
Response to reviewers’ comments 
First of all, we would like to thank the reviewers for their helpful comments. In this document, the 

reviewers’ comments are given in boldface and our answers are in normal type. Line and section 
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Reviewer #1 

Major remarks:  

Comment 1: For such a serious problem as space magnetic field measurements the MS contains non-

metrological definitions as “approximately”, “slightly over” etc. at estimation of physical values and 

approximation procedures. See, for example:  

1. p. 4, lines 15-16: “… the spin axis is assumed to be approximately aligned with the Pz = S3 

axis” [The admissible errors should be estimated.] 

2. p. 6, lines 10-15, Eqs. (11)-(15). [The admissible approximation errors should be estimated.]  

3. p. 7, line 11: “… and further dropping second order factors, “ [The approximation errors 

should be indicated.]  

4. p. 11, line 1: “… slightly over and under the spin frequency: … with … and slightly over/under 

n …” [The admissible intervals should be estimated.]  

5. p. 11, line 20: “… slightly over/under n.” [The admissible intervals should be estimated.]  

6. p. 11, line 28: “… can be omitted due to linearization.” [The approximation errors should be 

indicated.] 

7. p. 11, line 32: “… if the initial set of calibration parameters is not too inaccurate.” [The 

admissible approximation errors should be indicated.]  

8. [During linearization procedure (see, for example, p.6, lines 10-15; p.11, line 28) the basic 

equations are simplified what leads to the appearance of additional errors at data 

processing. So, the errors of such an approximation should be estimated, at least for main 

cases.]  

Points 1, 2, 3, 6, 7, and 8 deal with errors associated to the linearization procedure and/or in the 

corresponding assumptions regarding the calibration parameters. The aim of the linearization 

procedure is to obtain the uncertainties ΔσPx/y, Δg, ΔφS12, ΔOS1/2, and ΔθS1/2 in calibration parameter 

determination under different conditions, shown in the right column of Table 2. The actual calibration 

parameter estimates, however, are unaffected by these errors, as they are obtained by using the full 

– not linearized – calibration Equation (9), with matrices (4) to (7). The question is, hence, how much 

the parameters g, Gp, Ga, σPx, σPy, δθS1, δθS1, δφS12 may deviate from the assumed values (see Equations 

11 to 15) until the errors in the uncertainties ΔσPx/y, Δg, ΔφS12, ΔOS1/2, and ΔθS1/2 in Table 2 become 

unacceptably large. 

As shown in the application section 6, we are only interested in the orders of magnitude of the 

uncertainties (a factor of 10). Conservatively limiting the error to a factor of 2, and taking into account 

that relative errors from individual matrices (16) to (19) may increase by multiplication due to Equation 

(10), we obtain individual limits on the relative deviations D of the parameters of: 2 = D4, D = 1.189, 

i.e., 19%.  

Such an error is extraordinarily large when compared to the accuracy in the knowledge of the 

calibration parameters and of the geometry of the spacecraft, even before performing any in-flight 

calibration. For the angles σPx, σPy, δθS1, δθS1, and δφS12, this means deviations from 0 by up to 11° are 



acceptable (arcsin(19%)). Note that alignment uncertainties should usually be lower than 1°. For the 

gains g, Gp, and Ga, errors of 19% would be theoretically acceptable. Ground calibration, however, 

should reduce these errors to less than 0.1%. Hence, the assumptions made due to linearization (e.g., 

Equations 11 to 15) are not restrictive at all, and easily fulfilled in practice. 

Points 4 and 5 deal with estimating amplitudes of natural magnetic field fluctuations in the vicinity of 

the spin frequency or second harmonic. Slightly over/under n transforms into frequencies that are 

“slightly” over or under the first/second harmonic frequency. The question is how large “slightly” 

needs to be. It should be large enough so that an increased amplitude at the spin frequency or second 

harmonic does not leak significantly into the selected frequency bins. It should also be small enough 

so that the amplitudes determined at the selected frequencies resemble the natural amplitude level 

at the spin frequency or second harmonic.  

