
Response to Anonymous Referee #1

The authors describe a toolbox for terrestrial photographs directed towards tidewater glacier outlets. It
is a combination of personal best practices of the authors, combining different procedures to extract
products from these data. Their targeted audiences seem to be students interested in glaciers, without
prior knowledge of computer vision nor photogrammetry. In the wake of open source movements, and
the quest for reproducible results the objective of this paper is clear. However, the implementation
seems incomplete. If the intended audiences are students, the implementation has serious limitations.
Processing of data can be done with PyTrx, but understanding of the limitations might not be gained. If
the points given are implemented it might be a worthwhile contribution. However, this is substantial and
asks for a complete restructuring of the toolbox.

We would like to thank the reviewer for their constructive comments and feedback. From reading their
detailed review, it is clear that the reviewer spent a lot of time reading the paper and testing our
toolbox, which we are very grateful for. We believe that this feedback has drastically improved the
toolbox, with suggestions that have brought crucial improvements to our attention. Amendments to the
toolbox have now been released in our GitHub repository as PyTrx v1.1, with corresponding alterations
to the manuscript also. These main changes are:

1. PyTrx has now been re-structured as recommended by the reviewer. PyTrx’s core functionality
now exists as independent functions which do not depend on inputs from PyTrx’s class objects.
By doing so, PyTrx is more flexible and easier to adapt to meet users’ needs. An example of using
PyTrx’s independent functions for deriving velocities has been included as an example driver
(driver velocity2.py) to demonstrate this implementation;

2. The Measure.py script has been split according to the functions and class objects for deriving
homography, velocity, area and line measurements. We believe this better differentiates the types
of measurements that can be derived using PyTrx;

3. Camera calibration functionality has now been added to PyTrx’s; functionality. A camera can be
calibrated using an inputted set of calibration chessboard images, either using the stand-alone
function calibrateImages or when initialising the CamCalib/CamEnv class object;

4. Histogram equalisation is now an optional step, rather than a mandatory step when loading images.
This can be toggled using the boolean flag in both the readImg function (in FileHandler.py) and
the CamImage object.

Additionally we have added a section regarding an error budget, as suggested by the reviewer, and
endeavoured to find more varied and wide-reaching references.

Details of our response to the reviewer’s major and minor comments are outlined subsequently.

Major comments

1. The velocity estimation is based upon optical flow. This technique (especially the Lucas-Kanade
implementation) is highly sensitive to intensity changes. When no movement is present, it can still
produce velocities due to overcasting. The weakness in this work is that the authors apply histogram
equalisation, hereafter optical flow is computed.

An Optical Flow Approximation is adopted in PyTrx’s feature-tracking functions because it is
highly efficient for tracking a large number of points – 50,000 points can be tracked between a pair of
images in under 10 seconds. This is computationally more efficient than using traditional template
matching algorithms, and desperately needed in this current age of big data and batch processing. For
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instance, the template matching function in Python’s OpenCV takes 10 times longer to track 2000
points between a pair of images (on average, based on our own testing whilst developing PyTrx).

The drawback of the Optical Flow Approximation approach, as the reviewer rightfully points out,
is that matching is based on pixel intensity change rather than relative change. Matching based on
relative pixel change in a given region is what makes template matching a robust and reliable method
for feature-tracking. The Optical Flow Approximation is highly sensitive to changes in pixel intensity,
such as those caused by changes in lighting and shadowing. This can prove challenging when tracking
between time-lapse images in glacial environments, where conditions can change very quickly. However,
PyTrx accounts for this and is able to limit false tracking due to these sensitives with effective point
filtering based on the magnitude and direction of the displacement. This places a heavy reliance on the
selection of the images used for feature-tracking, to make sure that images are consistent in lighting and
shadowing. However, image selection is a crucial step in all optical image processing techniques due to
changes in illumination and shadowing, and their subsequent impact on relative pixel change and the
resulting output (e.g. Messerli and Grinsted; 2015; James et al., 2016; Schwalbe and Maas, 2017).

The reviewer suggests that histogram equalisation of the images may hinder trackability with the
Optical Flow Approximation technique. Histogram equalisation is applied to all images in PyTrx to
enhance image contrast, by adjusting the image intensities. We do this for two reasons:

1. To make corner features in the image more prominent, so more points can be generated/seeded

2. To make features more distinguishable from one image to the next, improving their trackability

In all, we found that applying histogram equalisation improves the distinguishing of glacial features
(such as supraglacial lakes and terminus lines) and the tracking of glacial features. This is why it is
included in PyTrx as a mandatory step. However, we appreciate that users should have the flexibility
to choose whether to apply histogram equalisation to their image sequence. For this reason, PyTrx’s
histogram equalisation is now optional and is defined throughout (i.e. in all functions and class objects)
as an input variable.

2. If the intended audiences are peers, and the toolbox should be seen as a benchmark to build upon, its
structure is limited. In such a case one should expect a modular framework where different methodologies
can be interchanged. Now, the processing pipelines of the authors are the only pathway, which might
not work for other datasets. For example, the supra glacial lake detection is very simple, while more
advanced methods already exist (Koschitzki et al. 2014).

Our choice to distribute PyTrx as an object-oriented toolbox stems from the current range of
publicly available glacial photogrammetry toolboxes and their flexibility. These toolboxes have been
either distributed with a rigid graphical user interface (e.g. Pointcatcher, CIAS) that do not allow
access to the source code; or have been distributed as raw functions (e.g. ImGRAFT) which requires
background knowledge and labour in order to adapt them to a user’s needs.

PyTrx has been designed with object-oriented design in order to provide a middle ground, with
semi-rigid functionality. PyTrx has rigidity in its design, catering for beginners in coding and those with
little time for adapting raw code. However, the reviewer’s comment highlights that PyTrx’s flexibility is
not adequately demonstrated thus far; rightfully pointing out that PyTrx’s core functions are reliant on
the class objects.

For this reason, we have totally re-structured PyTrx and released this on our GitHub repository
as PyTrx v1.1. This new version now has more flexibility, with PyTrx’s core functionality detached
from its class objects. Velocities, areas, and line features can now be derived from an image pair/single
image without any use of PyTrx’s class objects (including image enhancement, georectification, ex-
porting, importing, and plotting functions). We have included an additional example driver (named
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’driver velocity2.py’) to demonstrate this, which only uses PyTrx’s stand-alone functions to compute
glacier surface velocities from a sequence of images. PyTrx’s class objects have been adapted for
processing measurements from image sequences - effectively, the stand-alone functions are implemented
in these class functions and iterated over an entire inputted image sequence. This new flexibility in
PyTrx, with the ability to process photogrammetric measurements with both stand-alone functions
and class objects, caters for both beginners and advanced computer programmers thereby making
PyTrx accessible to all. All of this information has been conveyed in the manuscript with appropriate
alterations and added sections, and also updated in the toolbox documentation.

3. Furthermore, a camera calibration procedure is missing in the toolbox, which makes the toolbox appear
incomplete.

The reviewer highlights that camera calibration functionality would be an incredibly useful
addition to the PyTrx toolbox because it is an integral part of monoscopic photogrammetry. Camera
calibration is used to define the intrinsic camera matrix which mathematically represents the camera,
and to correct images for distortions that are introduced by the camera and the lens. Raw camera
calibration algorithms are available openly, such as the Matlab Computer Vision toolbox and OpenCV
for Python and C++. However, these algorithms have yet to be incorporated directly into a glacial
photogrammetry toolbox that is openly available to users in the glaciology community. By including
them here, PyTrx would be the first open-source glacial photogrammetry toolbox to include camera
calibration functionality, to our knowledge. For these reasons, we have now included camera
calibration functionality in PyTrx v1.1, based on the algorithms provided in the Python version of
OpenCV. This is offered as both a stand-alone function and built into the camera environment (CamEnv)
class object. In addition, examples of PyTrx’s camera calibration functionality are now included with
three of the driver scripts provided – the example for detecting surface lakes (‘driver autoarea.py’) and
for deriving glacier surface velocities (‘driver velocity1.py’ and ‘driver velocity2.py’).

Calibration is undertaken in PyTrx using a chessboard/checkerboard approach, which is widely
used in computer vision and photogrammetry. The corners of a given chessboard in a set of images
are used as a grid to define the intrinsic camera matrix and distortions. Examples of these chessboard
images are provided in the Examples directory of PyTrx within the ‘calib’ folder, which correspond to
the two example drivers that perform camera calibrations.

The user can provide the file directory to a set of chessboard images as the calibration input,
along with the known number of chessboard corners (i.e. rows, columns), which PyTrx subsequently
uses to calibrate the camera. This can either be defined in the camera environment text file (.txt)
(whereby the CamEnv object recognises the input based on its data structure and proceeds with camera
calibration automatically – or inputted directly to the calibrateImages function.

The calibrateImages function returns the intrinsic camera matrix (K), lens disortion coefficients
(k1, k2, p1, p2, k3), and the calibration error estimate, which are used subsequently in PyTrx’s image
correction and georectification functions. The intrinsic camera matrix consists of the focal length in
pixels (fx, fy) and the principal point (cx, cy) as a 3×3 array which is compatible with PyTrx:

K =

 fx 0 0
s fy 0
cx cy 1

 (1)

Skew (s) is not calculated as part of the intrinsic matrix and is assumed to be 0, as adopted by OpenCV’s
calibrateCamera algorithm – this is common in computer vision given that camera skew is often neglible
in modern cameras. The lens distortion parameters are made up of the radial distortion coefficients
(k1, k2, k3) and tangential distortion coefficients (p1, p2). Three coefficients are used to represent radial
distortion in PyTrx. Whilst we realise that up to eight coefficients can be calculated to define radial
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distortion, we found that three are more than sufficient and produce the smallest errors for subsequent
image correction.

PyTrx’s calibrateImages function encapsulates all of the procedures to calibrate a camera, which
are primarily taken from the OpenCV toolbox:

1. Chessboard corners are detected in each image (using OpenCV’s findChessboardCorners algorithm),
based on the inputted chessboard corner dimensions

2. If all corners of the chessboard are found, the locations of these corners are defined in the
image plane to sub-pixel accuracy (using OpenCV’s drawChessboardCorners and cornerSubPix
algorithms)

3. Image plane coordinates for the detected chessboard corners from all imagery are used to calculate
the intrinsic camera matrix and lens distortion coefficients (using OpenCV’s calibrateCamera
algorithm). Firstly, we calibrate a rough camera matrix and distortion coefficients using the raw
inputted coordinates. We then optimise these with a second calibration, whereby the principal
point that was calculated initally is fixed. By doing this, we refine the camera matrix and
distortion coefficients and reduce the errors. From experimenting with this, we found that the
principal point is generally the most accurate and reliable output, and therefore we assume that
the principal point is correct for the second calibration

4. The optimised camera matrix, lens distortion coefficients, and the error estimate associated with
the calibration are returned from this function, which are fed back into the camera environment
class object

Subsequent to this, users can now also export the calibration outputs using the writeCalibFile function,
which can be found in the FileHandler script. The camera matrix and lens distortion coefficients are
exported as a text file (.txt), which is compatible with the calibration file import functionality.

This information has now been incorporated into the manuscript, specifically in Section 4.7 (Image
registration and georectification) when discussing camera matrices and lens distortion coefficients.

4. The paper is similar to (Messerli & Grinsted, 2015), therefore the question arises why the authors do
not build upon this effort, and instead a new toolbox is introduced. Furthermore, the presented workflow
is based upon methodologies used by the authors for other publications. These methodologies are around
for quite some time, and thus the presented work does not advance the field nor does it provide new
insights.

The reviewer highlights that the methods available in PyTrx (i.e. Optical Flow Approximation,
georectification, automated and manual feature detection) have been around for quite some time in
photogrammetry and computer vision. However, these methods have not been effectively implemented
in glaciology, nor have they been made publicly available to the glaciology community. A small range
of toolboxes for glacial photogrammetry applications are currently available, yet none are available in
Python which is a common coding language used by the glaciology community. PyTrx provides a valid
contribution to glaciology in extending the breadth and range of glacial photogrammetry, and making it
more accessible to a greater number in the glaciology and wider environmental science community.

ImGRAFT (Messerli & Grinsted, 2015) is a Matlab toolbox that functions as a feature-tracking
tool for optical imagery using template matching. ImGRAFT can calculate glacier velocities from both
terrestrial and satellite imagery, with additional georectification algorithms for translating velocities
from the terrestrial images. It is a very accomplished toolbox for deriving glacier velocities. However,
we wanted to perform additional measurements, namely line measurements (e.g. terminus profiles)
and area measurements (e.g. meltwater plume extent). Whilst this can be achieved using ImGRAFT,
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the functions for doing so are not explicitly provided and it would require a lot of coding knowledge
and time to write these. These measurements are not the focus of the ImGRAFT toolbox. PyTrx has
therefore been developed to meet this need, and we already have active users who are greatly benefiting
from its availability in Python.

5. The authors implement a sparse point cloud. This will result in a scattered data collection of different
locations in space and time. While for modelling a fixed coordinate system would be more sufficient, as
in (Ahn & Box, 2010).

Traditionally, gridded points are used to track glacier features and generate velocity fields using
regularly spaced measurements (e.g. Ahn and Box, 2010; Heid and Kääb, 2012; Messerli and Grinsted,
2015; Schwalbe and Maas, 2017). This is suitable for measuring overall glacier movement in a robust and
reliable fashion. However, there is a distinct disadvantage to using gridded points for feature-tracking.
Corner features prove most effective for tracking from image to image given that they have highly
distinguishable pixel intensities. With gridded points, point selection is based on spacing rather than
distinguishable corners thereby limiting effective trackability.

As previously stated, feature-tracking is performed in PyTrx using an Optical Flow Approximation
method because it is highly efficient for tracking a large number of points – 50,000 points can be tracked
between a pair of images in under 10 seconds. With this many points, a glacier surface can be adequately
covered through an image sequence, and produce accurate velocity maps; as demonstrated in Figure
6. These velocity maps have a high spatial resolution that are seldom produced using gridded points
(and often take much longer to compute with alternative toolboxes). The reviewer’s comment regarding
inconsistencies with sparse point clouds are not unfounded, but PyTrx implements thorough filtering
(including back-tracking verification) and with careful image selection and a thorough inspection of the
output (which should be carried out regardless), we believe the benefits of sparse point tracking far
outweigh the limitations.

6. Also an error budget for the 3D transformation is missing, which in the terrestrial setup this scales
with distance, see for example (Schwalbe & Maas 2017).

The reviewer highlights the need for an error budget for the georectification functionality within
PyTrx. Reviewer #2 also reiterates this, commenting that measurement uncertainty is needed in order
to verify PyTrx’s capabilities (final comment, Chapter 5). To limit repetition, we have decided to
address these two concerns here and summarise: 1) the sources of error introduced with PyTrx’s velocity,
area and line measurements; and 2) quantification of each error source.

