

1 **Total Global Solar Radiation Estimation with Relative Humidity
2 and Air Temperature Extremes in Ireland and Holland**
3

4 **Can Ekici,^{a,b}, Ismail Teke^a**
5 ^aYildiz Technical University, Department of Mechanical Engineering, Istanbul, Turkiye.
6 ^bTurkish Standard Institution, Gebze Calibration Laboratory, Kocaeli, Turkiye.
7 canekici@gmail.com
8

9 **Abstract.** Solar radiation is the earth's primary energy source for all biochemical and physical activities. Accurate
10 knowledge of the solar radiation is important in engineering applications. This study aimed to calibrate some of the
11 existing models in the literature for estimating daily total global solar radiation parameter using available measuring
12 records (maximum and minimum air temperatures) and new models were developed based on maximum and minimum
13 air temperatures, relative humidity and relative humidity extremes. Applicability of the Hargreaves model, Allen
14 model, Bristow-Campbell model and Chen model were evaluated for computing the daily total solar global radiation,
15 the geographical and meteorological data of Irish and Dutch cities were used. Meteorological data were taken from
16 Royal Netherlands Meteorological Institute and Irish Meteorological Service. The models were compared on the basis
17 of error tests which were mean percentage error (MPE), mean bias error (MBE), root mean square error (RMSE) and
18 Nash-Sutcliffe equation (NSE). And, monthly MPE errors were given for each model. This study proposed new
19 estimation models which were based on daily average relative humidity, relative humidity extremes and temperature
20 extremes. Error analyses were applied to these models and results were given in the study.

21 **Keywords:** solar radiation; temperature; relative humidity; daily total global solar radiation; model comparison;
22 Ireland; Holland; meteorological models; model validation
23

24 **1 Introduction**

25 Solar energy is the principal energy source for the processes such as biological, chemical and
26 physical activities. Accurate knowledge of the solar radiation is important for many applications;
27 simulations and modellings, architectural design, solar energy systems. There are many
28 meteorological stations those measure basic meteorological parameters; but not all of them
29 measure the global radiation in the worldwide. Sometimes, measurement of the solar radiation

30 cannot be available due to the equipment's cost, maintenance and calibration requirements in
31 developing countries. There are several empirical models in the literature to estimate the global
32 radiation using various parameters (Chen *et. al.*, 2004; Menges *et. al*, 2006).

33 Solar energy is an energy source, which is clean, renewable and domestic and solar energy has
34 high importance (Menges *et. al*, 2006). Without knowledge of solar radiation, it is impossible to
35 design solar energy systems. Estimation models are widely used when solar radiation is not
36 measured and available, these models help to obtain solar radiation value.

37 Amount of the solar radiation that received to the globe can change due to variables such as the
38 time of day and the season, and the prevailing atmospheric conditions... In the northern
39 hemisphere, the greatest amount of radiation is received in the location that is situated between 15
40 °N and 35 °N latitudes, for example Egypt. The next place which receive greatest amount of
41 radiation is between 15 °N and the equator which includes Central America. Countries located
42 between the latitudes 35 °N and 45 °N, such as Spain and Turkey, show significant seasonal
43 variations resulting in less radiation received. The least favorable locations are situated beyond 45
44 °N receive the least amount of direct radiation; such as Ireland, England, Norway, Holland and
45 Sweden. Approximately half of the radiation arrives at the surface as diffuse radiation, because
46 there may be frequent heavy cloud cover in the atmosphere (Armstorn *et. al*, 2010).

47 One of the main purposes of this study is the validation of the several models in the literature;
48 those use the difference between maximum, minimum air temperatures, to estimate daily total
49 global radiation in the cities of Ireland and Netherlands. These cities are Dublin, Eindhoven,
50 Groningen, Maastricht, Rotterdam and Twente. The study suggests new estimation models for the
51 prediction of the solar radiation. In this study, meteorological data for the cities were taken from
52 Royal Netherlands Meteorological Institute and Irish Meteorological Service database and used

53 for validation of the models. In the last years, calibration and metrology knowledge were
54 developed; new methodologies were submitted by commissions like Euramet. So, it is thought the
55 new data of meteorology institutes are more accurate and traceable. It has been thought that; the
56 measurement's reliability is higher in the data which have been recorded in recent past.
57 Meteorological parameters were taken between 2008 and first half of 2016.

58 **2 Some of the Main Mathematical Formulas about the Solar Radiation**

59 Mathematical formulas about solar radiation, which were used in this study, are given in this part
60 of the paper.

61 The plane of rotation of the earth around the sun is called the ecliptic plane. The rotation axis of
62 the earth is called polar axis. The earth's rotation and the position of the earth axis causes diurnal
63 and seasonal changes in solar radiation. The angle between the sun and the equatorial plane of the
64 earth is different in every day of the year. This angle is called the solar declination angle; δ (Iqbal,
65 1983).

66 The solar declination angle's mathematical formula can be seen in equation 1. J is the calendar
67 day in this equation with $J = 1$ on January 1 and $J = 365$ (or 366 during leap years) on December
68 31 (Campbell *et. al.*, 1998).

69 $\sin\delta = 0.39785 * \sin[278.97 + 0,9856J + 1.9165 * \sin(356.6 + 0,9856J)]$ (1)

70 Sunrise hour angle can be seen in equation 2. Here, ω_s is the sunrise angle; ϕ is the latitude of the
71 site (Iqbal, 1983).

72 $\omega_s = \cos^{-1}[-\tan\phi * \tan\delta]$ (2)

73 Reciprocal of the square of the radius vector of the earth is called the eccentricity correction factor
74 of the earth's orbit, E_0 . In many engineering applications, this factor can be expressed very simple.
75 The simple expression of the eccentricity factor can be seen in equation 3 (Iqbal, 1983).