The ratio of spin tone leakage with respect to natural fluctuations around the spin frequency is a 

function of spin tone amplitude and the Fourier transform window. Choosing the optimal frequencies 

above and below omega would require a recalculation for each subinterval considered. In practice, 

experience from THEMIS and MMS calibration activities shows that frequencies 15% of omega above 

and below omega and 2*omega are a good choice. The reason is that ±15% of omega is a large 

“distance” in frequency with respect to the sharp spin tone signatures from incorrect calibration 

parameter choice and leakage, yet 15%*omega is still a small frequency interval for natural 

fluctuations. These relative frequencies have also been used in the THEMIS example presented in 

section 6. 

We opted for including a general discussion on admissible errors between sections 6 and 7 (new 

section 7). A discussion on choices in frequency above/below omega is added in page 11, line 5, after 

Equations (30) and (31). 

 

Comment 2: P. 11, lines 6-9. It is unclear, how to de-trend the B data, i. e. to separate the studied 

process and linear trend with given error.  

The Fourier transform is applied either to the spin axis component data or to the modulus of the spin 

plane field. That component/modulus is detrended by simply subtracting a linear fit to it, as we now 

state in the paper. 

 

Comment 3: P. 13, line 8. What does it mean “… as temperatures relax to stationary values.” in 

practical sense, i. e. admissible unbalance between stationary value and real unsteady temperature 

after eclipse, for example? What level was assumed by authors during data processing? It should be 

clearly indicated.  

The admissible unbalance is very spacecraft and instrument specific. Some instruments/spacecraft 

show significant changes in magnetometer calibration parameters with just a few degrees change in 

sensor/electronics/spacecraft temperatures. At other spacecraft, almost no changes are apparent, 

although temperatures vary by several tens of degrees. During processing of the THEMIS spacecraft 

data we excluded eclipse and high field magnetometer saturation intervals. During the remaining time 

intervals, the electronics and sensor temperatures vary within 3 degrees, which in the THEMIS case is 

totally insignificant for the calibration parameters. We state this now at the end of page 14. 

 



Comment 4: P. 10, line 27. Why for Bp “… the minimal modulus of the spin plane field over the 

subinterval: min(p(B_xˆ2 + B_yˆ2 )).” was chosen? It seems to be the better value is avg(p(B_xˆ2 + 

B_yˆ2 )).  

Numerical example: Gp = 0.999, Ga = 1.0001, g = 1.002, thetaS1 = pi/2+0.001, thetaS2 = pi/2-0.0015, 

phiS12 = pi/2+0.002, sigmaPx = 0.0008, sigmaPy = -0.0012. Normalized magnetic field in the non-

spinning (inertial), orthogonal, spin-axis aligned (Z = z) coordinate system: BX = 0.3, BY = 0.8, BZ = -

0.5196. Spin frequency is 2*pi. The test data was generated for 5 rotation periods with the time 

discretization dt = 0.2. True value Bp = p(B_xˆ2 + B_yˆ2 ) = 0,85440. The estimation of Bp using the 

minimum of the modulus of the B’ projection on plane XOY (the rotation plane) gives the value 

dBp_min = Bp – min(p(B_xˆ’2 (t) + B_yˆ’2 (t))) = 0,00236270. The estimation of Bp at use of the 

average value of the modulus for the B’ projection on plane XOY gives the value dBp_avg = Bp – 

avg(p(B_xˆ’2 (t) + B_yˆ’2 (t))) = 0,00087464. Finally (dB_p_min)/(dB_p_avg)=2.7013. 

We agree that the slightly better value is avg(p(B_xˆ2 + B_yˆ2 )). However, dBp_avg and dBp_min are 

both very small in comparison to Bp, which is the quantity we are interested in here, and we considered 

min(p(B_xˆ2 + B_yˆ2 )) to be the more conservative choice, as stated in the paper.  

 

Minor remarks:  

Comment 6: P.5, line 16, Eq. (6): No definition of angle 'a. 

As stated in the sentence above the equation, phi_a is a rotation angle about the spin axis. 

 

Comment 7: P.9, Table 2, group 1: No definition of Fa. 

Comment 8: P.9, line 20, p.10, line 26: No definition of Fa. 

The definition is stated on page 9 line 19. F_a is then exactly defined in Equation (31).  

 

Comment 9: P.9, Table 2, group 3: it should be OS1 and OS2 instead of OS1 and OS1. 

Comment 10: P.10, line 12: it should be GT(Ts, Te) instead of GT(Ts, Ts). 