There are a handful of sources of error that are present when deriving measurements from
monoscopic terrestrial photogrammetry. Velocity errors have previously been highlighted by Messerli
and Grinsted (2015), James et al. (2016), and Schwalbe & Maas (2017) in the presentation of previous
glacial photogrammetry toolboxes. These errors, along with the errors for line and area measurements,
are outlined here:

1. Camera motion error, dictated by the stability of the camera platform and the accuracy of
the homography model generated during the image registration process

2. Pixel tracking error (in the case of measuring glacier velocity), determined primarily by the
selection of the image pair, the coherency of trackable corner features between them, and the
magnitude of the pixel track relative to the motion in the camera platform (i.e. the signal-to-noise
ratio)

3. Detection error (in the case of the automated area detection method), determined primarily by

5



the variability in illumination/shadowing between the images

4. Human error (in the case of the manual detection approaches)

5. Georectification error, which is inherently linked to

(a) The camera model (including focal length and principal point)

(b) The corrected image, linked to the accuracy of the lens distortion coefficients

(c) The accuracy of the camera’s location and pose (i.e. yaw, pitch, roll)

(d) The accuracy of the ground control points (GCPs)

(e) The accuracy of the DEM

(f) The distance between the camera and the feature of interest

The errors associated with 1, 2, 3 and 4 occur during the measurement in the image plane,
with 2 relating to velocity measurements, 3 relating to automated detection, and 4 relating to manual
identification. These errors represent the pixel error. The error sources associated with georectification
(5) occur during the transformation of these measurements into three-dimensional space (Schwalbe
and Maas, 2017). These errors represent the three-dimensional error. Whilst these components have
inherent errors associated with them, errors can also be accentuated by inaccurate inputs (such as
camera location) and challenging image sequences (e.g. with varying illumination and shadowing). For
the purpose of this error analysis, we will therefore look at constraining the errors from each of the
outlined components using three of the examples presented in the manuscript, namely the velocities
derived from Kronebreen (associated with PyTrx’s ’driver velocity1.py’ script), the meltwater plume
footprint areas at Kronebreen (associated with PyTrx’s ’driver manualarea.py’ script), and the terminus
line profiles distinguished at Tunabreen (associated with PyTrx’s ’driver line.py’ script). Two measures
of error will be calculated – the pixel error from the measurements derived in the image plane, and the
three-dimensional error associated with the georectification process.

Error source Average velocity
error

Average area
error

Average line
error

Camera motion (px) 0.5111 0.1294 0.9863
Pixel tracking (px) 0.9667 – –
Feature detection (px) – 86.6870 18.8170

Total pixel error (px) 1.4778 86.8164 19.8033

Total 3D error (%) 0.638 0.638 0.638

Camera motion error is calculated as part of PyTrx’s calcHomography function, representing the
mean error magnitude between an image pair. This error is defined as the movement of static feature
points in a pair of images that cannot be accounted for by the homography model (i.e. a RMS value).
The error values in the table denote the average error across an image sequence.

The pixel tracking error is associated with calculating velocities through PyTrx’s velocity function-
ality. The error is determined using the back-tracking verification approach discussed in the manuscript.
The threshold for back-tracking is set by default to 1. pixel, but can be altered in PyTrx’s featureTrack
function.

Human error is introduced when a user defines areas/line measurements using PyTrx’s manual
definition functions. Whilst this error is difficult to constrain, we estimate it for our manual definition
examples (in the table above) by iterating the manual definition routine over 10 simulations to produce
an average variation. This error will vary between measurements (as demonstrated by the two examples
in the table), and therefore it is advised to perform this sensitivity test when using the manual definition
methods in PyTrx.
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The components that determine the error associated with the georectification process are chal-
lenging to constrain individually (e.g. Messerli and Grinsted, 2015; Schwalbe and Maas, 2017). We have
chosen to evaluate the these errors collectively through ground-truthing, in order to closely examine
the propagation of error over space (i.e. with distance from the camera platform, also known as the
baseline). Specifically we used satellite imagery taken at the time of the terrestrial image acquisition to
compare the positioning of defined features, namely looking at terminus positions relative to coinciding
satellite images (such as those presented in Figure 8).

Over all ground-truthing, we found that the average error (i.e. the difference in position between
the georectified feature and the same corresponding feature in the satellite image) was ±0.638%. This
error increases with baseline distance, with conservative estimates of 0.2% up to a baseline of 1500 m,
and 0.8% for a baseline of 1500–3000 m. For instance, the defined terminus lines depicted in Figure 8
have an average error of ±2.4 m over a baseline of 1500–2000 m, but this error grows to an average of
±7.7 m beyond a baseline of 2000 m. From 3000 m, the error increases exponentially and is difficult to
adequately constrain given that our camera set-ups do not cover further than 3500 m.

Similar to error estimations by Messerli and Grinsted (2015) and Schwalbe and Maas (2017),
we would advise to adopt the average georectification error estimate (0.638%) for measurements, and
use the baseline-specific error estimates in instances where all measurements are localised to a given
baseline distance.

This information has now been added to the text, specifically the section regarding the Evaluation
of PyTrx (Section 4).

7. Lastly, there is a strong tendency towards referencing to Szeliski, which is a book of references, and
a Python image processing book of Solem. Off coarse the authors describe known methodology, but it
might have been a bit more specific.

More specific and varied references have now been added to the manuscript.

Minor comments

Page 1, Line 19: ‘More toolboxes are therefor needed’, I disagree with this argument. It is more
worthwhile to extent on previous efforts; open codes are available for Imgraft as well as, photogrammetric
libraries such as Ames SP and MicMac.

We suggest in the manuscript that more glacial photogrammetry toolboxes are needed in order to
expand the range of toolboxes on offer in different coding languages and with different applications that
are beyond calculating glacier velocities. The reviewer rightfully identifies that, in addition to this, it is
also worthwhile to focus on expanding pre-established methods.

The reviewer continues by listing examples of ‘open code’ toolboxes. Whilst we agree that
open code is beneficial to users who wish to access and adapt toolboxes, one of the big limitations in
monoscopic photogrammetry is the limited range of toolboxes that are open source – i.e. toolboxes
that do not require a pricey license in order to operate. For example, ImGRAFT, the photogrammetry
toolbox for feature-tracking through satellite scenes and monoscopice set-ups, is programmed in Matlab
which requires a license that not all users will have access to.

The reviewer also lists Ames SP and MicMac as other examples of open code toolboxes. Ames
SP refers to NASA Ames Stereo Pipeline, which was developed for Multi-View Geometry processing
from satellite imagery (Broxton and Edwards, 2008) and has been further applied to generate Digital
Elevation Models (DEMs) from stereo satellite imagery (Shean et al., 2016). MicMac is a toolbox for
Structure-from-Motion (SfM) processing and has been used for DEM generation from both aerial and
terrestrial imagery (Rupnik et al., 2017). These software are open source and require no licensing,
but in both these cases their applications are more focused on Multi-View Geometry processing and
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Structure-from-Motion rather than monoscopic photogrammetry (i.e. measurements derived from one
camera view) in terrestrial settings. As PyTrx is an open-source monoscopic photogrammetry toolbox,
multi-camera photogrammetry software (such as Ames SP and MicMac) are incomparable.

For this reason, we have included a passage in the paragraph to express that there should be a
greater focus on expanding pre-existing toolboxes, as well as developing new ones: ‘In order further
glacial photogrammetry techniques, there needs to be greater focus on expanding the capabilities of
exisiting toolboxes, and a marked effort to develop new toolboxes which widens the range of data
products that can be obtained from time-lapse imagery.’ (Page 1, Line 19)

We also stress throughout the manuscript that PyTrx is a monoscopic photogrammetry toolbox
(including a change to the title of this manuscript, as suggested by the reviewer) to better convey that
this toolbox is not comparable to multi-camera toolboxes and toolboxes that primarily handle satellite
imagery.

Page 2, Line 4: ‘measurements from photographs’ too vague
Wording now changed to make the passage more specific: ‘Photogrammetry is defined broadly as

the extraction of quantitative measurements from optical imagery...’

Page 2, Line 5: ‘photogrammetry’ or do you mean signal processing?
Yes, signal processing is part of what is described here, transitioning from earlier traditional

techniques to digital signal processing with the introduction of digital cameras and computers with
high processing powers. We have now added this to the text.

Page 2, Line 17: ‘efficient photgrammetry software’, to what extent is PyTrx efficient, there is no
emphasis placed in the text about it (batch, multithread,...)

See response to Minor Comment from Reviewer #2 regarding Paragraph 4.6.

Page 2, Line 29: maybe change title to put also an emphasis on monoscopic.
See response to minor comment from Page 1, Line 19.

Page 10, Line 7: ‘Matlab Computer Vision toolbox’, why is camera calibration not included into PyTrx?
The Matlab Computer Vision toolbox was initally used to calibrate the cameras because it is a

well established toolbox that yields reliable and accurate results. We understand that having camera
calibration functionality in PyTrx would be ideal and better encapsulate all photogrammetry processing
in one unified toolbox. For this reason, we have developed camera calibration functionality in PyTrx
using the Python functions available in OpenCV (see major comments for more details about the camera
calibration functions available in PyTrx). This has now been updated in the manuscript.

Page 12, Line 9: Why do the authors not use simple functions, this will increase the versatility of the
toolbox.

See section 2 of Major Comments.

Page 14, Line 2: Why is there manual inspection? Typically, a dataset has a training and a testing set.
Hence, why does PyTrx have not the ability to make a ‘ground truth’ and then different methodologies
can be tested. This reduces the subjectiveness of manual inspection.

Manual inspection is used in PyTrx to better constrain the automated detection of area features
from oblique imagery. Area features encapsulate a wide range of glacier features which have different
distinguishing properties, such as supraglacial lakes, surfacing meltwater plumes, and debris features.
One of the common approaches to distinguishing these in optical imagery is their pixel intensity, however,
we realise that this may not necessarily work all the time given optical images are highly sensitive to
changes in illumination and shadowing. For this reason, we offer the manual inspection as an optional
verify tool to minimise false detection. The automated area detection method has been used to effectively
detect supraglacial lake surface areas (e.g. How et al., 2017), and we offer it with the PyTrx toolbox as
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a broad and basic detecting tool which users can build upon. The use of training and test datasets are
application-specific, and we did not see a benefit to including them in the toolbox as this would detract
from the broad tools on offer that are presented in this work. The use of training and test datasets,
along with the implementation of Machine Learning algorithms, would be an interesting and exciting
development, but it is beyond the scope of what is presented here.

Page 14, Line 11: Why not use the HSV space?
PyTrx handles image data in a single band (e.g. grayscale, red, blue, green) in order to uphold

computational efficiency and speed. Whilst use of the HSV bands would perhaps be useful to utilise in
the detection methods, the main disadvantage is the computational demand in handling three bands of
image data. PyTrx’s image handling functionality can be altered by the user for this application, but
we do not offer it here as it would detract from one of PyTrx’s primary benefits, which is its efficiency
in batch processing.

Page 15, Line 6: The advantage of Shi-Tomasi is its computational efficiency: the determinant does not
have to be calculated

This is helpful information provided by the reviewer which we have now added to the manuscript:
‘The Shi-Tomasi Corner Detection method built upon this with a scoring function that does not depend
on the calculation of the determinant. Corners are ranked based on the quality level and the minimum
Euclidean distance.’

Page 15, Line 17: Why are sparse point clouds used, and why if (Szeliski) is cited consteantly, his
adaptive region based selection isn’t used? Also, I think most products are more helpful if consistent
data points are used, then scattered features, seen throughout a scene.

See Section 5 of Major Comments for reply to the sparse point cloud comment. Reference to
Szeliski has been ommited – see Section 7 of Major Comments.

Page 17, Line 5: This is by no means new, the authors might have missed to include (Scambos et al.
1992) & (Jeong et al. 2017).

Agreed. The suggested references have been added to text.

Page 22, Line 2: ‘proves to be robust’ loose claim, see testing/training comment above.
Phrase removed.

Page 22, Line 11: This backtracking is a relative error. The authors talk about the alternative approach,
as implemented by the other toolboxes. These use Monte-Carlo which is an efficient way to grasp
propagations of errors, especially in this non-linear system. Thus the authors know of this technique,
but implement an inferior method. Why is this done?

See response to Major Comment 6.

Page 22, Line 25: ‘toolboxes to choose from’, I don’t think it is very efficient as a field to have several
implementations. All implementing their own best practice, how do the authors see this as a pro?

See section 4 of Major Comments.
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Response to Anonymous Referee #2

We would like to thank the reviewer for providing valuable feedback for improving our manuscript.
We have provided a thorough response below to each of the reviewer’s queries. The main alterations
have been the addition of camera calibration functionality to the PyTrx toolbox, the merging of the
Introduction and Background sections to avoid repetition, and the inclusion of error estimation (as also
requested by Reviewer #1).

Minor comments

Chapter 1 (Introduction) and chapter 2 (background) are clear, but can be merged in a single chapter to
avoid some redundancy.

Agreed. Chapter 1 and Chapter 2 have been merged together and sections have been merged to
reduce repetition.

Chapter 3 review different aspects to be considered in the post-processing. Anyway, authors refer to
many publications issued from their community and should at least cite 2 or 3 papers issued from the
image processing community that has work a lot in the past on image calibration and stereo vision (some
tools and algorithms mentioned in that paper are issued from this community).

We have now amended this section with more specific and varied references, including work
focused on image processing and computer vision.

What should be discussed in that part is the limitation of existing methods versus the specificity of the
applied field studied.

We acknowledge that we are discussing monoscopic photogrammetry methods and toolboxes for
analysis of glacial imagery and we have now made this clearer at the beginning of Section 3 by changing
its title and opening paragraph.

At the end of this chapter, authors should add a synthesis of what is addressed and solved in their
present work.

A synthesis has been added to the manuscript, structured as bulleted points to clearly state how
PyTrx is unique. However, this has been added to the beginning of Section 4 rather than at the end of
Section 3 (as advised) as it was more fitting to add this as an introductory section to the Features and
Applications of PyTrx rather than the section on Common Photogrammetric Methods.

‘...Specifically, PyTrx has achieved this with the following key features:

1. A sparse feature-tracking approach, using Optical Flow approximation and back-tracking verifica-
tion to efficiently compute accurate and reliable velocities;

2. Approaches for deriving areal and line measurements from oblique images, with automated and
manual detection methods;

3. Camera calibration functionality built in to calculate internal camera matrices and lens distortion
coefficients;

4. Written in Python, a free and open-source coding language, and provided with simple example
applications for easy use;

5. Engineered with object-oriented design for efficient handling of large data sets;

6. Core methods designed as stand-alone functions which can be used independent of the class
objects, making it flexible for users to adapt accordingly.’ (Pages 8–9, Lines 28–29 and 1–7)

In chapter 4 : Please do make scheme of your processing workflow as mentioned in the text.
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The workflow presented in Figure 4 has been updated to better convey PyTrx’s processing
workflow, and a reference to it has been added in Section 4.