76
$$E_0 = 1 + 0.033 * \cos\left[\left(\frac{2\pi J}{365}\right)\right] \quad (3)$$

77 Mathematical equations are developed to determine the irradiation at various surface orientations
78 and for different time periods. Daily extraterrestrial radiation is shown in equation 4 (Iqbal, 1983).
79 I_{sc} is the solar constant and it is equal to 4.921 MJ/day.m^2 (Menges *et. al*, 2006).

80
$$H_0 = \frac{24}{\pi} * I_{sc} * E_0 * \sin\theta * \sin\delta * \left[\left(\frac{\pi}{180}\right) * \omega_s - \tan\omega_s\right] \quad (4)$$

81 **3 Model Description**

82 *3.1 Hargreaves Model*

83 Hargreaves et al. (1985) suggested a simple method to estimate global solar radiation; the
84 expression can be seen in equation 5. "a" and "b" are the empirical coefficients. In this study,
85 Hargreaves model was used to predict daily total global solar radiation in Irish and Dutch cities.
86 T_{max} can be taken as the daily maximum air temperature and T_{min} is the daily minimum air
87 temperature. H is the daily total global solar radiation.

88
$$\frac{H}{H_0} = a * (T_{max} - T_{min})^{0.5} + b \quad (5)$$

89 *3.2 Allen Model*

90 Allen (1997) reported a self-calibrating model to estimate mean monthly global solar radiation,
91 which is the function of the mean monthly maximum and minimum temperatures. The model can
92 be seen in equation 6. In this study, this model was processed to estimate daily total global solar
93 radiation in the cities of Ireland and Netherlands.

94 $\frac{H}{H_0} = a * (T_{\max} - T_{\min})^{0.5}$ (6)

95 Also, “a” is an empirical coefficient, and it has been suggested as a mathematical expression, which
 96 is the function ratio of the atmospheric pressure at site (P, kPa) and at sea level (P₀, 101.3 kPa) in
 97 literature. The mathematical expression can be seen in equation 7. K_{ra} value can be taken 0.17 for
 98 interior regions, and 0.20 for coastal regions (Meza, 2000).

99 $a = K_{\text{ra}} * \left(\frac{P}{P_0}\right)^{0.5}$ (7)

100 *3.3 Bristow-Campbell Model*

101 Bristow and Campbell (1984) suggested a relationship between daily solar radiation as a function
 102 of daily extraterrestrial radiation and the difference between maximum and minimum air
 103 temperatures. The relationship can be seen in equation 8 and “a”, “b” and “c” are the empirical
 104 coefficients.

105 $\frac{H}{H_0} = a * [1 - \exp(-b\Delta T^c)]$ (8)

106 *3.4 Chen Model*

107 Chen et al. (2004) presented the model in equation 9.

108 $\frac{H}{H_0} = a * \ln(T_{\max} - T_{\min}) + b$ (9)

109 *3.5 New Models Suggested in This Study*

110 Three models based on daily temperature extremes and daily average relative humidity are
 111 suggested in the study. The models are shown in Eq. 10 and Eq. 11. RH is the relative humidity,
 112 “a”, “b”, “c”, “d” and “e” are the empirical coefficients. The H_0 value is calculated using the daily
 113 parameters. The usage and explanations of these parameters are given in the previous sections.

114 Models will be used to calculate total daily global solar radiation values. In this study, the reason
 115 why the period is selected on a daily basis is due to the importance of daily meteorological
 116 estimations. It is also thought that there may be instantaneous changes in shorter time periods.

$$117 \frac{H}{H_0} = a \left(\frac{RH}{100} \right) + b(T_{\max} - T_{\min})^{0.5} + c(T_{\max} - T_{\min}) + d \left(\frac{RH}{100} \right) (T_{\max} - T_{\min})^{0.5} + e \quad (10)$$

$$118 \frac{H}{H_0} = a \cdot [1 - \exp(-\Delta T^b)] + c \cdot RH \quad (11)$$

119 Daily relative humidity extremes were used to estimate solar radiation in this study. Two models
 120 were proposed for estimation the daily solar radiation related to relative humidity extremes. One
 121 of the models use the saturation vapor pressure, the ratio between daily maximum relative humidity
 122 and daily minimum relative humidity and the daily temperature extremes. Other model is based
 123 on temperature extremes, relative humidity ratio and the relative humidity. RH_{\max} is the daily
 124 measured maximum relative humidity, RH_{\min} is minimum relative humidity, e_s is the saturation
 125 vapor pressure at daily average temperature. The models are given in Eq. 12 and Eq. 13.
 126 Calculation of e_s is shown in Eq. 14. T_{avg} is daily average air temperature.

$$127 \frac{H}{H_0} = a \cdot [1 - \exp(\{e_s \cdot (T_{\max} - T_{\min})^{0.5}\}^b)] + c \cdot \frac{RH_{\min}}{RH_{\max}} \quad (12)$$

$$128 \frac{H}{H_0} = a \cdot [1 - \exp(\{T_{\max} - T_{\min}\}^{0.5b})] + c \cdot (T_{\max} - T_{\min})^{0.5} \cdot \frac{RH_{\min}}{RH_{\max}} + d \cdot (T_{\max} - T_{\min})^{0.5} \quad (13)$$

$$129 e_s = 0.6108 \cdot \left[\exp \left(\frac{17.27 \cdot T_{\text{avg}}}{T_{\text{avg}} + 237.3} \right) \right] \quad (14)$$

130 Empirical coefficients of the models for the cities and performance of the models can be seen in
 131 the next sections of the study.

132 4 Climatic Data

133 Daily climatic data for the Irish and Dutch cities were taken from meteorological public authorities
 134 of Ireland and Netherlands; Royal Netherlands Meteorological Institute and Irish Meteorological

135 Service. Dublin, Eindhoven, Rotterdam, Groningen, Maastricht and Twente's daily meteorological
136 data were used in the study. Locations and altitudes of the meteorological stations are given in
137 Table 1.