Thank you very much for pointing out these typos. They are now corrected. 

 

Comment 11: P.13, line 16: it should be FGM instead of FGL. 

In this case, FGL is correct. It is the name of the data product and not the acronym for Fluxgate 

Magnetometer, the instrument. 

 

Reviewer #2 

Comment 12: Equations (20,21) 

Although it is entirely obvious that (omega t) is the spin parameter, to be consistent with the 

excellent presentation of parameter definitions up to this point, (omega t) could beneficially be 

defined here. As the paper is written this spin parameter appears to apply to both steps 1 and 4, the 



amplitude modulations and demodulations. In the case that the modulation frequencies are 

identical the situation can be called synchronous demodulation, which has huge advantages. In 

general though, the modulation and demodulation frequencies are not identical, but are determined 

and matched very accurately. As the spacecraft ages and fuel is used, not only are spin angles 

changing, but so are moments of inertia. The spin frequency cannot be determined from the short 

analysis periods, due to well understood uncertainty principles. As noted earlier in the paper the 

spin frequency/angle were determined as a priors, using the IGRF and other tools. Some brief 

discussion is recommended as to the definition of omega and (omega t), and how they relate to the 

amplitude demodulation parameters.  

Thank you for the suggestion. We now define omega t right after Equations (20) to (22). 

The spin rate is not usually determined from magnetic field measurements, but from independent sun 

sensor or star tracker measurements. Hence, the spin rate is adjusted regularly and is known with very 

high accuracy. Exact knowledge of this frequency is highly important for spin demodulation, which is 

done in a later part of instrument data processing. However, the estimate of the calibration parameters 

does not rely on exact demodulation, but only on the amplitude of certain frequencies within the 

Fourier transformed signal. Small shifts below the frequency resolution of the DFT will therefore only 

result in a slightly smaller sensitivity, as the amplitude of the considered frequency is reduced by a 

small amount. 

 

Comment 13: Also, for the determination of g, the X/Y gain ratio, the choices of +/-15% [page 15] of 

the carrier/spin frequency seem large in context of equations 30 and 31. Is this a requirement of the 

data rate? 

See answer to comment 1, points 4 and 5: The large separations between frequencies are there to 

avoid significant leakage from the signals at omega and 2*omega. 

 

Comment 14: Equations (24,25) 

Each of these equations consists of five terms, pair-wise similar. As this is the end of section 3, for 

the general reader some brief summary descriptions could be useful. The first terms are the primary 

measurement terms, while the second and third terms represent (roughly) the modulations of the 

X/Y offsets and the projection from the spin axis into the spin tone. The fourth and fifth terms are 

the 2nd harmonic terms resulting mainly from the differential gains of the X/Y channels. A quick 

review of the physical mechanism leading to a detectable 2nd harmonic term would be useful as the 

reader at this point needs a clear understanding that he or she is considering only despun data. 

Section 4 goes into all of this in further detail. 

As suggested, we have added a discussion on Equations (24) to (26) at the end of section 3. 

 

Comment 15: The use of rotations in fields as the basis for a calibration methodology now has a long 

history. This reader’s first contact with such ideas was that of A.W. Green Jr, in the 1980’s. Green 

took on the much easier task of calibrating observatory magnetometers, for which multiple rotation 

axes were possible. Green’s description of his method can be found as doi.org/10.1016/0031-

9201(90)90217-L . Such methods have come a long way. 

Thank you very much for making us aware of this reference. We cite it now in the introduction. 
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Abstract. Magnetometers are key instruments onboard spacecraft that probe the plasma environments of planets and other solar

system bodies. The linear conversion of raw magnetometer outputs to fully calibrated magnetic field measurements requires

the accurate knowledge of 12 calibration parameters: 6 angles, 3 gain factors, and 3 offset values. The in-flight determination of

8 of those 12 parameters is enormously supported if the spacecraft is spin stabilized, as an incorrect choice of those parameters

will lead to systematic spin harmonic disturbances in the calibrated data. We show that published equations and algorithms for5

the determination of the 8 spin-related parameters are far from optimal, as they do not take into account the physical behavior

of science-grade magnetometers and the influence of a varying spacecraft attitude on the in-flight calibration process. Here,

we address these issues. Based on decades-long developments and experience in calibration activities at the Braunschweig

University of Technology, we introduce advanced calibration equations, parameters, and algorithms. With their help, it is

possible to decouple different effects on the calibration parameters, originating from the spacecraft or the magnetometer itself.10

A key point of the algorithms is the bulk determination of parameters and associated uncertainties. Lowest uncertainties are

expected under parameter specific conditions. By application to THEMIS-C magnetometer measurements, we show where

these conditions are fulfilled along a highly elliptical orbit around Earth.