The camera calibration lean on the use method available in a Matlab Toolbox, which method was used.
Why not use available resources in open access and integrate them in your tool ?

The reviewer has highlighted to us that an open-source pathway to producing camera calibration
parameters is needed to fully uphold PyTrx’s open source ethos. For this reason, we have now included
a camera calibration method in PyTrx which can be used either as a stand-alone function, or during
the initialisation of the CamEnv class object. For more details, please see Major Comment #3 from
Reviewer 1 (who made a similar comment)

Paragraph 4.1 described the data set used with simplifications. What are the consequences of your
interpolation for DEM ?

Interpolation of a DEM mimics a smoother, homogeneous surface. This is common practise
in glaciology where the date of the DEM acquisition does not exactly match the date of the image
acquisition. By creating a smoother, homogeneous DEM, we eliminate artefacts in the glacier surface
that do not reflect the surface at the time of the image acquisition. This information has now been
added to this section:

‘These DEMs are distributed with PyTrx in a modified form, with each scene clipped to the
area of interest, downgraded to 20 m resolution, and smoothed using a linear interpolation method.
Interpolation is used here to eliminate artefacts in the glacier surface that do not reflect the surface at
the time of image acquisition.’ (Page 10, Lines 5–8)

Paragraph 4.3 How the authors integrate the natural illumination in their image processing approach?
This part could take also benefit of image segmentation by region approaches (see multi spectral imagery).

PyTrx does not contain specific algorithms to correct for changes in natural illumination, like many
monoscopic toolboxes for processing glacial imagery (e.g. Pointcatcher, and ImGRAFT) which instead
advise selecting imagery at a similar time of day (i.e. similar illumination conditions). Instead, we try
to limit false displacements and feature detection (caused by changes in natural illumination and other
such factors) by constraining measurements with robust filtering methods such as the back-tracking
verification provided in the feature-tracking methods, and the thresholding and verification methods for
automated feature detection.

We explored possible approaches for limiting false measurements with multi spectral image
analysis, but found that the handling of larger image data detracted from PyTrx’s computational
efficiency. In all, PyTrx loses its advantage as a toolbox for quick batch processing by implementing
this additional analysis. Whilst we agree that this would be a valuable addition, we believe that this is
beyond the scope of the work presented here and would be more fitting in a future version of the PyTrx
toolbox.

Paragraph 4.4 requires a good stability of the observation sensor used on site.
The authors agree that stability in the camera platform is advantageous when deriving measure-

ments between a pair of images taken at different times. However, platform stability is not vital for
seeding points – points are only seeded in one image and therefore shifting in the camera platform
does not influence the ability to seed points. We have therefore not included this remark in Section 4.4
(Point Seeding), but have decided to include it in Section 4.5 (Deriving velocities from feature-tracking)
where velocities and image registration is discussed as it seems more fitting:

These seeded points are tracked between image pairs in PyTrx using the Lucas Kanade Optical
Flow Approximation method (Lucas and Kanade, 1981), which works best when there is minimal
motion in the camera platform.’ (Page 15, Lines 15–17)

Paragraph 4.6 Analysis of several sequences coupled with obtained results should confirm the efficiency
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of the tool. What is the average computing time ?
Through timing the runtime of PyTrx’s example drivers for deriving velocities (using Python’s

time package), we found that the software can compute the homography (1000 points successfully
tracked on average), velocities (30,000 points successfully tracked on average) and georectification of one
image pair in 40 seconds, on average. The example driver ‘driver velocity2.py’ computes three image
pairs in 300 seconds. This was ran on a Linux computer with 7.5 GB of memory. Whilst it is useful to
quantify PyTrx’s efficiency, it could be misleading as these times are arbitrary and partly depend on
the operating system, a computer’s memory, and the number of active core processors. For this reason,
we have not added this analysis to the manuscript.

Chapter 5 Could take benefit of ground truth using an outdoor controlled environment coupled with an
alternative analysis approach for instance using DinSAR or Stereo vision.

The reviewer proposes to add ground-truthing in order to evaluate the accuracy of PyTrx’s
velocity measurements. Ground-truthing is a viable approach for comparing outputs in order to assess
and refine alike measurements. We have implemented ground-truthing to estimate errors from PyTrx’s
georectification process, as requested by Reviewer #1. The reviewer here suggests ground-truthing
PyTrx’s velocity results, specifically using an outdoor controlled environment and an alternative
processing approach such as DinSAR or stereo vision.

The engineering of an outdoor controlled environment would involve additional field campaigns
and primary data collection, shifting the focus of the research presented in this manuscript. Additionally,
our studies used monoscopic camera set-ups (i.e. images from one camera) and the use of stereo vision
requires a completely different field set-up. Stereo vision is seldom used for deriving glacier velocities
because of the difficulties in effectively implementing these field set-ups (e.g. Eiken and Sund, 2012).
Therefore stereo vision is not an established approach to conduct ground-truthing, and it is likely that
this extra analysis would introduce more uncertainties rather than resolve them. The addition of an
outdoor controlled environment and stereo vision in this paper would therefore require a new field
campaign to obtain data that is irrelevant to the aim of this paper.

Feature-tracking through optical and SAR satellite imagery is much more common practise for
deriving glacier velocities (e.g. Scambos et al., 1992; Heid and Kääb, 2012; Luckman et al., 2015). These
methods track large-scale glacier features over large windows/templates, thereby deriving region-based
velocities. This region-based tracking approach has also been implemented in glacial photogrammetry
toolboxes for deriving velocities from terrestrial imagery (e.g. Messerli and Grinsted, 2015; Schwalbe
and Maas, 2017). PyTrx adopts an alternative approach, identifying and tracking individual glacier
features on a point-by-point basis. As a result of this, the velocities derived from PyTrx represent
small-scale displacements (e.g. surface deformation) as well as region-based movement and is much more
fitting for measuring daily and sub-daily displacements. Whilst PyTrx velocities provide highly-detailed
displacements that represent localised change, satellite velocities reflect region-based change on a
much larger spatial scale. Results from these two approaches are therefore incomparable because they
measure different aspects of the glacier system, and ground-truthing with DinSAR velocities would be
an unsuitable addition to this research.

Finally, no measurement uncertainty after using this image processing toolbox are mentioned, neither
spatial resolution of initial images. Though the authors want to focus on the presentation of their toolbox,
it has to be addressed or at least referenced somewhere.

See response to Major Comment 6 from Reviewer #1.
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Abstract. Terrestrial time-lapse photogrammetry is a rapidly growing method for deriving measurements from glacial envi-

ronments because it provides high spatio-temporal resolution records of change. However, glacial photogrammetry toolboxes

are limited currently. Without prior knowledge in photogrammetry and computer coding, they are used primarily to calculate

ice flow velocities or to serve as qualitative records. PyTrx (available at https://github.com/PennyHow/PyTrx) is presented

here as a Python-alternative toolbox to widen the range of
:::::::::
monoscopic

:
photogrammetry toolboxes on offer to the glaciology5

community. The toolbox holds core photogrammetric functions for point seeding, feature-tracking, image registration, and

georectification (using a planar projective transformation model). In addition, PyTrx facilitates areal and line measurements,

which can be detected from imagery using either an automated or manual approach. Examples of PyTrx’s applications are

demonstrated using time-lapse imagery from Kronebreen and Tunabreen, two tidewater glaciers in Svalbard. Products from

these applications include ice flow velocities, surface areas of supraglacial lakes and meltwater plumes, and glacier terminus10

profiles.

1 Introduction

Terrestrial time-lapse photogrammetry has proved to be a viable approach for obtaining high spatio-temporal resolution

observational records from tidewater glaciers (e.g., Ahn and Box, 2010; Rosenau et al., 2013; James et al., 2014; Pȩtlicki et al., 2015)

:::::::::::::
photogrammetry

::
is
::

a
::::::
rapidly

::::::::
growing

::::::::
technique

::
in
:::::::::

glaciology
:::

as
:
a
::::::

result
::
of

:::
its

:::::::::
expanding

::::::::::
capabilities,

::::
with

::::::::::
applications

:::
in15

:::::::::
monitoring

::::::
change

::
in

::::::
glacier

:::::::
terminus

:::::::
position

::::::::::::::
(e.g., Kick, 1966)

:
,
::::::
glacier

::::::
surface

:::::::::
conditions

:::::::::::::::::::::::::::::::::::
(e.g., Parajka et al., 2012; Huss et al., 2013)

:
,
::::::::::
supraglacial

::::
lakes

:::::::::::::::::::::::::::
(e.g., Danielson and Sharp, 2013)

:
,
::::::::
meltwater

::::::
plume

::::::
activity

:::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Schild et al., 2016; How et al., 2017; Slater et al., 2017)

:
,
:::
and

::::::
calving

::::::::
dynamics

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kaufmann and Ladstädter, 2008; Ahn and Box, 2010; James et al., 2014; Whitehead et al., 2014; Pȩtlicki et al., 2015; Medrzycka et al., 2016; Mallalieu et al., 2017; How et al., In Press)

. It provides adequate spatial resolution, and the temporal frequency of data-capture is flexible and relatively easy to control.

However,
::
A

::::::::
prevailing

::::::::::
application

:::
has

::::
been

::
in
::::::::
deriving

::::::
glacier

::::::
surface

:::::::
velocity

::::
from

:::::::::
sequential

::::::::::
monoscopic

:::::::
imagery

:::::
using

::
a20

::::::::
technique

:::::
called

::::::::::::::
feature-tracking;

::
as

:
it
:::::
offers

::::::
highly

::::::
detailed

:::::
(both

:::::::
spatially

:::
and

::::::::::
temporally)

::::::
records

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Finsterwalder, 1954; Fox et al., 1997; Maas et al., 2006; Dietrich et al., 2007; Eiken and Sund, 2012; Heid and Kääb, 2012; Rosenau et al., 2013)

*Current address: Department of Environment and Geography, University of York, York, UK
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:
,
:::
and

:
a
:::::::
handful

::
of

:::::::
software

:::
has

:::::
been

::::::::
developed

::
to

:::::::
perform

:::::::::::::
feature-tracking

:::::::
through

:::::::::
terrestrial,

::::::::::
monoscopic time-lapse

:::::::
imagery

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kääb and Vollmer, 2000; Messerli and Grinsted, 2015; James et al., 2016; Schwalbe and Maas., 2017)

:
.

::::::::::
Monoscopic

:::::::::
time-lapse

:
photogrammetry remains an under-used technique in glaciology because there are few publicly-

available toolboxes for deriving real-world, meaningful measurements from terrestrial imagery.
:::::
There

::
is

::
an

:::::::::
increasing

:::::::
demand

::
for

:::::::
efficient

::::::::::::::
photogrammetry

::::::::
software,

:::::
which

:::
can

:::::::
execute

:::::::::
large-batch

:::::::::
processing

:::::::
quickly. The majority of these toolboxes have5

been programmed in one computing language and,
::::::::::
monoscopic

::::::::::::::
photogrammetry

:::::::
software

:::
are

:::::
either

:::::::::
distributed

:::
as

:::
raw

:::::
code

::
or

::::
with

::::::::
graphical

:::
user

:::::::::
interfaces,

::::
and without prior knowledge in photogrammetry and computer coding, their applications are

largely limited to calculating glacier surface velocities (e.g., Kääb and Vollmer, 2000; Messerli and Grinsted, 2015; James et al., 2016)

. More toolboxes are therefore needed to further this technique and its glaciological applications, and add to the
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kääb and Vollmer, 2000; Messerli and Grinsted, 2015; James et al., 2016; Schwalbe and Maas., 2017)

:
.
:::
The

:::::
future

::
of

::::::
glacial

::::::::::::::
photogrammetry

:::
lies

::
in

::
its

:::::::
valuable

::::::
ability

::
to

:::::::
examine

:::::::
different

::::::
aspects

::
of

:::
the

::::::
glacier

::::::
system

:::::::::::::
simultaneously,10

::::
such

::
as

::::::
glacier

::::::::
velocity,

::::
fjord

:::::::::
dynamics,

:::::::
surface

::::
lake

:::::::
drainage

::::
and

::::::
calving

:::::::::
dynamics.

::::::
These

:::
can

:::
be

::::::
studied

:::::
using

::::::::
different

:::::
image

::::::
capture

::::::::::
frequencies

:::
and

::::
over

::::::::
different

::::::
lengths

::
of

:::::
time.

::
To

:::::::
achieve

::::
this,

::::
there

:::::
needs

::
to

:::
be

::::::
greater

::::
focus

:::
on

:::::::::
expanding

:::
the

:::::::::
capabilities

::
of

::::::::
exisiting

::::::::
toolboxes,

::::
and

:
a
:::::::
marked

:::::
effort

::
to

::::::
develop

::::
new

::::::::
toolboxes

::::::
which

::::::
widens

:::
the

:::::
range

::
of

:
data products that

can be obtained from time-lapse imagery.

PyTrx (short for ‘Python Tracking’) is a new toolbox, which is presented here to widen the range of photogrammetric15

::::::::::
monoscopic

::::::::::::::
photogrammetry toolboxes on offer to the glaciology community, and also expand the types of measurements

that can be derived from time-lapse imagery.
::::
The

:::::::
toolbox

::
is

:::::
coded

::
in

:::::::
Python,

::
an

:::::::::::
open-source

:::::::::
computing

::::::::
language,

::::::
which

::
is

:::::
freely

:::::::
available

::::
and

:::::
easily

:::::::::
accessible

::
to

::::::::
beginners

::
in

::::::::::::
programming (available at https://github.com/PennyHow/PyTrx). PyTrx

has been developed with glaciological applications in mind, with functions for deriving surface velocities via a sparse feature-

tracking approach, surface areas (e.g. supraglacial lakes and meltwater plume expressions) with automated area detection, and20

line profiles (e.g. glacier terminus position) with a manual point selection method.

2 Background

Photogrammetry is defined broadly as the extraction of measurements from photographs, which may be captured either from

above (i.e. aerial) or from the ground (i.e. terrestrial). In recent years, photogrammetry has moved away from traditional

techniques (e.g., Finsterwalder, 1954; Kick, 1966), with the introduction of digital cameras and computers with high processing25

powers.

