysis a fast Fourier transformation (fft) was performed. The purpose is to visualize the different wavelengths

and energy spectra of the initial and quality controlled signal. In section 4 the performance is discussed and the spectra depicted.

Table 2. Statistical information for parts of the initial data (Ψsyn and Ψnoise) used in case studies before the quality control was applied.

NR is the noise ratio between Ψsyn+noise and Ψnoise. C1 is the correlation coefficient between Ψsyn+noise and Ψsyn.

Statistics MEAN STD MEAN STD MEAN STD NR C1

Case study Ψsyn Ψsyn Ψnoise Ψnoise Ψsyn+noise Ψsyn+noise

W001N1FP1 0.02 0.73 0.03 1.01 0.33 1.24 0.79 0.60

W001N02FP1 0.02 0.73 0.01 0.22 0.40 0.76 0.26 0.96

W001N5FP1 0.01 0.73 0.04 4.77 -0.13 4.77 0.99 0.17

W001N1FP5 0.01 0.73 0.03 0.98 0.57 1.30 0.75 0.63

W001N5FP5 0.01 0.73 0.01 4.72 -1.76 4.95 0.95 0.25

W005N1FP1 0.00 1.01 0.03 0.98 0.32 1.38 0.71 0.70

W005N02FP1 0.00 1.01 0.01 0.19 0.24 2.16 0.09 0.43

W005N5FP5 0.01 1.00 0.04 4.72 -1.72 4.90 0.96 0.18
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For the statistical evaluation the noise ratio (NR), the standard deviation (STD) and the correlation coefficients (CC, C1

and C2) were calculated for the original (Tab.2) and quality the controlled data (Tab.3).

4 Results

4.1 Performance

Table 3. Performance of the quality control system. Correlation coefficient (CC), noise ratio (NR), MEAN and standard deviation (STD) of

Ψ′(syn+noise) data after the application of the quality control is listed.

Performance MEAN STD CC NR C2

case studies Ψ′(syn+noise) Ψ′(syn+noise)

W001N1FP1 0.31 0.91 0.64 1.08 0.83

W001N02FP1 0.39 0.74 0.97 0.27 0.98

W001N5FP1 -0.15 2.57 0.36 1.83 0.35

W001N1FP5 0.55 0.99 0.68 0.98 0.85

W001N5FP5 -1.78 2.83 0.42 1.67 0.46

W005N1FP1 0.31 1.04 0.72 0.94 0.86

W005N02FP1 0.22 1.31 0.50 0.15 0.65

W005N5FP5 -1.73 2.73 0.39 1.73 0.31

Comparing the performed statistics before (Tab. 2) and after (Tab. 3) the application of the quality control on Ψ(syn+noise),5

a significant improvement is apparent from the lower STD of quality controlled data shown in Tab. 3. To get an idea of how

the quality control is effecting the different signals originating from different scales a Fast Fourier Transformation (fft) was

performed. For this purpose the initial data Ψ(syn+noise) and the quality controlled data Ψ′(syn+noise) were detrended and a

window function was applied. For the spectral analysis only data after the subtraction of the cfpΨfp part was used and is

presented in the log-log graphs in Fig. 5. Since the observational data and therefore the quality controlled data is a mixture10

of different signals characterized by different wavelengths, a fft provides an insightful analysis. After the quality control the

signals are no longer properly separable, but the fft gives an idea of the effect the quality control has on the initial data.

The graphs in Fig. 5 show the spectrum of wavelengths from longer wavelengths on the left to shorter wavelengths and their

dissipation at the right end of the scale. With high energetic large scale vortices on the left end of the scale and the small eddies,

noise and dissipation at the right end. With the preservation of large vortices and the reduction of smaller scale eddies one can15

say that the performance of the quality control scheme is as anticipated (Stull, 2009).
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Figure 5. Spectral analysis performed with a fast Fourier transformation (fft) with the initial data Ψ(syn+noise) (green line) before the

quality control. Red line represents the data Ψ′(syn+noise) after the application of the quality control. The figure at the top shows the case

study W005N1FP1 whereas at the bottom case study W001N1FP5 is depicted. In both case studies the noise input is exactly the same whereas

the Ψsyn part is of shorter wavelength in the case study on the left.

4.2 Limits of the filter

For different simulated atmospheric conditions the expected performance of the filter shows its limits. In table 1 the different

conditions of the performed case studies are listed. In case study W001N1FP1 with a long wavelength in the Ψsyn part of

the signal and the standard deviation of the Ψnoise around 1, the NR is significantly higher after the approach of the quality

control scheme. Whereas the NR has barely improved in case study W001N02FP1, with the same data for Ψsyn but a standard5

deviation for the meteorological noise Ψnoise of approximately 0.2. For a Ψnoise with STD = 5 the NR shows significantly

different ratios in all cases. In Fig. 6 the values for different parts of initial data is plotted in order of the magnitude of Ψsyn

data. In the formula for the Ψsyn signal (Eq.14) A is set to 1 for all case studies. Therefore the maximum amplitude should be

located around +2 respectively −2, depending on the added noisy part Ψnoise. Obviously visible is the damping of the noisy

part of the initial data (green) due to the application of the filter (quality control). The fluctuations of the quality controlled10

data (red) are of smaller amplitude than before the filter treatment. Another impact of the filter treatment not shown here is an

additional damping of the Ψsyn which is often not requested and only appearing if both parts of the initial data are within a

relative similar range of wavenumbers. This happens to a greater extent the smaller the difference between the wavelength of
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Ψsyn and Ψnoise gets. The latter impact of the filter is not likely to appear in real meteorological conditions where the synoptic

scale signal and the meteorological noise is explicitly differentiable.