1 Introduction

The investigation of the plasma environment in the heliosphere, around planets, moons, comets, or other solar system bodies,15

requires accurate in-situ observations of the magnetic field. Magnetometers on board spacecraft can provide these key measure-

ments if accurately calibrated on ground and in flight. The calibration process delivers the parameters needed to convert raw

magnetometer measurements into magnetic field observations B = (Bx,By,Bz)T in physically meaningful coordinate sys-

tems and units (usually nanotesla: nT). Commonly, a linear calibration equation is applied for this conversion (e.g., Fornaçon

et al., 1999; Balogh et al., 2001b; Auster et al., 2008):20

B = C · (BS−OS) (1)

Here BS = (BS1,BS2,BS3)T is the raw magnetometer output in non-orthogonal sensor coordinates, OS corrects for non-

vanishing magnetometers outputs in zero ambient fields (so-called offsets, which include spacecraft-generated magnetic fields

1



at the sensor position), and C is the 3×3 coupling matrix. This matrix may have the following form (e.g., Kepko et al., 1996):

C =


sinθ1 cosφ1 sinθ1 sinφ1 cosθ1

sinθ2 cosφ2 sinθ2 sinφ2 cosθ2

sinθ3 cosφ3 sinθ3 sinφ3 cosθ3


−1

·


GS1 0 0

0 GS2 0

0 0 GS3

 (2)

The coupling matrix C depends on three scaling factors (GS1, GS2, and GS3, also called the gains) and six angles (θ1, θ2, θ3,

and φ1, φ2, φ3) which define the directions of the three sensor axes in the orthogonal coordinate system to which B pertains.

Calibrating a magnetometer means finding the three gains, six angles, and three offset components (i.e., in total 12 parameters)5

so that B can accurately be obtained from BS.

Ground calibration of magnetometers is facilitated by rotating them in Earth’s magnetic field (Green, 1990). Similarly,

operating a magnetometer on a spinning spacecraft, instead of on a three-axis stabilized spacecraft, enormously supports the

in-flight determination of 8 of the 12 calibration parameters. These 8 spin-related parameters are: the two spin plane offset

components, five of the six sensor direction angles (all but one defining the rotation about the spin axis), and the ratio of10

the spin plane gains. The reason is that an incorrect choice in any of those 8 spin-related parameters leads to the appearance

of clear, systematic signals at the spin frequency (also called the first harmonic) and/or at twice the spin frequency (second

harmonic) in the de-spun magnetic field measurements. Hence, minimization of these signals can be used to determine the 8

calibration parameters, as described in Farrell et al. (1995) and Kepko et al. (1996).

The other 4 (spin-unrelated) parameters are the absolute gains in the spin plane and along the spin axis, the spin axis offset,15

and the angle of rotation of the sensor about the spin axis. Gains and angle can be derived in flight by comparison of magnetic

field measurements with the International Geomagnetic Reference Field (IGRF) or the Tsyganenko field models, which are

fairly accurate close to Earth (e.g., Thébault et al., 2015; Tsyganenko and Sitnov, 2007). For the determination of the spin axis

offset in flight, a list of different methods exists. Typically, the offset is obtained from careful analysis of Alfvénic magnetic

field fluctuations, present in the pristine solar wind (e.g., Belcher, 1973; Hedgecock, 1975; Leinweber et al., 2008). If strongly20

compressional fluctuations are observed instead of Alfvénic fluctuations, then the mirror mode method may be used (Plaschke

and Narita, 2016; Plaschke et al., 2017). The offset may also be obtained from comparison with measurements from an absolute

magnetometer or time-of-flight measurements of electrons emitted and observed by an electron drift instrument (Georgescu

et al., 2006; Nakamura et al., 2014; Plaschke et al., 2014). Furthermore, the spin axis offset may also be obtained in regions of

space where the fields are known, for instance, in diamagnetic cavities in the vicinity of comets (Goetz et al., 2016a, b).25