Terrestrial photogrammetry is a rapidly growing technique in glaciology as a result of its expanding capabilities, with

applications in monitoring glacier surface conditions (Parajka et al., 2012; Huss et al., 2013), supraglacial lakes (Danielson and Sharp, 2013)

, meltwater plume activity (Schild et al., 2016; How et al., 2017; Slater et al., 2017), and calving dynamics (Kaufmann and Ladstädter, 2008; Ahn and Box, 2010; James et al., 2014; Whitehead et al., 2014; Pȩtlicki et al., 2015; Medrzycka et al., 2016; Mallalieu et al., 2017; How et al., In Press)

. A prevailing application has been in deriving glacier surface velocity from sequential terrestrial imagery using a technique30

called feature-tracking; as it offers highly detailed (both spatially and temporally) records (e.g., Fox et al., 1997; Maas et al., 2006; Dietrich et al., 2007; Eiken and Sund, 2012; Heid and Kääb, 2012; Rosenau et al., 2013)

. A handful of software has been developed to perform feature-tracking through terrestrial time-lapse imagery (e.g., Kääb and Vollmer, 2000; Messerli and Grinsted, 2015; James et al., 2016)

.
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A key problem is the increasing demand for efficient photogrammetry software, which can execute large-batch processing

quickly. The future of its application in glaciology lies in its valuable ability to examine different aspects of the glacier system

simultaneously, such as glacier velocity, fjord dynamics, surface lake drainage and calving dynamics. These can be studied

using different image capture frequencies and over different lengths of time. To achieve this, the glaciology community needs

a greater range of robust photogrammetry methods which have been developed specifically for applications in glaciology.5

Here, a new time-lapse photogrammetry toolbox is presented with specific applications in glaciology. PyTrx has been

developed to further terrestrial time-lapse photogrammetry techniques in glaciology and address the issues outlined previously.

The software is coded in Python, an open-source computing language, which is freely available and easily accessible to

beginners in programming. PyTrx is capable of producing velocities, surface areas and distances from monoscopic time-lapse

set-ups. The
:::
The

:
common photogrammetry methods used in glaciology will be outlined subsequently, followed by PyTrx’s key10

features and differences. PyTrx’s capabilities will be demonstrated and evaluated using time-lapse imagery from Kronebreen

and Tunabreen, two tidewater glaciers in Svalbard.

2 Common photogrammetric methods
:
in

:::::::::
glaciology

Current photogrammetry software
:::
for

::::::::::
monoscopic

:::::::::
approaches

:::::
with

::::::
glacial

:::::::
imagery can generally be divided into those that

perform feature-tracking algorithms such as IMCORR (Scambos et al., 1992), COSI-Corr (Leprince et al., 2007), and CIAS15

(Kääb and Vollmer, 2000; Heid and Kääb, 2012); and those that perform image translation functions such as Photogeoref

(Corripio, 2004) , PRACTISE (Härer et al., 2016), Agisoft PhotoScan, and PhotoModeler
:::
and

::::::::::
PRACTISE

::::::::::::::::
(Härer et al., 2016)

. A common limitation is that few pieces of software unite all the photogrammetry processes needed to compute real world

measurements from terrestrial
::::::::::
monoscopic time-lapse imagery (i.e. distance, area, velocity, and volume

:::
and

:::::::
velocity). There are

a handful of toolboxes that provide functions for all of these processes, such as the Computer Vision System toolbox for Matlab20

and the OpenCV toolbox for C++ and Python. However, these are merely given as stand-alone
:::::::::
distributed

::
as

::::
raw algorithms

and a significant amount of time and knowledge is needed to produce the desired measurements and information.

ImGRAFT (available at )and imgraft.glaciology.net
:
),
:

Pointcatcher (available at ) lancaster.ac.uk/...pointcatcher.htm
:
)
::::
and

::::::::::::
Environmental

::::::
Motion

::::::::
Tracking

::::::
(EMT)

::::::::
(available

::
at
:

at tu-dresden.de/geo/emt/
:
)
:
were the first toolboxes that were made pub-

licly available and
:::
that

:
contain all the processes needed to obtain velocities from terrestrial

::::::::::
monoscopic time-lapse imagery25

::::::
set-ups in glacial environments (Messerli and Grinsted, 2015; James et al., 2016). Both are Matlab-based toolboxes using algorithms

from the Computer Vision System toolbox,
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Messerli and Grinsted, 2015; James et al., 2016; Schwalbe and Maas., 2017)

:
.
:::::
These

::::::::
toolboxes

::::
have

::::
been developed specifically for glaciological applications

:
,
:::::
either

:::::::::
distributed

::
as

:::
raw

::::
code

:::
(in

:::
the

::::
case

::
of

:::::::::
ImGRAFT)

::
or

:::::::
software

::::
with

::
a
::::::::
graphical

::::
user

:::::::
interface

:::
(in

:::
the

::::
case

::
of

:::::::::::
Pointcatcher

:::
and

::::::
EMT). These software follow a similar workflow

and the steps involved will be discussed subsequently.30
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2.1 Image processing

Images need to display consistent conditions throughout an image series to gain the best photogrammetric measurements.

Therefore, images are commonly enhanced in order to achieve this. Images can be enhanced individually, but this is often

time-consuming when handling large image sets. Batch processing is more commonly utilised to enhance images in a time-

lapse sequence.5

The most straightforward types of enhancements are point operators, where the output value of each pixel in an image de-

pends solely on the corresponding input pixel value, and a given parameter in some cases (Szeliski, 2010)
::::::::::::::::::::
(Acharya and Ray, 2005)

. These include brightness and contrast adjustments, colour corrections. These adjustments do not directly improve the quality

of an image though, as changes affect pixel hue and saturation as well as apparent intensity.

Histogram equalisation (also called global histogram equalisation) is generally used to achieve suitable pixel values in an10

automated manner
::::::
contrast

:::
for

::::::::::::
distinguishing

::::::
features

::::
and

::::::
reliable

:::::::
tracking

::::::::::::::::::::::::::::::::::::::::::
(Soha and Schwartz, 1978; Akcay and Avsar, 2017)

. An intensity mapping function is calculated by computing the cumulative distribution function (c(I)) with an integrated

distribution (h(I)) and the known number of pixels in the image (N) (Solem, 2012):

c(I) =
1

N

I∑
i=0

h(I) = c(I − 1)+
1

N
h(I) (1)

This reduces the range of pixel values in an image, and smooths drastic changes in lighting and colour.15

2.2 Displacement analysis

Displacements are measured through a sequence of images using a technique called feature-tracking, by which pixel intensity

features are matched from one image to another (Szeliski, 2010; Solem, 2012)
:::::::::::::::::::
(Ahn and Howat, 2011). Pixel-intensity fea-

tures are defined in the image plane either as points or pixel regions (also referred to as templates), producing spot measure-

ments and continuous surface measurements respectively. These two approaches are also referred to as sparse feature-tracking20

::::::::::::::::::::
(e.g., James et al., 2016) and dense feature-tracking .

:::::::::::::::::::::
(e.g., Ahn and Box, 2010).

:

Feature-tracking can be conducted by creating and tracking exclusively between each image pair in an image set (e.g.,

Messerli and Grinsted, 2015), or by tracking continuously through the image set using the same pixel-intensity features (e.g.,

James et al., 2016). Whilst tracking continuously enables the calculation of cumulative feature displacements, tracking between

each image pair reduces the risk of error propagation from false matches.25

Corner objects provide good features to track for sparse feature-tracking methods because they provide distinctive pixel-

intensity distributions that can be matched in the subsequent image
::::::::::::::::::::::
(Harris and Stephens, 1988). This is demonstrated in Fig.

1, where corner features (e.g. a crevasse corner or debris corner) within an image of a crevasse field prove more distinctive

than a homogeneous surface (e.g. bare ice) or an edge feature (e.g. a crevasse edge). These features are marked as points on

an image, which can be matched and/or tracked in subsequent images. The creation of these points is called
::
can

:::
be

:::::::
referred30

::
to

::
as point seeding. Point seeding can be conducted on a manual basis, but this is often time-consuming when handling large

image sets (e.g., How, 2013). Automated corner detection methods utilise the high contrast in pixel values to identify the

4



Figure 1. Point seeding coherency demonstrated using regions of a time-lapse image of a crevasse field. The crevasse field (top image) is a

subset of a time-lapse image from Kronebreen, Svalbard. The regions highlighted from this subset are examples of a homogenous area (A),

an edge feature (B), and a corner feature (C). A has a very indistinctive pixel pattern so would be unable to track from image to image. B

has a distinct boundary between different pixel intensities, but tracking may drift along the boundary over time. C is a very distinctive pixel

pattern with a defined point that is easy to track.

maximum variation in a given region of the image(Szeliski, 2010). There are numerous corner detection methods available for

this process, such as the Harris corner detection method (Harris and Stephens, 1988) and the FAST (Features from Accelerated

Segment Test) corner detection method (Rosten and Drummond, 2006). The main difference in these methods is precision and

efficiency, with trade-offs between the two (Solem, 2012)
::::
them

::
all.

When tracking between an image pair, the two images have been referred to in many ways, such as ‘image A’ and ‘image B’5

(e.g., Messerli and Grinsted, 2015), and the ‘reference’ and ‘destination’ /’ search’ images (e.g., Ahn and Box, 2010; James et al., 2016)

::::::
images

::::::::::::::::::::
(e.g., James et al., 2016),

::::
and

:::
the

:::::::::
‘reference’

::::
and

:::::::
‘search’

:::::::::::::::::::::
(e.g., Ahn and Box, 2010). The terms reference image and

destination image will be used subsequently; the reference image being where points are seeded or templates are defined,

and the destination image being where a point/template is matched to. Normalised cross-correlation is a common approach

for automated feature-tracking, with cross-correlation referring to the correlation between two signals (i.e. the pixel intensity10

distribution in two images)
:::::::::::::::
(Zhao et al., 2006). This technique is applied in both sparse and dense feature tracking in a simi-

lar manner, using the pixel intensity distribution in a window around a given point or a template in the reference image (T )

5



(Szeliski, 2010; Solem, 2012)
:::::::::::
(Solem, 2012):

R(x,y) =

∑
x′,y′

(
T
(
x′,y′

)
· I
(
x+x′,y+ y′

))√∑
x′,y′ T

(
x′,y′

)2 ·∑x′,y′ I
(
x+x′,y+ y′

)2 (2)

Where R is the correlation between the reference template and the destination image, and I is the destination image. The

function is applied to each possible position in the image (x,y), thus defining the correlation at every point (x′,y′). The

highest correlation is defined as the best match between the reference template and the destination image. The correlation at5

each point in the image can also be determined using different correlation methods such as the normalised square difference,

the least square sum and the least difference methods (Szeliski, 2010)
::::::::::::::
(e.g., Lowe, 1999).

Tracking coherency through long-duration sequences is frequently subject to severe lighting discrepancies and shadowing

which cause false motion. In such applications there is a large significance on image selection. Images with similar lighting

and limited shadowing variation must be selected, which may limit the temporal resolution of the collected data. Glacial10

features which provide good tracking points/templates, such as debris features, can evolve over time which introduce additional

displacements (e.g., How, 2013). This can be especially limiting for area-based tracking (e.g., Messerli and Grinsted, 2015).

In sparse point tracking, there is a heavy reliance on the number and distribution of points which reduces the replicability

of results (Fox et al., 1997; James et al., 2016). It is the factors outlined here that need to be considered when choosing a

feature-tracking approach.15

2.3 Motion correction

During image acquisition, the time-lapse camera platform is often subject to movement caused by instabilities in the instal-

lation, wind, ground heave, thermal expansion of the tripod, and animal/human intervention. This introduces false motion to

the measurements derived from an image sequence, which need to be corrected for in order to make accurate measurements

through sequential imagery. This process is referred to as image registration.20

Feature-based registration methods are more commonly used for glacial environments due to large variations in lighting and

glacier surface evolution over time, especially over long-duration sequences (e.g., Messerli and Grinsted, 2015; James et al., 2016)

:::::::::::::::::::
(Eiken and Sund, 2012). Feature-based registration aligns the images by tracking static feature points. These can be natural fea-

tures, such as mountain peaks (e.g., James et al., 2016), or man-made targets (e.g., Dietrich et al., 2007). Observed movement

of these points signify false motion.25

Between 20 and 30 coherent natural static feature points can represent false motion effectively. Ideally, these would be

distributed evenly across the image plane. Control points in the foreground of an image are more sensitive and can be better

for constraining camera rotation angles (Eiken and Sund, 2012), but equally heavy reliance on these can introduce excessive

noise and random pixel variation (James et al., 2016).

The two-dimensional pixel displacements between point pairs are subsequently used to calculate motion in the camera,30

which is represented in three-dimensional space. This translation to three-dimensional space is achieved using a transformation

model. There are a number of transformation models in existence, such as isometries, similarity transformations, and affine
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transformations. Planar projective transformations are used typically for time-lapse photogrammetry in glaciology because

they utilise homogeneous coordinates and therefore translate an original planar to a continuous surface. This is also a technique

typically used in georectification (see subsequent section for more details).

The point pairs from the static point features are used to map the destination image to the reference image. This map is also

referred to as the homography (H), and is computed as follows:5 
x′

y′

w′

=


h1 h2 h3

h4 h5 h6

h7 h8 h9



x

y

w

 or x′ =Hx (3)

Where the h values correspond with the homogeneous transformation of each point within the planar, which is used to translate

coordinates from the original image (x,y,w) to the destination image (x′,y′,w′). In other words, coordinates in the destina-

tion (x′) are represented by the homography and the corresponding coordinates in the reference image (Hx) (Hartley and

Zisserman, 2004).10

The homography encapsulates the three-dimensional rotation of the camera platform as movement around its horizontal

(yaw), vertical (pitch) and optic axes (roll) (also
:::::::::::::::::::
(Eiken and Sund, 2012).

::::::
These

::::
have

::::
also

:::
be referred to as omega, phi, and

kappa by James et al., 2016)
::::::::::::::::
(James et al., 2016). Rotation that cannot be accounted for from the two-dimensional displace-

ments is represented as a root-mean-square (RMS) residual pixel value, which is used as a measure of uncertainty. The output

rotations can be applied to correct false motion from feature track measurements, which will improve the signal-to-noise ratio.15

2.4 3D conversion

Image translation is the process by which measurements in the image plane are translated to real-world measurements. There

are several approaches to image translation, the two main ones in glaciology being scale factoring and georectification. A

scale factor describes the absolute distance per pixel in an image at a given distance. However, this assumes that the measured

displacements are precisely perpendicular to the direction of the camera (e.g., Ahn and Box, 2010). With georectification, the20

image plane is mapped directly to a real-world coordinate system, and this is more commonly used for measuring displacements

that are at an angle to the camera
:::::::::::::::::::
(e.g., James et al., 2016).

The planar projective transformation technique described previously (Equation 3) is also used in image georectification.