138 The meteorological dataset is selected on a daily basis. These meteorological data belong to the
139 period between 2008 and July 2016. Maximum and minimum temperatures, daily total global solar
140 radiation, average daily relative humidity, daily maximum and minimum relative humidity values,
141 daily average temperature values were taken from meteorological stations. Extraterrestrial solar
142 radiation values were obtained by calculation. With the help of this data obtained from
143 meteorological stations, the models in the literature have been calibrated and new models have
144 been developed.

145 **Table 1** Location and altitude information of the meteorological stations

Station name	Latitude	Longitude	Altitude
Dublin	53.423°	-6.238°	71 m
Eindhoven	51.451°	5.377°	22.6 m
Groningen	53.125°	6.585°	5.2 m
Rotterdam	51.962°	4.447°	-4.3 m
Maastricht	50.906°	5.762°	114.3 m
Twente	52.274°	6.891°	34.8 m

146 **5 Methods of Comparison and Model Evaluation**

147 Performances of the models were evaluated on the basis of mean percentage error (MPE), mean
148 bias error (MBE) and root mean square error (RMSE). MPE, MBE and RMSE are given in the
149 equation 15, 16 and 17. $H_{i,m}$ is the i th measured value, $H_{i,c}$ is the i th calculated value and N is the
150 total number of observations (Menges *et. al*, 2006). RMSE gives information about the short term
151 performance of the correlations by using a term-by-term comparison of the deviations between the
152 observed and calculated values. MBE presents the systematic error or bias and provides
153 information on the long-term performance, positive value of MBE shows an over-estimate and
154 negative value gives an under-estimate by the model. Values of MPE are calculated from the actual

155 differences between calculated and measured values, and give the percentage errors of the
 156 correlation (Almorox, 2011). When MBE converges to zero, it is the ideal performance for the
 157 model, while a low value of RMSE and low MPE are desirable (Iqbal, 1983).

$$158 \quad MPE = \frac{1}{N} \sum_{i=1}^n \left[\frac{H_{i,c} - H_{i,m}}{H_{i,m}} \right] \cdot 100 \quad (15)$$

$$159 \quad MBE = \frac{\sum_{i=1}^n H_{i,c} - H_{i,m}}{N} \quad (16)$$

$$160 \quad RMSE = \sqrt{\left| \frac{\sum_{i=1}^n (H_{i,c} - H_{i,m})^2}{N} \right|} \quad (17)$$

161 The Nash-Sutcliffe equation is also an evaluation method. A model is more efficient when NSE is
 162 closer to 1. The equation is shown in equation 18. \bar{H}_m is the mean measured global radiation
 163 (Menges *et. al*, 2006).

$$164 \quad NSE = 1 - \frac{\sum_{i=1}^n (H_{i,m} - H_{i,c})^2}{\sum_{i=1}^n (H_{i,m} - \bar{H}_m)^2} \quad (18)$$

165 MBE and RMSE values explain the systematic errors of the models. When MBE value converges
 166 to zero; the systematic error of the model decreases. It can be illustrated by bull's eye example. A
 167 marksman wants to shot a bull from its eye. The bull's eye on the target represents the measured
 168 solar radiation parameter we wish to estimate. If the marksman's aim is accurate, he/she scores a
 169 bull's eye; on the other hand, the marksman misses the bull's eye by some distance. And the
 170 marksman shoots the bull's eye repeatedly at the target, each time aiming at the bull's eye. The
 171 distance between the point clusters that shot by the marksman and the center of the eye explains
 172 the mean bias error (Biemer *et. al.*, 2003).

173 NSE is a method that indicates how well the plot of observed versus simulated data fits the line.
 174 If NSE equals to 1, the model corresponds to a perfect match between modelled and observed data.

175 **6 Results and Discussions**

176 Solar radiation data can give useful information in the design and for studies about the solar energy
177 systems, agricultural processes, etc. In the literature, there are empirical models to estimate global
178 solar radiation. These models can be suitable tools if the parameters can be calibrated for the
179 different locations. In this study, some of the models in the literature were calibrated for Irish and
180 Dutch cities to estimate daily total global solar radiation. Also, five new models were presented in
181 this study and these models were validated with the meteorological data of Ireland and Holland.
182 Validation of the models were performed with MPE, MBE, RMSE and NSE methods and given
183 in the rest of the study.

184 *6.1 Hargreaves Model*

185 MPE, MBE, RMSE error analyze methods have been applied on the models. And, NSE value has
186 been calculated via Excel 2013. The values are shown in Table 2. Also, mean percentage errors
187 for the every month are given in Table 3.

188 In equation 5, Hargreaves model can be seen. a and b are the empirical coefficients. In this study,
189 these empirical coefficients to estimate daily total global solar radiation in Irish and Dutch cities
190 are found and given in Table 3. The coefficients were derived by using MATLAB R2015a and
191 Minitab Statistical Software.