From the preceding paragraphs, the reader might get the impression that in-flight calibration of magnetometers on spinning

spacecraft is a solved issue; and in theory this is the case. However, as we will show in the following sections, the published

methods for spin-aided calibration (Farrell et al., 1995; Kepko et al., 1996) are not optimal in practice because they do not

take into account the physical behavior of the sensor package and the influence of a varying spacecraft attitude on the in-flight

calibration.30

This paper aims at identifying deficiencies and suggesting improvements with respect to the calibration Equations (1) and

(2) and the specific choice of the calibration parameters. Thereafter, we identify optimal conditions for spin-related calibration

parameter determination. Finally, we introduce advanced algorithms for parameter determination based on our findings, that
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Table 1. List of coordinate system notations used in this paper. After Table 1 in Kepko et al. (1996).

notation characteristics

S1, S2, S3 spinning, non-orthogonal, sensor axes aligned

Px, Py, Pz spinning, orthogonal, sensor package system (Pz = S3)

x, y, z spinning, orthogonal, spin-axis aligned (z-axis)

X , Y , Z non-spinning (inertial), orthogonal, spin-axis aligned (Z = z)

X ′, Y ′, Z′ despun non-orthogonal coordinate system

lend itself for automation and distribution of calibration activities. A version of these algorithms is routinely applied to calibrate

magnetometer data from the Magnetospheric Multiscale (MMS) mission (Burch et al., 2016; Torbert et al., 2016; Russell et al.,

2016). The calibration principles and algorithms described here are based on developments at the Braunschweig University of

Technology (Fornaçon et al., 2011) that have been successfully applied for decades to calibrate magnetometer data from, e.g.,

the Equator-S (Fornaçon et al., 1999), the Cluster (Balogh et al., 2001a, b), and the Time History of Events and Macroscale5

Interactions during Substorms (THEMIS) missions (Angelopoulos, 2008; Auster et al., 2008).

2 Calibration Equation and Parameters

Equations (1) and (2) in principle allow for any linear conversion of BS into B. The coupling matrix (2) is obviously split into

two components:

C = Θ ·G (3)10

Here, the diagonal matrix G includes only the gains, and the matrix Θ includes only the angular dependencies. Let’s focus

first on the matrix Θ. The parameters θ1, θ2, and θ3 are the angles between the three mutually non-orthogonal sensor axes

(directions S1, S2, and S3) and the spin axis in z-direction in an orthogonal, spin axis aligned and spacecraft fixed coordinate

system (directions x, y, and z). The parameters φ1, φ2, and φ3 correspond to the angles between the spacecraft fixed x-direction

in the spin plane (x-y-plane, perpendicular to the spin axis) and the projections of the sensor axes onto that plane. For simplicity,15

the sensor axes S1, S2, and S3 are assumed to be approximately aligned with x and y and z. Note that all coordinate systems

used in this paper are listed in Table 1.

The individual link of the sensor axes to a spacecraft fixed, spin axis aligned system is an issue here, as it does not reflect

the actual situation on the spacecraft: There, the three sensor axes are typically packaged together into one sensor system. One

of the design criteria of modern fluxgate magnetometer sensors is the temperature and long-term stability of the sensor axis20

directions as defined with respect to the sensor package. The angles between the sensor axes are usually well-known from

ground calibration activities (e.g., Auster et al., 2008; Russell et al., 2016), and we can expect the three angles between the

sensor axes to be relatively stable parameters. Consequently, in a first step, the magnetometer output in non-orthogonal sensor

coordinates should be transformed into an orthogonal sensor package fixed coordinate system (coordinates: Px, Py, Pz, see

3



Figure 1. Sketch of the coordinate systems: (a) sensor axes in the sensor package coordinate system, (b) spin axis and rotation angles σPx

and σPy in the sensor package coordinate system.