A homography model is calculated that represents the translation from the image plane to the three-dimensional environment

(Hartley and Zisserman, 2004). This is determined using an assortment of information about the three-dimensional environment25

and how the camera captures this. A Digital Elevation Model (DEM) is typically used to represent the three-dimensional

environment. Ground Control Points (GCPs) are point locations in the image plane with corresponding real-world coordinates,

which are used as pinning points to map the image to a known coordinate system.

Geometric camera calibration is used to model how the camera captures the three-dimensional environment. There are

numerous models which define this translation(Solem, 2012). The precedent model used in glaciology utilises the extrinsic30
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(R,t) and intrinsic (K) information about the camera
:::::::::::::::::
(Xu and Zhang, 1996):

P =

 R

t

K (4)

Where P is the camera matrix that mathematically represents the translation between the three-dimensional world scene

and the two-dimensional image; R,t are the extrinsic camera parameters that represent the location of the camera in three-

dimensional space; and K are the intrinsic camera parameters that represent the conversion from three-dimensional space to a5

two-dimensional image plane.

The extrinsic and intrinsic camera parameters can be considered as separate matrices(Solem, 2012). The extrinsic camera

matrix consists of a 3×3 matrix that represents camera rotation (r) and a column vector that represents camera translation (t)

:
:::::::::::
(Zhang, 2000)

:
:
:

[
R t

]
=


r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

 (5)10

The intrinsic camera matrix (K) is a 3×3 matrix that contains information about the focal length of the camera in pixels

(fx,fy), the principal point in the image (cx, cy) and the camera skew (s) (Solem, 2012):
::::::::::::::::::::::
(Heikkila and Silven, 1997)

:
:

K =


fx 0 0

s fy 0

cx cy 1

 (6)

The given focal length for a fixed focal length lens can be assumed to be precise because there is a limited chance of lens drift.

It is advised to calculate the focal length for images captured with zoom lenses and compact cameras for greater accuracy.15

The principal point is also referred to as the optical centre of an image, and describes the intersection of the optical axis

and the image plane. Its position is not always the physical centre of the image due to imperfections produced in the camera

manufacturing process(?); this difference is known as the principal point offset (Hartley and Zisserman, 2004). The skew

coefficient is the measure of the angle between the xy pixel axes, and is a non-zero value if the image axes are not perpendicular

(i.e. a ‘skewed’ pixel grid).20

The intrinsic camera matrix (K) assumes that the system is a pinhole camera model and does not use a lens to gather and

focus light to the camera sensor (Solem, 2012)
::::::::::::::::::
(Xu and Zhang, 1996). Camera systems that include a lens introduce distortions

to the image plane. These distortions are a deviation from a rectilinear projection, in which straight lines in the real world

remain straight in an image. These distortions ineffectively represent the target object in the real world, and therefore distortion

coefficients (k1,k2,p1,p2,k3 . . .k8) :::::::::::::::::::
(k1,k2,p1,p2,k3 . . .k5) are needed to correct for this. These coefficient values correct for25

radial (k1,k2,k3 . . .k8) :::::::::::::
(k1,k2,k3 . . .k5):and tangential (p1,p2) distortions (Hartley and Zisserman, 2004):

:::::::::::
(Zhang, 2000)

:
:

xcorrected = x′
(
1+ k1r

2 + k2r
4 + k3r

6 + k4r
8 + k5r

10
)

ycorrected = y′
(
1+ k1r

2 + k2r
4 + k3r

6 + k4r
8 + k5r

10
)

(7)
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xcorrected = x′+
[
2p1xy+ p2

(
r2 +2x2

)]
ycorrected = y′+

[
p1
(
r2 +2y2

)
+2p2xy

]
(8)

Where x′,y′ are the uncorrected pixel locations in an image, and xcorrected,ycorrected are their corrected counterparts. Radial

distortion arises from the symmetry of the camera lens whilst tangential distortion is caused by misalignment of the camera

lens and the camera sensor. Radial distortion is the more apparent type of distortion in images, especially in wide angle images,5

and those containing straight lines (e.g. skyscraper landscapes) which appear curved. Severe tangential distortion can visibly

alter the depth perception in images.

The camera matrix and these distortion coefficients can be computed using a set of calibration images taken with the camera

that is being used for photogrammetry purposes (Hartley and Zisserman, 2004). These calibration images must be of an object

with a known geometry or contain known coordinates (Heikkila and Silven, 1997; Zhang, 2000). A commonly used object is a10

black and white chessboard, with the positioning and distance between the corners used as the x′,y′ coordinates(Solem, 2012).

Other objects which can be used are grids of symmetrical circles (with the centre of each circle forming the x′,y′ coordinates),

and targets which are specified by programs that perform camera calibration (e.g. Agisoft Photomodeller).

The location of the camera and its initial pose (yaw, pitch, roll) are needed to accurately position the camera within the

three-dimensional environment. Yaw, pitch and roll are difficult to accurately measure in the field and certain photogrammetry15

toolboxes calculate and refine yaw, pitch and roll automatically,
:::::::
optimise

:::::
these

:::::::::
parameters,

:
such as ImGRAFT (Messerli and

Grinsted, 2015). Camera pose can also be calculated using the principal point (represented as a GCP), along with additional

corresponding GCPs to measure the three axes (Fig. 2). The y-axis position of the principal point is used to calculate yaw as

an azimuth bearing (Fig. 2A). The xyz position of the principal point provides an elevation comparison to the camera location,

which defines the pitch rotation (Fig. 2B). A GCP along the same x-axis position as the principal point is used to calculate roll20

(Fig. 2C), signified by the apparent change in elevation (Addison, 2015).

3 Features and Applications of PyTrx

PyTrx (available at https://github.com/PennyHow/PyTrx) has been developed to further terrestrial time-lapse photogrammetry

techniques in glaciology,
:::
and

:
offer an alternative to the

::::::::::
monoscopic toolboxes currently available, and address the issues

outlined previously.
:
.
::::::::::
Specifically,

::::::
PyTrx

:::
has

:::::::
achieved

::::
this

::::
with

:::
the

::::::::
following

:::
key

::::::::
features:25

1.
:
A
::::::

sparse
::::::::::::::

feature-tracking
:::::::::
approach,

:::::
using

::::::
Optical

:::::
Flow

:::::::::::::
approximation

::::
and

:::::::::::
back-tracking

::::::::::
verification

:::
to

:::::::::
efficiently

:::::::
compute

:::::::
accurate

:::
and

:::::::
reliable

:::::::::
velocities;

2.
::::::::::
Approaches

:::
for

:::::::
deriving

:::::
areal

::::
and

::::
line

::::::::::::
measurements

:::::
from

::::::
oblique

:::::::
images,

:::::
with

:::::::::
automated

::::
and

:::::::
manual

::::::::
detection

:::::::
methods;

:

3.
::::::
Camera

:::::::::
calibration

:::::::::::
functionality

::::
built

::
in

::
to

::::::::
calculate

::::::
internal

:::::::
camera

:::::::
matrices

:::
and

::::
lens

::::::::
distortion

:::::::::::
coefficients;30

9
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Figure 2. Diagram demonstrating yaw (A), pitch (B), and roll (C) from an image, knowing the camera location (denoted by the square

marker) and two GCPs along the x-axis of the principal point (denoted by the two circle markers). The underlying time-lapse image is of the

terminus of Kronebreen, Svalbard. Figure adapted from Addison (2015).

4.
::::::
Written

::
in

:::::::
Python,

:
a
::::
free

:::
and

::::::::::
open-source

::::::
coding

::::::::
language,

::::
and

:::::::
provided

::::
with

::::::
simple

:::::::
example

::::::::::
applications

:::
for

::::
easy

::::
use;

5.
:::::::::
Engineered

::::
with

:::::::::::::
object-oriented

:::::
design

:::
for

:::::::
efficient

::::::::
handling

::
of

::::
large

::::
data

::::
sets;

:

6.
::::
Core

:::::::
methods

::::::::
designed

::
as

::::::::::
stand-alone

::::::::
functions

:::::
which

::::
can

::
be

::::
used

:::::::::::
independent

::
of

:::
the

::::
class

:::::::
objects,

:::::::
making

:
it
:::::::
flexible

::
for

:::::
users

::
to

:::::
adapt

::::::::::
accordingly.

:
5

PyTrx is aimed at beginners in programming, with the files associated with the toolbox written with object-oriented design (i.

e. with classes that contain the associated methods and functions). The toolbox follows a similar workflow to that outlined in

the previous section.
::::
users

::::
with

:::
all

:::::
levels

::
of

::::::::::::
programming

:::::::::
experience.

:::::::::
Beginners

::
to

:::::::::::
programming

:::
are

::::::
guided

::::
with

:::
the

:::::::
rigidity

::
of

:::
the

::::
class

:::::::
objects,

:::::
whilst

::::::::
advanced

:::::
users

:::
can

:::
use

:::
and

:::::
adapt

:::
the

::::::::::
stand-alone

::::::::
functions

:::
for

::::
more

::::::::
complex

::::
uses.

:

3.1 Field set-up10

Examples are given throughout this section, which demonstrate the capabilities of PyTrx and its applications in glaciology.

These examples use time-lapse imagery collected from Kronebreen (78.8◦N, 12.7◦E, Fig. 3B) and Tunabreen (78.3oN, 12.3oE,

Fig. 3C), which are two tidewater glaciers in Svalbard (Fig. 3A). These time-lapse camera systems consisted of a Canon

600D/700D camera body and a Harbortronics Digisnap 2700 intervalometer, which were powered by a 12 V DC battery and a

10 W solar panel. An assortment of camera lenses was used to allow for flexibility in coverage. These were primarily made up15

of EF 20 mm f/2.8 USM and EF 50 mm f/1.8 II prime lenses.
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Figure 3. Maps showing the Svalbard archipelago (A); Kronebreen (B) and Tunabreen (C) with numbered camera sites installed over the

2014 and 2015 melt seasons; and an example of one of the time-lapse camera installations in the field (D).

The camera parts and the battery were encased in waterproof Peli Case boxes. The camera enclosures were modified to have

a porthole that could hold a sheet of optical glass between two steel frames, through which the camera could take photographs.

The camera boxes were fixed on tripods, which were anchored by digging the tripod legs into the ground, burying the tripod

legs with stones, and/or drilling guide wires into the surrounding bedrock. An example of one of these set-ups is shown in Fig.

3D.5

Accurate locations for each of the time-lapse cameras were measured using a Trimble GeoXR GPS rover to a SPS855

base station, which was positioned ∼15 km away. Positions were differentially post-processed in a kinematic mode using the

Trimble Business Centre software, given an average horizontal positional accuracy of 1.15 m and an average vertical positional

accuracy of 1.92 m.

GCPs were determined for each camera set-up from known xyz locations that were visible in the field-of-view, and camera10

pose (yaw, pitch roll) was determined using the approach demonstrated in Fig. 2. Each camera (and lens) was calibrated
:::::
either

using the camera calibration functions in
:::::
PyTrx

::::::
(where

:::::::::
calibration

::::::
images

:::
are

::::::
given)

::
or

:
the Matlab Computer Vision Systems

toolbox to obtain intrinsic camera matrices and lens distortion coefficient values.

The DEM of the Kongsfjorden area orginates from a freely available DEM dataset provided by the Norwegian Polar Institute,

which was obtained from airborne photogrammetric surveying in 2009 (Norwegian Polar Institute, 2014). The DEM of the15
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Tempelfjorden area originates from ArcticDEM, Scene ID WV01-20130714-1020010 (14th July 2013). These DEMs are

distributed with PyTrx in a modified form, with each scene clipped to the area of interest, downgraded to 20 m resolution, and

smoothed using a linear interpolation method.
:::::::::::
Interpolation

:
is
::::
used

::::
here

::
to
::::::::
eliminate

::::::::
artefacts

::
in

:::
the

:::::
glacier

:::::::
surface

:::
that

:::
do

:::
not

:::::
reflect

:::
the

::::::
surface

::
at

:::
the

::::
time

::
of

:::::
image

::::::::::
acquisition.

:
In cases where measurements are derived at sea level (e.g. meltwater plume

extents, terminus profiles, and calving event locations), all low-lying elevations (< 150 m) have been transformed to 0 m a.s.l.5

in order to project them to a flat, homogeneous surface.

3.2 Structure of PyTrx

PyTrx is compatible with Python 2.7 releases, and largely utilises the OpenCV (Open Source Computer Vision) toolbox (v3.1

and upwards), which is a free library designed to provide computer vision and machine learning tools that are computationally

efficient and operational in real-time applications. The library has over 2500 optimised algorithms including those for mono-10

scopic photogrammetry and camera calibration (Solem, 2012). A number of other packages are also used, notably GDAL,

Glob, Matplotlib, NumPy, OsGeo, and PIL; and these come pre-installed with most Python distributions such as PythonXY

and Anaconda.

PyTrx is distributed as a series of files, which requires a driver script to run. The toolbox consists of six
::::
eight

:
Python files,

which handle the main classes and functions:15

1. CamEnv.py – Handles the objects
:::
and

::::::::
functions

:
associated with the camera environment;

2. DEM.py – Handles the DEM object
:::
and

:::::::::
associated

::::::::
functions;

3. Images.py – Handles the objects
:::
and

::::::::
functions associated with the image sequence and the individual images within that

sequence;

4. Measure
:::::::
Velocity.py – Handles the objects associated with making measurementsfrom the images (i.e. velocities, areas,20

and distances)
:::::::
Velocity

:::::
object

::::
and

::::::::
functions

:::
for

:::::::
deriving

:::::::
velocity

::::::::::::
measurements;

5.
::::::
Area.py

::
–
:::::::
Handles

:::
the

::::
Area

::::::
object

:::
and

::::::::
functions

:::
for

:::::::
deriving

::::
areal

:::::::::::::
measurements;

6.
::::::
Line.py

::
–

:::::::
Handles

:::
the

::::
Line

::::::
objects

:::
and

::::::::
functions

:::
for

:::::::
deriving

::::
line;

:

7. FileHandler.py – Contains all functions called by an object to import and export
:::
the

:::::::
functions

:::
for

::::::::
importing

::::
and

::::::::
exporting

data;25

8. Utilities.py – Contains all
::
the

:
functions for plotting and presenting data.

Within these files, six
:::
nine class objects perform the core photogrammetry processes that were outlined in the previous section:

:::::
GCPs,

:::::
DEM

:
,
:::::::::
CamCalib,

:
CamImage, ImageSequence, Velocity, Area, Length, and CamEnv. They operate according to the

workflow presented in Fig. 4.
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Figure 4. PyTrx’s workflow, showing how each of the class objects interact with one another.

The key features of PyTrx, which are different from the general techniques discussed previously, will be outlined compre-

hensively in the subsequent sections with reference to PyTrx’s object-oriented workflow.
::::
Class

:::::::
objects,

::::::::
functions

::::
and

:::::
input

:::::::
variables

::
in

::::::
PyTrx

:::
will

:::
be

:::::::::
highlighted

::
in

::::::
italics.