192 **Table 2** Error analyses of the Hargreaves, Allen, Bristow-Campbell and Chen models

Locati on	Monthly MPE				Whole of the model			
	Hargrea ves	Allen	Bristow- Campbell	Chen	Hargr eaves	Allen	Bristow- Campbel	Chen
Dublin	January	-38.061	-38.507	-37.256	-36.680	MBE	0.02	-0.02
	February	-20.832	-21.173	-20.188	-20.583	RMSE	3.22	3.24
	March	-14.052	-13.993	-13.768	-12.998	MPE	-22.18	-22.19
	April	-11.314	-11.070	-11.149	-9.803	NSE	0.80	0.80
	May	-8.364	-8.075	-8.306	-8.268			
	June	-14.341	-13.786	-14.489	-14.297			
	July	-17.631	-17.252	-17.660	-18.558			

Eindhoven	August	-15.353	-15.013	-15.368	-16.293					
	September	-12.452	-12.390	-12.175	-11.417					
	October	-41.353	-41.641	-40.657	-39.952					
	November	-31.560	-32.044	-30.748	-30.568					
	December	-41.494	-41.987	-40.631	-40.496					
	January	-23.704	-36.444	-17.552	-21.837	MBE	0.21	-0.24	0.12	0.17
	February	-21.700	-30.261	-16.621	-20.914	RMSE	2.89	3.11	2.85	2.98
	March	-12.285	-13.986	-10.278	-14.049	MPE	-17.06	-19.20	-13.86	-16.83
	April	-8.681	-3.287	-7.904	-8.623	NSE	0.86	0.84	0.86	0.85
	May	-14.863	-12.722	-13.163	-14.085					
	June	-13.962	-8.941	-12.926	-14.082					
Groningen	July	-12.756	-10.254	-12.312	-13.721					
	August	-12.048	-8.647	-11.762	-13.726					
	September	-15.123	-11.853	-13.168	-16.830					
	October	-14.361	-16.067	-10.953	-15.798					
	November	-27.165	-38.415	-21.150	-26.121					
	December	-25.968	-40.400	-19.429	-23.303					
Maastricht	January	-34.742	-45.674	-32.0205	-32.959	MBE	0.35	-0.23	0.11	0.09
	February	-18.449	-25.194	-16.228	-18.642	RMSE	3.07	3.21	3.05	3.15
	March	-13.620	-14.749	-12.427	-13.912	MPE	-18.89	-20.46	-17.65	-18.87
	April	-8.559	-4.751	-8.362	-8.518	NSE	0.844	0.83	0.85	0.84
	May	-14.581	-11.963	-14.272	-13.705					
	June	-15.865	-11.910	-15.520	-16.450					
	July	-11.197	-8.204	-10.861	-11.113					
	August	-13.164	-9.629	-12.845	-13.522					
	September	-17.897	-15.218	-17.167	-19.326					
	October	-25.430	-27.360	-23.721	-27.241					
	November	-28.266	-37.143	-25.838	-27.246					
	December	-25.459	-34.041	-23.074	-24.593					
Rotterdam	January	-26.767	-45.347	-20.244	-20.563	MBE	0.22	-0.38	0.24	0.37
	February	-22.254	-36.250	-17.202	-17.567	RMSE	2.94	3.29	2.91	3.05
	March	-15.592	-17.914	-12.745	-16.768	MPE	-20.46	-24.22	-17.65	-20.01
	April	-11.914	-6.889	-12.227	-12.301	NSE	0.86	0.82	0.86	0.85
	May	-16.599	-13.008	-16.204	-17.037					
	June	-17.894	-11.612	-17.867	-20.378					
	July	-15.036	-10.268	-14.500	-17.256					
	August	-13.171	-7.599	-13.061	-15.340					
	September	-14.800	-11.910	-13.336	-18.403					
	October	-20.179	-22.050	-17.095	-23.050					
	November	-27.354	-42.285	-21.225	-23.829					
	December	-45.167	-66.486	-37.184	-39.248					
Twente	January	-32.303	-41.692	-23.510	-30.659	MBE	-0.01	-0.34	0.09	-0.03
	February	-29.201	-35.084	23.125	-29.140	RMSE	3.19	3.34	3.17	3.22
	March	-13.401	-13.571	-11.610	-14.228	MPE	-19.78	-21.32	-17.02	-19.65
	April	-7.483	-3.626	-8.831	-7.401	NSE	0.84	0.82	0.84	0.83
	May	-13.943	-12.121	-13.676	-13.046					
	June	-11.204	-8.053	-11.797	-11.287					
	July	-10.658	-8.785	-10.555	-10.569					
	August	-10.848	-8.523	-11.245	-11.742					
	September	-15.424	-13.645	-15.239	-16.618					
	October	-25.473	-27.340	-22.519	-26.414					
	November	-34.461	-41.934	-27.176	-33.475					
	December	-34.136	-42.664	-26.169	-32.638					

September	-16.108	-13.571	-13.571	-17.899
October	-18.629	-20.498	-20.498	-20.544
November	-24.909	-34.708	-34.708	-22.554
December	-25.613	-37.001	-37.000	-23.844

193

Table 3 Empirical coefficients for Hargreaves model

Location	“a” coefficient	“b” coefficient
Dublin	0.1472	-0.01362
Eindhoven	0.1777	-0.1336
Groningen	0.1716	-0.1004
Maastricht	0.1983	-0.1739
Rotterdam	0.1814	-0.1045
Twente	0.1609	-0.09308

194

195 NSE values show good fit between calculated and measured values for Dutch cities, but for Dublin
 196 it is worse. Maximum average MPE values of Hargreaves model is around 20 percent. It may be
 197 acceptable, but in some months MPE values are higher than others; for instance winter months. In
 198 Dutch cities the errors in April, in Dublin the error in May are more satisfactory.

199 *6.2 Allen Model*

200 Allen model was applied for the estimation of the daily solar global radiation in Irish and Dutch
 201 cities. Empirical coefficient “a” was found by MS Office Excel 2013, coefficients can be seen in
 202 Table 4. Error analyses of the Allen method’s application is seen in Table 2. NSE value is seen
 203 usable in the table. But some of the monthly MPE values are higher than Hargreaves Model. In
 204 November and December, there are higher deviations between the predicted and observed values.

205

Table 4 Empirical coefficients for Allen model

Location	“a” coefficient
Dublin	0.1418
Eindhoven	0.1291
Groningen	0.1335
Maastricht	0.1317
Rotterdam	0.1403
Twente	0.1266

206

207 *6.3 Bristow-Campbell Model*

208 Bristow-Campbell model's equation can be seen in equation 8. "a", "b" and "c" are the empirical
209 coefficients. They are shown in Table 5 for the estimation of the daily total global solar radiation
210 in Ireland and Holland.