Figure 6. Distribution of Ψsyn (black solid line) at 1250 observational station coordinates ordered by the magnitude of Ψsyn. In green

the initial data Ψ(syn+noise) before the filter performance test, red the data Ψ′(syn+noise) after the application of the quality control. The

wavelength for Ψsyn is 3600 km, the standard deviation for the Ψnoise part is two in the figure on the right and 1 in the left chart. Note the

different scaling of both charts.
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Figure 7. Scatter plot showing the correlation of Ψsyn with the initial data Ψ(syn+noise) (green diamonds) before the filter performance

test, red diamonds represent the data Ψ′(syn+noise) after the application of the quality control. The figure on the right shows a correlation

coefficient (CC) of 0.6 for the initial data 0.8 for quality controlled data (red). CC for the initial data in the left chart is 0.95 and after the

performed quality control 0.98.
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The two case studies shown in Fig. 7 show significant improvement with respect to the reduction of deviation and data

variability. In the chart on the left with the initial data composition of a wave number µ = 0.0015 in the Ψsyn part and a STD

= 0.2 for Ψnoise, the C1 could be enhanced from 0.95 to C2 with 0.98 for the quality controlled data. The case study on

the left with µ = 0.005 in Ψsyn and STD = 1 for Ψnoise had a C1 of 0.6 for the initial data which increased to a value of

0.8 for C2, the quality controlled data. As depicted in Tab.2 and Tab.3 correlations between the Ψsyn and the Ψ(syn+noise)5

respectively Ψ′(syn+noise) could be enhanced significantly, which was somehow the aim of changing the routine of the quality

control scheme.

5 Conclusions

A sophisticated data quality control forms the basis for a comprehensive analysis and subsequent use of measured data for data

assimilation and forecasting purposes. The presented step within a continuously and long-lasting development process of a10

complex quality control system describes only a small part of the comprehensive and extensive field dealing with broad variety

of errors, their detection and correction. The overall target of different quality control systems is to preserve and represent the

current state of the atmosphere which is the closest to the truth someone can get.

Overall the performance of the quality control scheme is able to reduce the noisy part of an initial data set even if the variation

is small. The more the wavenumber of the Ψsyn part distinguishes from the Ψnoise part of initial data fields, the more signifi-15

cant the filtering of the erroneous part of data will be. If the noisy, erroneous data and the "fingerprint" pattern are of the same

scale, the subtraction of the "fingerprint" Ψfp from the observational value Ψobs would not be satisfying, as the subtraction

would be vague and not sharp enough for preserving phenomena. Subsequently this quality control scheme would not yield

best performances within the latter conditions. Considering real conditions within a complex terrain, a so called synoptic signal

and the terrain induced modification will be of different scales and therefore the quality control system is able to manage the20

separation of the different signals. Even the meteorological noise is generally appearing on a different scale than the terrain

induced signal.

Since the present composition is based on generated data a comprehensive evaluation using observational data would be the

obvious next step. Further a detailed performance analysis within different environments in complex terrain will be carried out.

The main focus will lie on the applicability of the presented complex data quality control system to an area with dense observa-25

tional data availability on the one hand and on the other hand to determine the opposite limit for useful analysis in data sparse

areas. As in the present paper further investigations and analysis will be executed in highly complex terrain environments. The

usability of open access observational data from partly private weather stations should be addressed by a data quality control

scheme. The analysis of different parameters requires the development of different "fingerprints" and/or the usage of their

combination to identify various meteorological phenomena. For this purpose an area in the Tropics with highly irregularly30

distributed in-situ observations within a diurnal climate is selected to evaluate the possibility of the presented methodology in

the given environment. Additionally the benefit for an analysis by adding small areas where data is collected within a denser

observation network should be determined.
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Now that the limits of the filter (high resolution analysis, significant differnece between the signals) are known, real data can

be analysed with this method. The difference here is, that the exact noise ratio of real data is not known, but it is reasonable to

assume that it is higher at situations with significant and strong synoptic gradients and therefore coherent atmospheric condi-

tions in contrast to situtations where the gradient is weaker and therefore the signal to noise ratio is very low. A compariston

with real observational data is the reasonable next step. For best possible outcome, the same location as shown in Fig. (4.)5

will be used. The temperature and pressure data will be analysed and the selected case studies should fit the framework of the

generated data. Coherent atmospheric conditions like gradient intensive synoptic patterns will be selected. Further evaluation

will examine the performance of the presented method on different dense observational networks. It is expected that a denser

network does not bring significant information to the performed analysis but the investigation will point out future perspectives.
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