:

3.3 Image enhancement

CamImage (found in Images.py) holds all the information about a single image within an image sequence, making single5

images easy to call within PyTrx. Each image is represented as a NumPy arrayin the CamImage class object .
::
An

::::::
image

::
is

:::::
passed

::::
into

::::::
PyTrx

::
as

::
an

::::::
array,

:::::
either

:::::
using

:::
the

:::::::
readImg

::::::
function

::::::
found

::
in

::::::::::::
Filehandler.py

::
or

:::::
when

:::::::::
initialising

:::
the

::::::::::
CamImage

:::::
object

:::::
which

::
is

::
in

:::::::::
Images.py. Image enhancement processes can be executed within the CamImage object

::
are

::::::::
executed by mod-

ifying the NumPy array that represents the image. The image enhancement methods that are available in PyTrx are histogram

equalisation (as presented in Section 2.1)and
:
, the extraction of information from a single image band or grayscale

:
,
:::
and

::::::
simple10

::::::::
arithmetic

::::::::::::
manipulations

::
on

:::
an

:::::::
image’s

::::
pixel

::::::
values.
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One problem with histogram equalisation is that the resulting histogram is flat (Solem, 2012). Grayscale, equalised images

are used commonly in photogrammetric processing in order to reduce processing time (e.g., James et al., 2016). This means

that all the RGB information is flattened and each pixel is assigned one single grayscale value. However, this can alter the image

and its uses for extracting measurements from. For instance, corner coherency can be altered, which can present challenges in

point seeding, image registration, and feature tracking (Solem, 2012)
:::::::::::::::::::::::
(Schwalbe and Maas., 2017). Additionally, it can make it5

difficult to distinguish areas of interest based on pixel intensity.

PyTrx has been designed to overcome this limitation by providing a method for extracting information from a specified band

of an image. An image can be passed forward either in grayscale, or with one of the RGB bands. Although this is executed in

the
:::::::
readImg

:::::::
function

::
or

:::
the CamImage class object, it can also be defined in the three Measure classes (i.e. Velocity, Area, and

Length
:::
Line )

::::::
objects with the band variable. The string inputs r, g, b, and l denote whether the red, green, blue, or grayscale10

bands should be passed forward. This does not affect the processing time drastically, and enables effective detection of areas

of interest in images, such as meltwater plumes and supraglacial lakes.

The user can select an image band to suit their applications, and obtain accurate measurements from an appropriate image

band. The
:::
The example in Fig. 5 demonstrates how each selection

::::::
selected

:::::
band affects the pixel intensity range associated

with a cluster of supraglacial lakes. These surface areas have been detected automatically based on pixel intensity.15

An example of PyTrx’s ability to the extract pixel information from a specified image band using an example image from

Kronebreen camera K3. The image shows a cluster of supraglacial lakes, which were monitored through the 2015 melt season.

A shows the original time-lapse image. The yellow box denotes the subset from which pixel information is extracted from and

displayed in the subsequent images: grayscale (B), the red image band (C), the green image band (D), and the blue image band

(E). The white plotted lines in these subsets show attempts to automatically detect the lake extent. The red image band yields20

the best detection as it closely follows the lake extent.

Ideally, regions of interest in an image are effectively detected when they are represented by the smallest range in pixel

intensity (i.e. a homogeneous surface). With the functionality provided in PyTrx, an assessment can be made to decide which

image band facilitates effective detection. In the example presented in Fig. 5, the red image band (Fig. 5C) offers the smallest

pixel intensity range and thus the lakes are represented as a homogeneous surface. This proves easiest to define on an automated25

basis.

The Area class object

:::::
PyTrx

:
offers an additional enhancement process to improve the ability to automatically detect areas in images. The image

enhancement process within the Areaclass object is a function that
::::::::::
enhanceImg

::::::
function

::
in
:::::::::
Images.py

:
uses simple arithmetic

to manipulate image brightness and contrast. This is performed in a NumPy array, and the array
:
an

::::::
array,

:::::
which

:
can either30

represent an image with pixel values from the red, green or blue band, or from the grayscale image; as specified in the band

variable. This enhancement method uses three variables to change the intensity and range of the pixel values:

1. diff : Changes the intensity range of the image pixels. This has two outcomes. Either it changes dark pixels to become

much brighter and bright pixels become slightly brighter, or it changes dark pixels to become much darker and bright

pixels become slightly darker35
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Figure 5.
::
An

:::::::
example

::
of

:::::::
PyTrx’s

:::::
ability

::
to

:::
the

::::::
extract

::::
pixel

:::::::::
information

::::
from

::
a
:::::::
specified

:::::
image

::::
band

:::::
using

:::
an

::::::
example

:::::
image

:::::
from

::::::::
Kronebreen

::::::
camera

::::
K3.

:::
The

:::::
image

:::::
shows

:
a
::::::

cluster
::
of

:::::::::
supraglacial

:::::
lakes,

:::::
which

::::
were

::::::::
monitored

::::::
through

:::
the

::::
2015

::::
melt

::::::
season.

::
A

:::::
shows

::
the

::::::
original

:::::::::
time-lapse

:::::
image.

::::
The

:::::
yellow

::::
box

::::::
denotes

:::
the

:::::
subset

::::
from

:::::
which

::::
pixel

::::::::::
information

:
is
::::::::

extracted
::::
from

:::
and

::::::::
displayed

::
in

:::
the

::::::::
subsequent

::::::
images:

:::::::
grayscale

::::
(B),

::
the

:::
red

:::::
image

::::
band

:::
(C),

:::
the

:::::
green

:::::
image

::::
band

:::
(D),

:::
and

:::
the

:::
blue

:::::
image

::::
band

::::
(E).

:::
The

::::
white

::::::
plotted

::::
lines

:
in
:::::
these

:::::
subsets

::::
show

:::::::
attempts

::
to

::::::::::
automatically

:::::
detect

:::
the

:::
lake

:::::
extent.

::::
The

::
red

:::::
image

::::
band

:::::
yields

:::
the

:::
best

:::::::
detection

::
as

::
it

:::::
closely

::::::
follows

:::
the

:::
lake

:::::
extent.
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2. phi: Modifies the intensity of all pixel values

3. theta: Defines the number of ‘colours’ in the image by grouping pixel intensity regions together i.e. an input of 3 signifies

that all the pixels will be grouped into one of three pixel values

The result better distinguishes areas of interest, and makes it easier for the subsequent detection. See Section 3.6 for more

information on how areal measurements are derived from images using PyTrx.5

3.4 Point seeding

Points are seeded in an image using the Shi-Tomasi Corner Detection method (Shi and Tomasi, 1994), as part of the good-

FeaturesToTrack function in the OpenCV library. This is based on the Harris Corner Detection method, which evaluates the

difference in intensity for a displacement of (u,v) in all directions for a given region of an image (E) (Harris and Stephens,

1988). Points are selected based on the largest intensity differences:10

E(u,v) =
∑
x,y

w(x,y)
[
I
(
x+u,y+ v

)
− I
(
x,y
)]2

(9)

Where w is the window function (rectangular or Gaussian) defined as a width and height (x,y) and I is pixel intensity. The first

part of the bracketed section, (I(x+u,y+v)) defines the shifted intensity, and the second part (I(x,y)) calculates the intensity

at the centre origin. A scoring function (R) is subsequently used to define whether the pixel-intensity signature represents a

corner, a flat area or an edge:15

R= λ1λ2 − k
(
λ1 +λ2

)2
(10)

Where k is a tuneable sensitivity parameter, and λ1 and λ2 are the eigen values in the x and y axes of a given symmetric matrix

(Solem, 2012)
:::::::::::::::::::
(Shi and Tomasi, 1994). This forms a descriptor for the matrix, which can be used to evaluate a given region of

an image:

1. A corner
::::::::::
homogenous

::::::
(‘flat’)

:::::
region

::
of

:::
the

::::::
image is present if λ1 and λ2 are both large positive values

:::::::::
λ≈ λ2 ≈ 0 (e.g.20

Fig. 1C
:
A);

2. An edge is present if one of the eigenvalues is large and the other is approximately zero (e.g. λ1 > 0 and λ2 ≈ 0) (e.g.

Fig. 1B);

3. A homogenous (‘flat’) region of the image
:::::
corner is present if λ≈ λ2 ≈ 0

::
λ1:::

and
:::
λ2 :::

are
::::
both

::::
large

:::::::
positive

::::::
values (e.g.

Fig. 1A)
::
C).

:
25

Changes between λ1 and λ2 can be amplified by modifying k, the sensitivity parameter (Harris and Stephens, 1988). The

Shi-Tomasi Corner Detection method built upon this with a further scoring function that ranks the best corner features
::::
does

:::
not

::::::
depend

:::
on

:::
the

:::::::::
calculation

::
of

:::
the

:::::::::::
determinant.

:::::::
Corners

:::
are

::::::
ranked based on the quality level and the minimum Euclidean

distance (Shi and Tomasi, 1994):

R=min
(
λ1λ2

)
(11)30

16



The quality level denotes the minimum quality of a corner and is measured as a value between 0 and 1, and the function returns

the remaining strongest corners.
::::
This

::::
point

:::::::
seeding

:::::::
method

:
is
::::
part

::
of

:::
the

:::::::::::
featureTrack

:::::::
function,

::::::
which

::
is

:::::
found

::
in

::::::::::
Velocity.py.

:::
The

:::::::
function

::::::::
attempts

::
to

::::
seed

::::::
50,000

::::::
points

::::
with

:
a
::::::
quality

:::::
level

::
of

:::
0.1

::::
and

:
a
::::::::
minimum

:::::::::
Euclidean

:::::::
distance

::
of
::

3
::::::
pixels)

::
in

:::
an

:::::
image.

::::::
These

::::::
default

::::::
settings

:::::::
produce

::
a

::::::
heavily

::::::::
populated

::::::
sparse

::::
point

:::
set

::
in

:::
the

::::::
image

:::::
plane.

An imagecan be called using
:::::
Points

::::
can

::
be

::::::
seeded

:::::::
through

::
a
:::::
series

:::
of

::::::
images

:::
by

::::::
calling

:::::
each

::::::::::
one-by-one

:::::::
through the5

ImageSequence object within PyTrx (found in Images.py). An ImageSequence object holds the information about a series of

CamImage objects (as shown in Fig. 4). It references the CamImage objects sequentially
::::::
(sorted

::::::::::::
alphabetically,

:::::
based

:::
on

:::
the

:::
file

:::::
name)

:
so that they can be called easily in subsequent processing, such as the selection of single images and image pairs.

Images are called in this manner to seed points within. PyTrx attempts to seed 50,000 points (with a quality level of 0.1 and a

minimum Euclidean distance of 3 pixels) in an image. This can be adjusted accordingly throuh PyTrx’s featureTrack function,10

which is found in the Velocity object in Measure.py. These default settings produce a heavily populated sparse point set in the

image plane.

3.5 Deriving velocities from feature-tracking

Velocity (found in Measure.py )
:::::::::
Velocity.py contains all the processing steps for point seeding, sparse feature-tracking, and

image registration
::::
point

:::::::
seeding,

:::::
sparse

::::::::::::::
feature-tracking,

:::
and

::::::
image

:::::::::
registration between image pairs.

::::
The

:::::::::
stand-alone

::::::::
functions15

:::::::
calculate

::::
this

:::::::::
information

:::
for

:::
an

:::::
image

::::
pair,

::::
and

:::
the

::::::
Velocity

:::::
object

:::
can

::
be

:::::
used

::
to

:::::
iterate

:::::
these

::::::::
functions

:::::
across

::
a
::::::::
sequence

::
of

::::::
images.

:

Points are seeded using the Shi-Tomasi Corner Detection method discussed previously. These seeded points are tracked

between image pairs in PyTrx
::
’s

::::::::::
featureTrack

:::::::
function using the Lucas Kanade Optical Flow Approximation method (Lucas

and Kanade, 1981)
:
,
:::::
which

::::::
works

:::
best

:::::
when

:::::
there

::
is

:::::::
minimal

::::::
motion

::
in

:::
the

:::::::
camera

:::::::
platform. These are verified using a back-20

tracking technique
:::::
(used

::
in

:::
the

::::::::::
calcVelocity

:::::::
function, and the

::::::
Velocity

::::::
object’s

::::::::::::
calcVelocities

::::::::
function).

::::
The retained points are

reprojected subsequently using the georectification functions held within the
:::::::::::::
georectification

::::::::
functions

::
in

::::::::::
CamEnv.py,

::::::
which

:::
can

:::::
either

::
be

:::::::::
conducted

:::::
using

:::::::
inputted

::::::::::
information

:::::
about

:::
the

:::::
DEM

::::
and

::::::
camera

::
or

:::::
called

:::::
from

:::
the CamEnv class object. This

approach is adopted also for
:::::
image

:::::::::
registration

::::
(the

:
image registration,

:::::::::::::
calcHomography

:::::::
function,

::::
and

:::
the

:::::::
Velocity

::::::
object’s

::::::::::::::::::
calcHomographyPairs

::::::::
function),

:
which uses control points seeded and tracked between image pairs prior to deriving velocities.25

An example of this feature-tracking and georectification functionality is shown in Fig. 6, demonstrated by deriving surface

velocities from an image pair captured at Kronebreen.

Optical Flow is the pattern of apparent motion of an object between two images, caused by the movement of the object or

the camera. It is a concept readily employed in video processing to distinguish motion and has been used in motion detection

applications to predict the trajectory and velocity of objects (e.g., Baker et al., 2011; Vogel et al., 2012).30

Optical Flow is represented as a two-dimensional vector field working on the assumptions that the pixel-intensity distribution

of an object does not change between the image pair and the neighbouring pixels display similar motion (Tomasi and Kanade,

1991). Between two images, the position of a pixel (I) will change (δx,δy) over time (δt), assuming that the pixel intensity is
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Figure 6. An example of PyTrx’s feature-tracking and georectification functionality. Points have been tracked between an oblique time-lapse

image pair taken between 13 and 15 May 2014 at Kronebreen camera K2. The raw point positions and associated velocities (A) can be

interpolated to create velocity maps of a given area (B). The red point denotes the location of the time-lapse camera (Kronebreen camera

K2). This example is provided with PyTrx at https://github.com/PennyHow/PyTrx.

unchanging (Zhang and Chanson, 2018):

I(x,y, t) = I
(
x+ δx,y+ δy, t+ δt

)
(12)

Although it is mainly used to predict the velocity and trajectory of an object in an image
:::::::::::::::::::::::::
(e.g., Horn and Schunck, 1981), it can

also be used for tracking motion between images, such as feature-tracking on glacier surfaces(Solem, 2012).