211 **Table 5** Empirical coefficients for Bristow-Campbell model

Location	"a" coefficient	"b" coefficient	"c" coefficient
Dublin	1.991	0.5956	0.066
Eindhoven	1.260	0.9157	0.050
Groningen	1.644	0.7726	0.053
Maastricht	0.975	1.0940	0.051
Rotterdam	0.833	1.0690	0.075
Twente	2.523	0.7001	0.036

212
213 MBE, MPE, RMSE and NSE error analyses were applied to the model. These analyses and
214 monthly MPE analyses can be seen in Table 2. NSE value can be assumed as acceptable. Some of
215 the monthly MPE values do not give satisfaction for example in winter months. But for other
216 months; it can be said, the deviations are not too high.

217 *6.4 Chen Model*

218 Chen model's empirical coefficients are seen in Table 6.

219 **Table 6** Empirical coefficients for Chen model

Location	"a" coefficient	"b" coefficient
Dublin	0.1841	0.0269
Eindhoven	0.2337	-0.1014
Groningen	0.2168	-0.0521
Maastricht	0.2695	-0.1525
Rotterdam	0.2244	-0.0464
Twente	0.2083	-0.0539

220
221 MBE, MPE, RMSE and NSE error analyses can be seen in Table 2. Also, the monthly MPE
222 analysis is shown in table.

223 *6.5 Ekici Models*

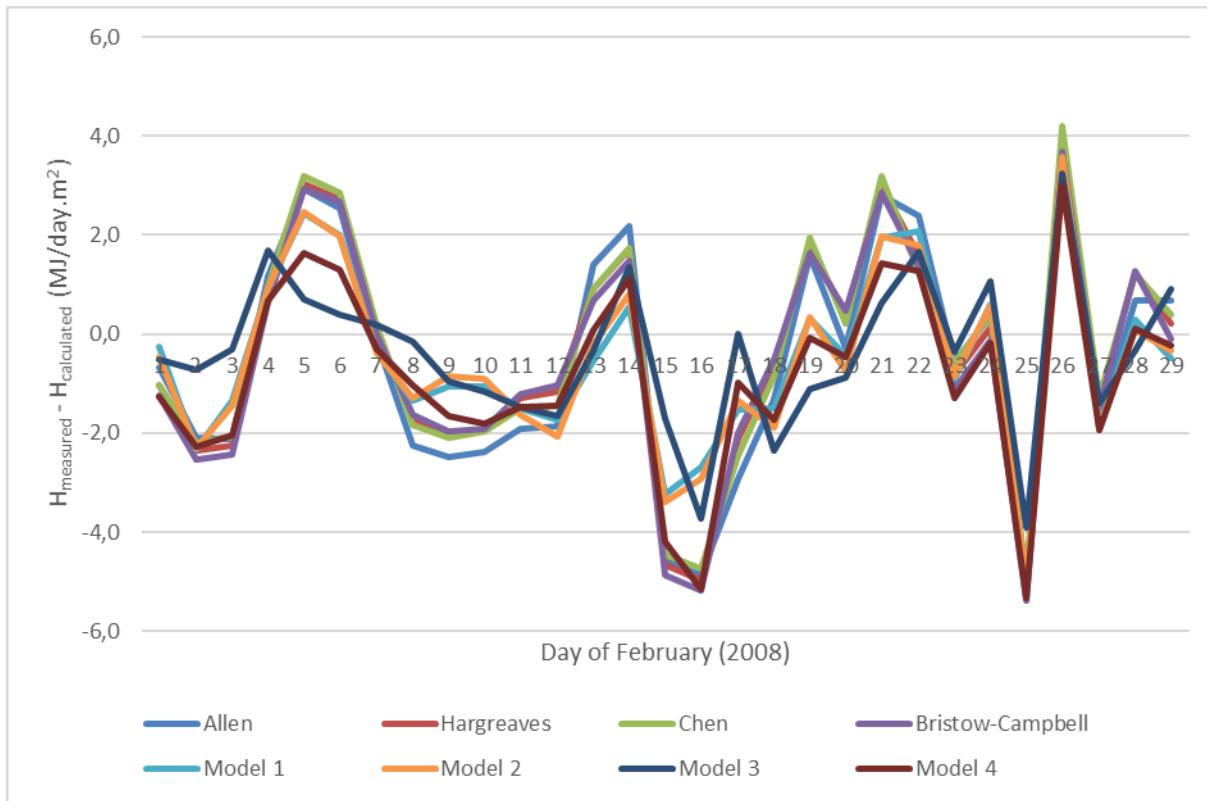
224 Three daily solar radiation estimation models are suggested in this study. They were shown in
 225 Equation 10, 11, 12 and 13. There are empirical coefficients in the models. The empirical
 226 coefficients of the models can be seen in Table 7. These coefficients are calculated by regression
 227 analyses of Minitab 17 Statistical Software and MATLAB fitting toolboxes. In the table, Equation
 228 10 is called as Ekici's Model 1, Equation 11 is Model 2 and Equation 12 and Equation 13 are
 229 named as Model 3 and Model 4.