Table 1). The conversion matrix may have the following form:

Γ =


sinθS1 0 cosθS1

cosφS12 sinθS2 sinφS12 sinθS2 cosθS2

0 0 1


−1

(4)

Here, θS1 and θS2 are the angles between the sensor axes S1 and S2 with respect to S3=Pz, and φS12 is the angle between the

projections of S1 and S2 onto a plane perpendicular to S3, the Px-Py plane. Note that S1 lies in the Px-Pz plane (see Figure

1a).5

In the next step, the orientation of that sensor package system needs to be defined in a spacecraft-fixed spin axis aligned

coordinate system. This latter transformation is expected to change every time there is a maneuver of the spacecraft, as fuel

consumption will change the tensor of inertia and, thus, the spin axis direction in any spacecraft fixed coordinate system. The

spin axis direction can be defined in the orthogonal sensor package system using two parameters or angles. During maneuvers,

only those two parameters/angles should change, because the geometry inside the sensor package should not be affected. A10

rotation matrix Σ into a spin axis aligned coordinate system dependent on the two angles σPx and σPy can be defined as

follows:

Σ =


cosσPx 0 −sinσPx

0 1 0

sinσPx 0 cosσPx

 ·


1 0 0

0 cosσPy −sinσPy

0 sinσPy cosσPy

 (5)

Here, σPy is the angle between Pz and the projection of the spin axis onto the Py-Pz-plane, positive towards Py; σPx is the

angle between that projection and the spin axis, positive towards Px. The angles are illustrated in Figure 1b. Note that the spin15

axis is assumed to be approximately aligned with the Pz = S3 axis. As a result, the angles σPx and σPy will be small and can

be associated with the Px and Py coordinates of a unit vector that points in spin axis direction.
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Using the angles σPx and σPy to define the spin axis direction is advantageous over using the angles θ3 and φ3, as the latter

angle is badly defined if θ3 is small. Furthermore, it should also be noted that a change in direction of the spin axis requires

an update of all angles of matrix Θ as defined above, even though the magnetometer (sensor) itself is unaffected. Only two

parameters (σPx and σPy) need to be changed here to adapt the matrix Σ to the new spin axis direction.

To completely orient the sensor package (system) in the spin axis aligned coordinate system, a rotation about the spin axis5

(rotation matrix Φ) also needs to be taken into account:

Φ =


cosφa −sinφa 0

sinφa cosφa 0

0 0 1

 (6)

As we will show later, this rotation does not affect the spin tone content in the despun magnetic field observations. The angle

is affected by the orientation of a magnetometer boom and may change due to boom bending (Farrell et al., 1995).

Altogether, we can replace the orthogonalization and reorientation matrix Θ by Φ ·Σ ·Γ in Equation (3). Let’s focus then10

again on the gain matrix G in that equation. As mentioned in the introduction, the spacecraft spin aids the determination of the

ratio g2 =GS1/GS2 of the spin plane gains, but not the absolute gains in the spin plane Gp =
√
GS1GS2 and along the spin

axis Ga =GS3. Hence, it makes sense to use the parameters g and Gp instead of GS1 and GS2 in the matrix G, to decouple

parameters that can be frequently updated from parameters that are only obtainable in flight from comparison to model fields

or measurements of other instruments:15

G =


gGp 0 0

0 Gp/g 0

0 0 Ga

 (7)

Note that Kepko et al. (1996) use the difference of the inverse gains ∆G21 = 1/GS2− 1/GS1 instead of g. However, later

changes in the absolute gains GS1 and GS2 then require necessarily an update of ∆G21 in order to avoid perturbations at the

second harmonic in the despun data. The gain ratio g, instead, is decoupled from changes in the absolute gains Gp and Ga.

The gains should be stable parameters in the absence of temperature variations. These variations in the gains can be de-20

termined from ground calibration, resulting in a diagonal gain correction matrix GT(Ts,Te) that is dependent on the magne-

tometer sensor (Ts) and electronics (Te) temperatures. That matrix should be directly applied to the magnetometer output BS,

requiring the knowledge of the sensor and electronics temperatures:

BST = GT(Ts,Te) ·BS (8)

The resulting temperature corrected output BST may then be further converted to B via the coupling matrix C = Φ ·Σ ·Γ ·G25

and the offset vector O using Equation (1), after replacing BS with BST. This also has the advantage that the further applied

absolute gains Gp and Ga and the gain ratio g2 should all be approximately 1 and unitless.