The Lucas-Kanade algorithm approximates the Optical Flow of sparse points from image to image using a search window5

that is typically 3×3 pixels (Lucas and Kanade, 1981), assuming that all 9 points in each window have the same motion. It is

effective at measuring small displacements because of its thorough examination in a given window. This is ideal when dealing

with slow-moving glaciers or high interval frequency sequences (e.g. more than one image every day). However, ice velocities

derived using this method (such as
::::
those shown in Fig. 6) also include signals of crevasse propagation and surface deformation.

This is a key reason why dense feature-tracking methods are often preferred for deriving ice velocities over sparse methods; as10

the template grid ensures that measured displacements are purely associated with ice motion.

The Lucas Kanade Optical Flow approximation algorithm is available in the calcOpticalFlowPyrLK function in the OpenCV

library, which is used in PyTrx because of its computational efficiency. It is often used in real-time video photogrammetry.
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Tracking is implemented between each image pair, rather than continual tracking through the sequence. The first image in each

pair is assigned as the reference image where points are seeded, and the second image is the destination image.

As noted in the previous section, photogrammetric measurements can be non-replicable because of the inclusion of falsely

tracked points due to a lack of robust point tracking evaluation. Back-tracking verification (Kalal et al., 2010) is implemented

in PyTrx to limit false tracking. Back-tracking verification is used to assess point coherency by tracking points back from the5

destination image to the reference image
:::::::::::::::::::::::::::::::::::::
(e.g., Scambos et al., 1992; Jeong et al., 2017). This generates two sets of points in

the reference image, the initial seeded points and the corresponding back-tracked points. If a back-tracked point is within a

given distance to the position of the seeded point then it is deemed accurate and is kept. Points which exceed this distance

threshold are discarded. The distance between the seeded point and the back-tracked point is used as a measure of noise. To-

gether with the signal, this can be used to determine the signal-to-noise (SNR) ratio of each point.10

3.6 Deriving area and line objects

Current photogrammetric software focus on deriving velocities from time-lapse sequences, such as ImGRAFT (Messerli and

Grinsted, 2015)and Pointcatcher (James et al., 2016)
:
,
::::::::::
Pointcatcher

:::::::::::::::::
(James et al., 2016)

:::
and

::::
EMT

::::::::::::::::::::::::
(Schwalbe and Maas., 2017)

. Other measures of the glacial system would be valuable, such as changes in supraglacial lakes, the expression of a meltwater15

plume, and terminus position. PyTrx has been developed to offer these additional photogrammetric measurements. It can

specifically derive area and line/distance measurements, in addition to velocities, from time-lapse
:::::
image sequences. The Area

and Length class objects contain all of the processing steps to obtain these measurements. ,
:::::
which

::::
can

::
be

:::::
found

::
in

:::
the

::::::::
Areas.py

:::
and

:::::::
Line.py

::::::
scripts,

::::::::::
respectively.

:
Both class objects inherit from the Velocity

:::::::::::::
ImageSequence class object.

Area (found in Measure.py )
::::
The

:::::::
Area.py

:::::
script

:
contains all the processing steps for deriving area measurements from20

imagery,
:
in both an automated and manual manner. The

::::::::::
stand-alone

::::::::
functions

:::::::
provide

:::::::
methods

:::
for

:::::::::
measuring

:::::
areas

::::
from

::
a

:::::
single

::::::
image,

:::::
whilst

:::
the

::::
Area

:::::
object

:::
can

:::
be

::::
used

::
to

:::::::
measure

:::::
areas

:::::
across

::
a

:::::
series

::
of

:::::::
images.

:::
The

:
automated detection of areas

is based on changes in pixel intensity, from which points are seeded around a detected extent. Length (found in Measure.py

)
:::
The

:::::::
Line.py

:::::
script

:
contains all the processing steps for manual line /distance

:::::::
manually

:::::::
deriving

::::
line

:
measurements from

imagery. This is done using the same technique found in the Area class object, from which the textitLengthclass object inherits25

from. The points
:
,
::::
with

::::::::::
stand-alone

::::::::
functions

:::
for

::::::
making

::::::::::::
measurements

:::::
from

:
a
::::::
single

:::::
image

::::
and

:::
the

::::
Line

:::::
object

:::
for

:::::::
making

:::::::::::
measurements

::::::
across

:
a
:::::
series

::
of

:::::::
images.

:::
The

::::
area

:::
and

::::
line

:::::::
features defined in both these methods can be

::::::
scripts

:::
are translated to

real-world area and line objects using the georectification information and functions in
:::::::::::
measurements

:::::
using

:::
the

:::::::::::::
georectification

:::::::
functions

::
in
:::::::::::

CamEnv.py,
::
in

:
a
::::::
similar

:::::::
fashion

::
to the CamEnv class object.

:::::::
approach

::
in
::::::::::
Velocity.py.

:

Functions in the fileHandler file can be used to export the data from the area and line objects.The information can be exported30

as listed point coordinates and areas/distances using the writeAreaFile and writeLineFile functions. Additionally, the objects

can be exported as .shp files using the writeSHPFile function for easy importing into mapping software such as ArcMap and

QGIS.
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Figure 7. Changes in meltwater plume extent distinguished from time-lapse imagery of Kronebreen camera K1. The surface expression of

the meltwater plume has been tracked through images captured on 05 July 2014 at 18:00 (A), 20:00 (B), and 22:00 (C) to demonstrate its

diurnal recession. Each plot shows the plume definition in the image plane (top) and its translation to real-world coordinates (bottom). A

similar example of this is provided with PyTrx at https://github.com/PennyHow/PyTrx.

Shapefiles
::::
Areal

:::::::
features have been constructed from the distinguished surface expression of meltwater plumes and overlaid

onto a Landsat
::::::
satellite

:
scene in the example presented in Fig. 7. Meltwater plumes are the main sources of outflow from a

tidewater glacier, and tracking their surface area can be used to infer changes in discharge (e.g., How et al., 2017). The steady

recession of the meltwater plume extents shown in Fig.7 is linked to diurnal fluctuations in melt production.

3.6.1 Automated detection5

:::::
Areas

:::
are

:::::::::::
automatically

:::::::::
computed

:::::
using

:::
the

::::::::::::
calcAutoArea

:::::::
function

:::
and

:
Area contains functions for automated detection of

areas.Areas
::::::
object’s

::::::::::::
calcAutoAreas

:::::::
function

::
in

:::::::
Area.py.

:::::
These

:
are automatically detected based on pixel intensity within the

image plane. This entails several key steps and functions to ensure adequate detection in each image. The image is masked to

the area of interest firstly, thus reducing processing time and limiting the chance of false detection. The mask can be defined or

read from file using the readMask function, which is within the FileHandler.py file. This mask
::::
script.

:::::
This

:::::::
masking function is10

also used for seeding points in a given region of an image (as part of the feature-tracking and image registration functionality).

The image is next subjected to the simple arithmetic enhancement method outlined in Section 3.3 to better distinguish the

target area. The pixel intensities associated with the target area are defined subsequently as a range of the lowest and highest
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values. This range can either be pre-defined, or manually defined within the program on a point-and-click basis
:::::
(using

:::
the

:::::::::::::::
defineColourrange

:::::::
function). Pixels within this intensity range are distinguished and grouped using the OpenCV function

cv2.inRange. The grouped pixels form regions which are transformed into polygons using the OpenCV function cv2.contour.

Each point within the polygon(s) is defined by coordinates within the image plane.

Often this results in many polygons being created. The number of points in each polygon is used to filter out noise and falsely-5

detected areas, with small polygons (i.e. constructed with under 40 points) discarded. In addition, the user can define a threshold

for the number of polygons retained (i.e. if the threshold is defined as 4, then the 4 largest polygons are retained). There is

the additional option to manually verify the detected areas after these steps. This can be defined in the calcAutoExtents
::::
Area

and
::::::
object’s calcAutoAreas functions

::::::
function

:
with the boolean variable verify. This calls on the

::::
Area

:::::::
object’s verifyExtents

functionin PyTrx, which cycles through all the detected extents
:::
area

:::::::
features

:
in all the images and allows the user to manually10

verify each one based on a click-by-click basis. This can be a time-consuming process with long image sequences, but ensures

that falsely-detected areas are discarded.

Using the calcAutoExtents function, the detected areas are returned as a set of coordinates for each polygon in the image

plane. The calcAutoAreas function returns the detected areas as real-world coordinates.

3.6.2 Manual detection15

Target areas and lines
:::
Area

::::
and

:::
line

:::::::
features can be defined manually in the coordinate plane of each image in a sequence

:::::
image

::::
plane. This requires the user to click around the area of interest, which creates a set of points from which a polygon/line

object is formed. The user input is facilitated by the ginput plotting function, which is available in the matplotlib.pyplot

package
::::::::
Matplotlib. The polygon/line object can subsequently be georectified to create an object with real-world coordinates.

At present, the manual detection functionality allows the user to define one area/line within a given image plane.20

An example of PyTrx’s manual definition of line features is displayed in Fig. 8. Sequential terminus positions were defined

within the image plane on a click-by-click basis, from which line objects were constructed and projected. Terminus profiles

have been plotted between 20 August and 05
::
the

::::
20th

:::::::
August

:::
and

:::
5th

:
September 2015 (every five days), providing a detailed

record of changes in terminus position over time. This shows a gradual retreat in terminus position over a peak period in the

melt season.25

Currently, lines are limited to being manually defined, and only one line can be defined within a given image plane. Auto-

mated line detection would be a valuable addition in the future for detecting terminus profiles in sequential imagery of calving

glacier fronts. However, attempts to detect terminus profiles from oblique time-lapse imagery has proved problematic due to

reflections from the adjacent fjord water, changes in tide
:::
tide

:::::::::
fluctuation, and changes in lighting and shadowing. With

:::::
future

development, it is hoped that these limitations can be overcome.30

3.7 Image registration and georectification

CamEnv (found in
:::
The CamEnv.py ) compiles and

:::::
script handles all information concerning the camera environment. This

includes information concerning the camera calibration, which uses a typical pinhole camera model, and radial and tangential
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Figure 8. An example of PyTrx’s ability to the extract sequential terminus profiles from Tunabreen camera T1. A similar example of this is

provided with PyTrx at https://github.com/PennyHow/PyTrx.

distortion parameters. It also computes the homography from this along with the GCPs and DEM, using a planar projective

transformation approach similar to ImGRAFT.
:
,
::::::::
including

:::::::::::
functionality

:::
for

::::::::::
determining

:::
the

:::::::
intrinsic

:::::::
camera

:::::
matrix

::::
and

::::
lens

::::::::
distortion

::::::::::
coefficients

:::::
either

:::::
from

:
a
::::

text
:::
file

:::
of

::::
raw

::::::::::
information

::
or

::
a
:::
set

::
of

::::::::::
calibration

:::::::
images.

:::::::::
Calibration

:::::
using

::::::::
inputted

:::::::::
chessboard

::::::
images

::
is
::::::
carried

::::
out

::
in

:::
the

::::::::::::::
calibrateImages

:::::::
function,

::::::
based

::
on

:::
the

:::::::::
approach

:::::::
available

:::
in

:::
the

:::::::
OpenCV

::::::::
toolbox.

::::::
Camera

::::::::::
calibration

::
is

:::::::::::
automatically

:::::::::
conducted

::::::
during

::::
the

::::::::::
initialisation

:::
of

:::
the

::::::::
CamEnv

:::::
object

:::::
when

::::
the

:::::
input

::::::::
directory

::
is5

::::::
defined

::
as

:
a
::::::
folder

:::::::::
containing

:
a
:::
set

::
of

:::::::::
calibration

:::::::::
chessboard

:::::::
images.

:

:::
The

::::::
corners

::
of
:::
the

::::::::::
chessboard

::
are

::::
first

:::::::
detected

::
in

::::
each

:::::
image

::::::
(using

:::::::::
OpenCV’s

:::::::::::::::::::
findChessboardCorners

:::::::::
algorithm),

:::::
based

:::
on

::
the

:::::::
inputted

::::::::::
chessboard

:::::
corner

::::::::::
dimensions

:::::
which

:::
are

::::::
defined

::
by

:::
the

::::
user.

::
If

::
all

:::::::
corners

::
of

:::
the

:::::::::
chessboard

:::
are

:::::
found,

:::
the

::::::::
locations

::
of

:::::
these

::::::
corners

:::
are

::::
then

:::::::
defined

::
in

::::
the

:::::
image

:::::
plane

::
to
:::::::::

sub-pixel
:::::::
accuracy

::::::
(using

:::::::::
OpenCV’s

:::::::::::::::::::::
drawChessboardCorners

:::
and

:::::::::::
cornerSubPix

::::::::::
algorithms).

::::::
Image

::::
plane

::::::::::
coordinates

:::
for

:::
the

:::::::
detected

:::::::::
chessboard

::::::
corners

:::::
from

::
all

::
of

:::
the

::::::
images

:::
are

:::::::::::
subsequently10

::::
used

::
to

::::::::
calculate

:::
the

:::::::
intrinsic

::::::
camera

::::::
matrix

::::
and

::::
lens

::::::::
distortion

::::::::::
coefficients

::::::
(using

:::::::::
OpenCV’s

::::::::::::::
calibrateCamera

:::::::::
algorithm).

:
A
::::::

rough
::::::
camera

::::::
matrix

::::
and

::::::::
distortion

::::::::::
coefficients

::
is

:::::::
initially

:::::::::
computed

:::::
using

:::
the

:::
raw

::::::::
inputted

::::::::::
coordinates.

:::::
These

::::
are

::::
then

::::::::
optimised

::::
with

::
a

::::::
second

:::::::::
calibration

::::
run,

::::::::
whereby

:::
the

:::::::
principal

:::::
point

::::::::::
(calculated

:::::::
initially)

:::::::
remains

:::::
fixed.

:::
By

::::::
doing

::::
this,

:::
the

::::::
camera

::::::
matrix

:::
and

::::::::
distortion

::::::::::
coefficients

:::
are

::::::
refined,

::::::::
reducing

:::
the

::::::
errors.

:::::
PyTrx

::::::
returns

:::
the

:::::::
intrinsic

::::::
camera

::::::
matrix

:::
(as

::::::
shown
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::
in

:::::::
Equation

:::
5),

:::
the

:::
lens

::::::::
disortion

:::::::::
coefficients

::::::::::::::::
(k1,k2,p1,p2,k3), :::

and
:::
the

:::::::::
calibration

::::
error

::::::::
estimate,

:::::
which

:::
are

::::
used

:::::::::::
subsequently

::
in

::::::
PyTrx’s

::::::
image

::::::::
correction

::::
and

:::::::::::::
georectification

::::::::
processes.