230

Table 7 Empirical coefficients for Ekici models

#	Location	“a” coefficient	“b” coefficient	“c” coefficient	“d” coefficient	“e” coefficient
<i>Model 1</i> <i>(Eq. 10)</i>	Dublin	-1.092	-0.0333	0.009703	0.1331	1.007
	Eindhoven	-1.224	-0.1198	0.01446	0.2098	1.091
	Groningen	-1.435	-0.156	0.01554	0.2321	1.343
	Maastricht	-1.433	-0.2583	0.03107	0.2874	1.348
	Rotterdam	-1.472	-0.2572	0.03116	0.2803	1.413
<i>Model 2</i> <i>(Eq. 11)</i>	Twente	-1.256	-0.1483	0.02002	0.1801	1.216
	Dublin	-0.4202	0.09728	-0.007322		
	Eindhoven	-0.3242	0.1198	-0.00599		
	Groningen	-0.4326	0.0931	-0.007682		
	Maastricht	-0.350	0.1138	-0.00647		
<i>Model 3</i> <i>(Eq. 12)</i>	Rotterdam	-0.4068	0.1047	-0.007442		
	Twente	-0.3921	0.09542	-0.007086		
	Dublin	-0.6164	-0.02444	-0.920		
	Eindhoven	-0.5782	-0.01691	-0.9104		
	Groningen	-0.6233	-0.01365	-0.9556		
<i>Model 4</i> <i>(Eq. 13)</i>	Maastricht	-0.5752	0.003312	-0.9478		
	Rotterdam	-0.6457	-0.009491	-1.026		
	Twente	-0.5729	-0.01314	-0.9082		
	Dublin	-0.1046	0.3166	-0.21034	0.166	
	Eindhoven	$4.47 \cdot 10^{-6}$	-2.000	0.130	0.202	
	Groningen	0.001094	1.210	-0.2093	0.2899	
	Maastricht	0.210	0.520	-0.1923	0.5897	
	Rotterdam	0.00081	1.256	-0.2441	0.319	
	Twente	0.006525	0.9105	-0.2017	0.2839	

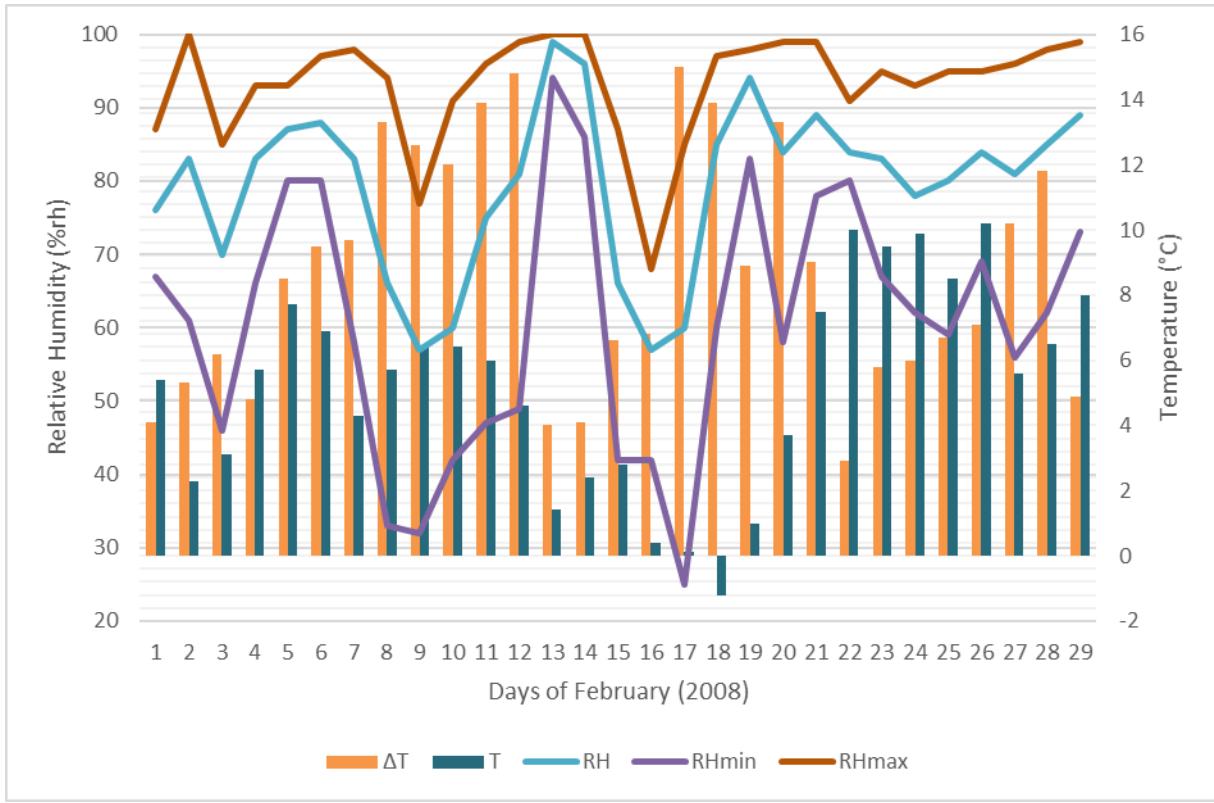
231 RMSE, MBE, MPE and NSE error analyses were executed to the application of the models that
 232 are suggested in the study to estimate solar radiation of Irish and Dutch cities. The error values can
 233 be seen in the Table 8. Error values can be seen as acceptable, monthly MPE values are also seen
 234 as acceptable. For Dublin, in January, December and October, the monthly MPE values are higher


235 than the others. For Dutch cities, in May, the monthly values are seen higher than other months.
 236 The correlation between the observed and the measured values (NSE) for all cities are seen
 237 acceptable.

238 **Table 8** Error analyses of Ekici models

Locat ion	Monthly MPE				Whole of the model					
	Model 1	Model 2	Model 3	Model 4	Model 1	Model 2	Model 3	Model 4		
Dublin	January	-25.235	-24.388	-18.213	-13.394	MBE	0.12	0.14	-0.26	-0.20
	February	-10.202	-10.384	-11.488	-4.729	RMSE	2.87	2.88	3.04	2.85
	March	-11.597	-11.098	-10.927	-6.530	MPE	-15.61	-15.60	-12.17	-10.57
	April	-11.708	-11.104	-11.396	-9.094	NSE	0.84	0.84	0.82	0.84
	May	-10.182	-10.663	-10.092	-7.244					
	June	-15.929	-16.458	-10.480	-13.134					
	July	-15.513	-16.528	-8.728	-12.087					
	August	-13.247	-13.997	-8.500	-10.298					
	September	-5.481	-5.320	-2.284	-3.650					
	October	-26.453	-26.050	-19.642	-21.148					
	November	-17.868	-17.478	-14.118	-10.018					
	December	-23.569	-23.641	-19.324	-15.885					
Eindhoven	January	-8.835	-9.163	-6.242	-0.433	MBE	0.21	0.23	0.12	-0.27
	February	-13.657	-12.540	-15.225	-3.400	RMSE	2.50	2.52	2.67	2.56
	March	-12.550	-11.735	-19.983	-5.134	MPE	-9.94	-10.20	-9.74	-4.23
	April	-11.340	-11.690	-14.066	-6.359	NSE	0.89	0.89	0.88	0.89
	May	-15.829	-16.826	-17.411	-9.980					
	June	-14.657	-15.341	-12.688	-8.924					
	July	-11.137	-12.053	-10.107	-7.627					
	August	-7.655	-7.965	-5.326	-4.727					
	September	-4.628	-4.582	0.683	-1.414					
	October	-1.345	-1.563	2.193	3.127					
	November	-9.766	-10.257	-10.474	-4.589					
	December	-6.660	-7.570	-5.699	-0.796					
Groningen	January	-15.920	-17.355	-19.812	-11.472	MBE	0.19	0.22	0.15	-0.18
	February	-8.471	-9.072	-14.571	-3.804	RMSE	2.69	2.72	2.83	2.74
	March	-12.085	-11.751	-19.692	-8.338	MPE	-11.41	-12.06	-12.69	-7.95
	April	-10.680	-11.224	-13.434	-7.985	NSE	0.88	0.88	0.87	0.88
	May	-18.449	-19.006	-18.554	-12.480					
	June	-19.135	-19.683	-16.147	-13.248					
	July	-10.085	-10.637	-8.251	-7.276					
	August	-7.770	-8.009	-4.920	-6.443					
	September	-8.914	-8.849	-4.650	-6.274					
	October	-9.194	-10.796	-9.728	-8.948					
	November	-6.440	-8.270	-11.528	-6.733					
	December	-8.368	-8.743	-8.266	-1.505					
Maastricht	January	-11.981	-13.557	-6.351	-3.049	MBE	0.20	0.26	0.17	-0.38
	February	-12.894	-13.262	-13.523	-5.014	RMSE	2.56	2.60	2.89	2.65
	March	-15.778	-16.126	-22.315	-9.260	MPE	-12.49	-13.71	-12.37	-6.44
	April	-13.430	-14.107	-16.024	-8.168	NSE	0.89	0.89	0.86	0.88
	May	-15.524	-17.091	-18.371	-10.377					
	June	-15.283	-16.430	-15.796	-9.899					

	July	-11.854	-13.351	-13.047	-6.925					
	August	-9.867	-10.356	-12.796	-5.931					
	September	-5.210	-5.871	-4.380	-0.843					
	October	-6.255	-7.507	-2.746	-0.367					
	November	-11.456	-12.673	-8.681	-3.417					
	December	-19.431	-23.383	-12.587	-13.317					
Rotterdam	January	-12.753	-14.002	-19.495	-12.373	MBE	-0.10	0.14	0.15	0.12
	February	-13.132	-14.693	-16.008	-11.746	RMSE	2.80	2.83	3.03	2.87
	March	-9.348	-10.602	-11.886	-7.111	MPE	-10.45	-12.47	-13.89	-11.65
	April	-5.673	-7.933	-8.921	-8.512	NSE	0.87	0.87	0.85	0.87
	May	-12.697	-15.982	-18.672	-16.642					
	June	-11.266	-13.943	-13.896	-12.566					
	July	-10.053	-12.864	-15.893	-13.827					
	August	-7.876	-10.825	-10.229	-11.122					
	September	-6.429	-8.056	-6.183	-8.472					
	October	-8.100	-10.846	-9.107	-10.975					
	November	-11.574	-13.213	-15.741	-13.437					
	December	-16.452	-16.651	-19.986	-13.202					
Twente	January	-10.432	-8.949	-10.447	-2.942	MBE	0.21	0.20	0.12	0.10
	February	-10.972	-10.570	-13.437	-5.158	RMSE	2.55	2.56	2.62	2.56
	March	-11.132	-10.558	-17.593	-8.649	MPE	-9.99	-9.76	-10.21	-7.58
	April	-12.212	-12.455	-14.283	-12.194	NSE	0.89	0.89	0.89	0.89
	May	-19.080	-19.676	-18.206	-17.750					
	June	-15.377	-15.624	-12.137	-13.460					
	July	-11.850	-12.117	-9.708	-11.698					
	August	-7.437	-7.942	-5.319	-8.728					
	September	-2.294	-2.481	1.179	-2.307					
	October	0.475	-0.861	3.326	0.883					
	November	-7.174	-5.421	-12.309	-4.469					
	December	-10.611	-8.737	-11.010	-3.257					


239 A graphic showing the differences between the measured and calculated solar radiation values of
 240 the models on daily basis for the month of February 2008 was drawn for Eindhoven. This graphic
 241 is given in Figure 1; it may be give idea about the models' daily trends. If you look at the daily
 242 trends of the models in the literature, it is seen that these models have more scattered errors. But
 243 in developed models, it can be said that the errors are a little bit more closer to each other on daily
 244 basis. Since it can be said that all models show the similar tendency in general.