:

For image registration, the planar projective transformation encapsulates the three-dimensional rotation of the camera plat-

form as movement around its horizontal, vertical and optic axes. The output rotations are used to correct false motion from

feature track measurements. Rotation that cannot be accounted for from the two-dimensional displacements is returned as a5

root-mean-square (RMS) residual pixel value, and this RMS is the main measure of error (i.e. the ‘noise’). This is returned

along with the velocity (i.e. the ‘signal’) as a signal-to-noise ratio.

The georectification method follows a similar workflow to ImGRAFT
::
the

:::::::::
ImGRAFT

:::::::
toolbox (Messerli and Grinsted, 2015).

The homography model is calculated based on a camera model (i.e. extrinsic and intrinsic parameters, and distortion coeffi-

cients), for which information can be inputted to PyTrx via a . txt or .mat file format. This information is
:::::
which

::
is
:::::
used

::
to10

:::::::
compute

:::
the

::::::
inverse

::::::::
projection

::::::::
variables.

::::::
These

:::::::
variables

:::
are

:::::
either

::::::
defined

:::
by

::
the

::::
user

::
in

:::
the

:::::::::
stand-alone

:::::::::
functions,

::
or

::::::::
compiled

:::
and stored in the CamEnv object

:::
and

:::::::::::
subsequently

:::::
called

:::::
upon

:::
by

:::
the

:::::::
Velocity,

:::::
Area, and xy points from either the velocity,

area or line measurements are subsequently projected onto the DEM in order to obtain their corresponding three-dimensional

coordinates
::::
Line

::::::
objects.

An example of PyTrx’s georectification capabilities, using images from Tunabreen (camera site 1, Fig. 3C), is shown in Fig.15

9. Point locations in Fig. 9A denote the position of observed calving events (i.e. the break-off of ice from the glacier terminus)

in the image plane. The colour of each point denotes the style of calving, ranging from small break-offs (i.e. waterline and ice

fall events) to large collapses (i.e. sheet and stack collapses), and detachments that occur below the waterline (i.e. subaqueous

events). These xy point locations have been translated to real-world coordinates using the georectification functions available

in PyTrx (Fig. 9B).20

The point locations are overlain onto a satellite scene of the glacier terminus, which was captured as close as possible to

the time of image capture
::
the

:::::::::
time-lapse

::::::
image

:::::::::
acquisition

:
(Fig. 9B). The point locations tightly follow the terminus position,

demonstrating good accuracy in the georectification technique and the given information about the camera environment. How-

ever, points tend to deviate from the terminus position on the eastern side of the terminus, which is the furthest away from the

camera. Similar deviation is evident in Fig. 8 also. This may indicate a degree of distance decay that is difficult to correct in the25

homography model. Distance decay is evident in other georectification methods, especially when performing georectification

from monoscopic set-ups (James et al., 2016).

4 Evaluation of PyTrx

PyTrx and its modular object-oriented design make it an accessible toolbox for deriving measurements from oblique imagery.

PyTrx is flexible and can be adapted easily for the user’s requirements, as it is distributed as a set of files with simple example30

drivers. It broadens the range of photogrammetry toolboxes that are publicly available, with a Python-alternative to those coded

in Matlab (Messerli and Grinsted, 2015; James et al., 2016)
:::
and

::::
C++

:::::::::::::::::::::::
(Schwalbe and Maas., 2017).
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Figure 9. Calving events observed in the image plane (A) and georectified (B), with the colour of the point denoting the style of calv-

ing. Events were manually detected, from which the style of calving was interpretted. The time-lapse image is taken from a time-lapse

sequence captured between the 7th and 8th August 2015. Figure adapted from How et al. (In Press). This example is provided with PyTrx at

https://github.com/PennyHow/PyTrx.

The examples shown throughout demonstrate PyTrx’s capabilities and range of applications in glaciology. Velocities are

derived using an alternative approach, utilising an Optical Flow approximation that proves effective and processing-efficient.

The addition of areal and line measurements to PyTrx’s outputs have proved valuable in deriving surface areas of supraglacial

lakes to show drainage events, and terminus profiles to examine glacial retreat.

The applications presented here also highlight functions to develop in subsequent releases of PyTrx. The
:::
For

::::::::
example,

:::
the5

detection method for areas proves to be a robust method. However, it was
::::::
proved challenging to transfer these to achieve

automated line detection from oblique images
:
(as alluded to in Section 3.6). This functionality would be useful as an effi-

cient approach to defining terminus positions from oblique time-lapse imagery. It would also be especially valuable for other

glaciological applications, such as detecting grounding line features in satellite imagery(e.g., ?).

Distance decay in the georectification method is visible in some of the examples shown, specifically where measurements10

span the entire planeof the image (e.g. figures 8 and 9B) . It is possible to limit this with accurate information about the camera

environment (e.g. camera location, camera pose) and accurate GCPs that cover the entire image plane. However

:::::
Errors

::::
have

:::::
been

::::::::::
constrained

::::
and

::::::::
estimated

:::::
using

:::
the

:::::::::
examples

::::::::
presented

::::::::::
previously,

::
as

::::::::::
summarised

:::
in

:::::
Table

::
1.

::::::
These

:::::
errors

:::
are

:::::::
divided

::::
into

::::
pixel

:::::
error

::::
that

:::
are

:::::::::
introduced

:::::::
during

:::
the

::::::::::::
measurements

::
in
::::

the
:::::
image

::::::
plane,

::::
and

:::::
those

:::::::::
associated

::::
with

:::
the

::::::::::::
transformation

::
of

:::
the

::::::::::::
measurements

::::
into

:::::::::::::::
three-dimensional

:::::
space

::::
(i.e.

:::::::::::::
georectification)

::::::::::::::::::::::::
(Schwalbe and Maas., 2017)15

:
.
:::::::::::
Homography

::::::::::
uncertainty

::
is

::::::
defined

:::
as

::::::
motion

::
in

::::
the

::::::
camera

::::::::
platform

:::
that

:::
is

:::
not

:::::::
resolved

:::
by

:::
the

:::::::::::
homography

::::::
model.

:::
In

::
all

:::::
cases, this is often not possible as glaciers are challenging environments to conduct photogrammetric measurements. An
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Table 1.
::::
Error

:::::::::
estimations

::
for

:::::::
deriving

::::::
velocity,

::::
area

:::
and

:::
line

:::::::::::
measurements

::::
using

:::::
PyTrx

::::
Error

::::::
source

::::::
Average

:::::::
velocity

::::
error

::::::
Average

::::
area

:::::
error

::::::
Average

::::
line

::::
error

:::::::::
Homography

:::::::::
uncertainty

:::
(px)

:::::
0.5111

:::::
0.1294

:::::
0.9863

:

::::
Pixel

::::::
tracking

:::
(px)

:

:::::
0.9667

:
– –

:

:::::
Feature

:::::::
detection

::::
(px)

:
–

::::::
86.6870

: ::::::
18.8170

::::
Total

::::
pixel

:::::
error

:::
(px)

:::::
1.4778

::::::
86.8164

: ::::::
19.8033

::::
Total

:::
3D

::::
error

::::
(%)

:::::
±0.638

: ::::::
±0.638

::::::
±0.638

alternative is to explore other methods of projective transformations that are more suited to such applications.
::::::::::
constrained

::
to

:::
less

::::
than

:::
one

:::::
pixel

:::::
(Table

:::
1).

:

Error in PyTrx’s feature-tracking approach is largely constrained due to its
::::
When

::::::::
deriving

::::::::
velocities,

:::::
pixel

:::::::
tracking

:::::
error

:
is
:::::::

defined
::
as

:::
the

:::::::::
difference

:::::::
between

::::
the

::::::
original

:::::::
seeded

::::
point

::::
and

:::
the

:::::::::::
back-tracked

:::::
point

::::
from

:::
the

::::::::::
destination

:::::
image

:::
to

:::
the

:::::::
reference

::::::
image

:::
(as

:::::::
outlined

::::::::::
previously

::
in

:::::::
Section

::::
3.5).

::::
This

:::::
error

::::
can

::
be

::::::::::
adequately

::::::::::
constrained

:::::
using

:::
the

:
back-tracking5

verification algorithm for removing falsely-tracked points. Therefore error estimation is calculated simply as the signal-to-noise

ratio; the signal being the tracked displacement, and the noise being the RMS value after image registration.
::::::::
threshold,

::::::
which

:
is
:::::::
defined

::
by

:::
the

::::
user

:::
and

:::::::::
effectively

::::::::
removes

::::
point

:::::
tracks

::::
that

::::
hold

::::::::::
uncertainty.

:::::
Errors

::::
from

::::
area

::::
and

:::
line

::::::
feature

::::::::
detection

:::::
were

:::::::::
determined

:::::
based

:::
on

:::::::::
sensitivity

::::::
testing,

::::::
which

::::
vary

::::::::::
significantly

:::::
based

:::
on

::
the

::::::
feature

:::
(as

:::::::::::
demonstrated

::
in

:::::
Table

:
1
::::
and

:::::::
therefore

::
it

::
is

::::::
advised

::
to

:::::::
perform

:::
this

:::::::::
sensitivity

:::
test

:::::
when

:::::::
carrying

:::
out

:::
this

::::::::
approach10

::
in

:::::
PyTrx

:::::::::::::::::::
(e.g., How et al., 2017).

:
Toolboxes such as ImGRAFT and Pointcatcher use the Monte Carlo method, which is a more

robust approach to determining error. The Monte Carlo method uses random repeated sampling to simulate variation in a

system, and has been used in time-lapse photogrammetry to indicate the sensitivity of the image registration to the static point

displacements (Messerli and Grinsted, 2015; James et al., 2016). PyTrx could benefit from well-constrained error analysis

also. In addition, error analysis for areal and line measurements would be valuable also, which are currently determined using15

sensitivity analysis (e.g., How et al., 2017)
::
in

:::::
future

:::::::
releases.

:

:::::
Errors

::::
from

:::
the

:::::::::::::
georectification

::::::
process

::::
have

:::::::::
previously

::::
been

:::::::
defined

::::
using

:::::
broad

::::::::
estimates

:::::::::::::::::::::::::::::
(e.g., Messerli and Grinsted, 2015)

::
or

::::::::::::
distance-based

:::::::::::::
approximations

:::::::::::::::::::::::::::
(e.g., Schwalbe and Maas., 2017)

:
.
::
A

:::::
broad

::::
error

:::::::
estimate

::
of

:::::::::
±0.638%

:::
was

::::::::::
determined

::::
here

::::::
through

::::::::::::::
ground-truthing

:::::::
between

:::
the

:::::::
outputs

::::
from

::::::
PyTrx

:::
and

:::::::
satellite

:::::::
images

::::
from

:::
the

:::::
same

::::::::::
acquisition

::::::
period.

::::::
Similar

:::
to

::::::::::::::::::::::
Schwalbe and Maas. (2017)

:
,
:::
we

:::::
found

::::
that

:::
the

::::::
average

:::::
error

::::::::
increases

::::
with

:::::::
baseline

:::::::
distance,

::::
and

::::::::::::
conservatively

:::::::
estimate

:::
an20

::::
error

::
of

:::::
0.2%

::
up

:::
to

:
a
:::::::
baseline

::
of

:::::
1500

::
m,

::::
and

:::::
0.8%

:::
for

:
a
:::::::
baseline

::
of

::::::::::
1500–3000

:::
m.

:::
For

:::::::
instance,

:::
the

::::::::
terminus

::::
lines

::::::::
depicted

::
in

:::::
Figure

:::
8)

::::
have

::
an

:::::::
average

:::::
error

::
of

:::::
±2.4

::
m

::::
over

:
a
:::::::
baseline

:::
of

:::::::::
1500–2000

:::
m,

:::
but

:::
this

:::::
error

:::::
grows

::
to
:::

an
:::::::
average

::
of

:::::
±7.7

::
m

::::::
beyond

:
a
:::::::
baseline

::
of

:::::
2000

::
m.

:::::
From

:::::
3000

::
m,

:::
the

::::
error

::::::::
increases

::::::::::::
exponentially

:::
and

::
is

::::::
difficult

::
to
::::::::::
adequately

:::::::
constrain

:::::
given

::::
that

::
the

:::::::
camera

::::::
set-ups

::::::::
presented

::
in

:::
this

:::::
work

::
do

:::
not

:::::
cover

::::::
further

::::
than

:::::
3500

::
m.

::::
This

:::::
error

:
is
:::::
often

:::::::
difficult

::
to

:::::::::
adequately

::::::::
constrain
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:::
due

::
to

:::
the

::::::::::
challenging

:::::::::::
environments

::::
that

::::::
glacial

::::::::::::::
photogrammetry

::::::
studies

:::
are

::::::::
conducted

:::
in,

:::
and

::::::::
therefore

:::
an

:::::::::
alternative

::
in

:::
the

:::::
future

:::::
would

:::
be

:::::::::
implement

::::
other

::::::::
methods

::
of

::::::::
projective

:::::::::::::
transformations

::::
that

:::
are

::::
more

::::::
suited

::
to

::::
such

::::::::::
applications.

The glacial photogrammetry toolboxes currently available have aspects and functionality that make them unique and benefi-

cial to use. For instance, ImGRAFT contains sophisticated functions to refine specified components of the camera environment

(i.e. camera pose, location, and GCPs) to produce accurate projections (Messerli and Grinsted, 2015). Equally, multiple DEMs5

can be inputted into Pointcatcher to derive well-constrained vertical and horizontal displacements; even from challenging

set-ups where image capture is not perpendicular to ice flow (James et al., 2016). The functions for deriving areal and line

measurements (and their programming in Python) are what make PyTrx a unique toolbox. Users therefore have a greater range

of toolboxes to choose from when embarking on glacial photogrammetry.

5 Conclusions10

The PyTrx toolbox has been presented here to showcase its abilities in obtaining velocity, areal and line measurements from

oblique time-lapse imagery. Images were collected using time-lapse cameras installed at Kronebreen and Tunabreen, two

tidewater glaciers in Svalbard, from which the functionality of PyTrx could be tested.

The examples shown throughout demonstrate PyTrx’s specific applications in deriving ice flow velocities, surface areas

of supraglacial lakes and meltwater plumes, georectified point locations denoting the position of calving events, and glacier15

terminus profiles. PyTrx serves as a Python-alternative to the
::::::::::
monoscopic toolboxes that are currently available, thus widening

the applications of terrestrial photogrammetry in glaciology. Future development of the toolbox has been highlighted, which

indicate promise in its growth and applications.

Code and data availability. The PyTrx toolbox is available on GitHub at https://github.com/PennyHow/PyTrx (715 MB). This includes

driver scripts for a selection of the examples given in this paper. Datasets and example driver scripts for the specified examples presented in20

this paper are also available on this repository.

Author contributions. PH developed the PyTrx algorithms for obtaining geometric measurements (i.e. areas and lines), and revised the pre-
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