245

246 **Figure 1** Differences between measured and calculated daily total global solar radiation values in February 2008
 247 (Eindhoven)

248 Weather conditions for February 2008 in Eindhoven is given in Figure 2. Some comments can
 249 be given by looking at this figure. It can be said; in the days when the difference between ΔT and
 250 daily average air temperature is lower, the errors in the models are more than the other days. It
 251 can be said that for Model 3, while the differences between the maximum and minimum relative
 252 humidity values are higher, the results are better than the other models.

253
254 **Figure 2** Measured weather data in February 2008 (Eindhoven)
255

256 MPE values of Allen model, Hargreaves model, Chen model and Bristow-Campbell model are
257 seen closer to each other, lay between -15 % ~ -20 %. The best value (-13.86 %) is seen in
258 Eindhoven's Bristow-Campbell model, the worst value (-24.22 %) is seen in Allen Model for
259 Maastricht. Ekici models give better performance in MPE analyses. Model 4 performs best in MPE
260 analyses. The best performance is seen in Eindhoven for Model 4. It is thought, the main reason
261 of that situation is caused by using more parameters than other Ekici models. Saturation vapor
262 pressure is an extra parameter in Model 4 to describe solar radiation, which related to average air
263 temperature.

264 In monthly MPE analyses, Allen model has got higher errors than other models. Bristow-Campbell
265 model shows better monthly MPE performance than Chen model and Hargreaves model. In winter
266 months, models do not fit the measured values as well. It is thought; cloudy days affect to the

267 model performance in prediction of solar radiation with low accuracy. Monthly performances of
268 Ekici models are better than the models in literature. Best monthly MPE results are seen in Model
269 4.

270 **6 Conclusions**

271 Empirical models are usable tools to estimate global solar radiation, if the radiation parameters are
272 not available in the station. Main aim of this study is estimation of the daily total solar global
273 radiation values by using maximum and minimum daily air temperatures and daily average and
274 extreme relative humidity values. The daily data were taken from meteorological agencies of
275 Ireland and Holland. These data are daily total global solar radiation, daily average relative
276 humidity values, daily relative humidity extremes, daily minimum air temperatures and daily
277 maximum air temperatures. Data were selected between 2008 and 2016's first half. It is thought;
278 the recent measurements are more accurate and traceable.

279 Hargreaves, Allen, Bristow-Campbell and Chen models were applied to the cities for the prediction
280 of the daily total global solar radiation.

281 In MPE analyses of this study, all of Ekici models show better performances than other models
282 those exist in the literature.

283 Hargreaves and Allen models have got good agreement in mean bias errors for Dutch and Irish
284 cities, but for Dublin the value of MBE is seen better than other cities' values. The situation of
285 Dublin about MBE values for Bristow-Campbell and Chen models are seem similar as Hargreaves
286 and Allen models. Allen Model's MBE values are greater than other three models' MBE values.
287 Ekici models' MBE values are closer to the MBE values of other models. The greatest value of
288 MBE in Ekici models is seen in Maastricht for Model 4. RMSE values of all models are seen closer
289 to each other, but in Ekici models RMSE values are a little bit better than others. It can be said;

290 the systematic errors of the models are similar, Ekici models' values are a little bit lesser than
291 others.

292 Nash-Sutcliffe error analyses were applied to the all models. All of the models' NSE values are
293 greater than 0.80. Ekici models in Eindhoven, Maastricht and Twente show best fits in the study
294 and have got the greatest NSE values.

295 In this study, four new models that are based on the relative humidity, relative humidity extremes
296 and the difference between maximum and minimum air temperatures were suggested. Model 1
297 and 3 gives good score in mean bias error. But all of the Ekici models' MBE and RMSE values
298 are closer to each other. NSE values are all of the Ekici models are similar. So it can be said; all
299 of the Ekici models show good agreement between calculated and measured values. All of the four
300 models give better scores in error analyses than the other models that exist in the literature for the
301 estimation of the Irish and Dutch cities' daily total solar global radiation.

302 **Conflict of interest**

303 The author declares that there is no conflict of interest regarding the publication of this article.

304 **References**

- 305 - Allen, R., (1997). "Self-calibrating method for estimating solar radiation from air temperature",
306 Journal of Hydrologic Engineering, 2(2): 56-67.
- 307 - Almorox, J. (2011). Estimating global solar radiation from common meteorological data in
308 Aranjuez, Spain. Turkish journal of physics, 35(1), 53-64.
- 309 - Armstrong, S., & Hurley, W. G. (2010). A new methodology to optimise solar energy extraction
310 under cloudy conditions. Renewable Energy, 35(4), 780-787.
- 311 - Biemer, P. P., & Lyberg, L. E. (2003). Introduction to survey quality (Vol. 335). John Wiley &
312 Sons.

313 - Bristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation
314 and daily maximum and minimum temperature. Agricultural and forest meteorology, 31(2), 159-
315 166.

316 - Campbell, G.S., Norman, J.M. (1998). "An introduction to environmental biophysics", Springer
317 Science & Business Media.

318 - Chen, R., Ersi, K., Yang, J., Lu, S., & Zhao, W. (2004). Validation of five global radiation
319 models with measured daily data in China. Energy Conversion and Management, 45(11), 1759-
320 1769.

321 - Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985). Irrigation water requirements for
322 Senegal River basin. Journal of Irrigation and Drainage Engineering, 111(3), 265-275.

323 - Iqbal M. (1983). An Introduction to Solar Radiation. Academic Press, Toronto.

324 - Menges, H. O., Ertekin, C., & Sonmete, M. H. (2006). Evaluation of global solar radiation
325 models for Konya, Turkey. Energy Conversion and Management, 47(18), 3149-3173.

326 - Meza, F., & Varas, E. (2000). Estimation of mean monthly solar global radiation as a function of
327 temperature. Agricultural and Forest Meteorology, 100(2), 231-241.

328