Altogether, we suggest to use the following improved calibration equation:

B = Φ ·Σ ·Γ ·G · (GT(Ts,Te) ·BS︸ ︷︷ ︸
=BST

−OS) (9)

5



with matrices defined in Equations (4) to (7) instead of the simpler Equations (1) and (2). The parameters whose determination

is supported by the spacecraft spin are: θS1, θS2, φS12, σPx, σPy , g, OS1, and OS2.

3 Calibration Parameter Influence on Spin Tone Harmonics

To determine the influence of the calibration parameters on the spin tone harmonic disturbances in the despun magnetic field

measurements, we use a similar mathematical approach to Kepko et al. (1996) in this section. Based on the results, we go on5

to derive the optimal conditions for the determination of each parameter in section 4.

First, we compute the temperature corrected sensor output BST as a function of the external field B in the spinning coordi-

nate system:

BST = G−1 ·Γ−1 ·Σ−1 ·Φ−1 ·B +OS (10)

We linearize all the matrices, using the following simplifying assumptions. The validity of these assumptions and the admissible10

deviations are discussed in section 7.

g ≈ 1, Gp ≈ 1, Ga ≈ 1 (11)

σPx ≈ 0, σPy ≈ 0 (12)

θS1 ≈ π/2, δθS1 = θS1−π/2≈ 0 (13)

θS2 ≈ π/2, δθS2 = θS2−π/2≈ 0 (14)15

φS12 ≈ π/2, δφS12 = φS12−π/2≈ 0 (15)

Furthermore, we assume φa ≈ 0 without loss of generality. Dropping second order factors, we obtain the following linearized

inverted matrices used in Equation (10):

G−1 =


1/(gGp) 0 0

0 g/Gp 0

0 0 1/Ga

 (16)

Γ−1 =


1 0 −δθS1

−δφS12 1 −δθS2
0 0 1

 (17)20

Σ−1 =


1 0 σPx

0 1 σPy

−σPx −σPy 1

 (18)

Φ−1 =


1 φa 0

−φa 1 0

0 0 1

 (19)
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Furthermore, without loss of generality, we assume the magnetic field in the despun (inertial) coordinate system (directions

X , Y , and Z) to be in the X-Z-plane, and the spacecraft to spin around the Z-axis, which corresponds with the z-axis in the

spacecraft fixed, spin aligned coordinate system (see Table 1). In that latter system, the field rotates and has the following form:

Bx = Bp cosωt=BX cosωt (20)

By = Bp sinωt=BX sinωt (21)5

Bz = Ba =BZ (22)

Here, ω is the angular frequency of the spacecraft rotation, usually determined from sun sensor or star tracker measurements,

and t denotes the time. Inserting these relations in Equation (10) yields the expected temperature corrected output of the

magnetometer in sensor coordinates. By applying the despin rotation matrix

D =


cosωt −sinωt 0

sinωt cosωt 0

0 0 1

 (23)10

to Equation (10) to transform BST into a non-orthogonal, despun coordinate system (directions X ′, Y ′, and Z ′, see Table 1),

after sorting by frequency and phase of the terms, and further dropping second order factors, we obtain the following relations.

7

fplaschke
Hervorheben



They are structurally similar to Equations (11a), (11b), and (11c) in Kepko et al. (1996), but different in detail:

BX′ =
Bp(1 + g2)

2gGp

+ cosωt

[
OS1 +

Ba(σPx− δθS1)

gGp

]
− sinωt

[
OS2 +

gBa(σPy − δθS2)

Gp

]
+ cos2ωt

[
Bp(1− g2)

2gGp

]
5

+ sin2ωt
Bp

2Gp

[
gφa−

φa
g

+ gδφS12

]
(24)

BY ′ = − Bp

2Gp

[
1 + g2

g
φa + gδφS12

]
+ cosωt

[
OS2 +

gBa(σPy − δθS2)

Gp

]
+ sinωt

[
OS1 +

Ba(σPx− δθS1)

gGp

]
− cos2ωt

Bp

2Gp

[
gφa−

φa
g

+ gδφS12

]
10

+ sin2ωt

[
Bp(1− g2)

2gGp

]
(25)

BZ′ =
Ba

Ga
+OS3

− cosωt
BpσPx

Ga

+ sinωt
BpσPy

Ga
(26)

These equations show how the parameters affect the signal content at the spin tone harmonics in the despun measurements.15

The first terms in all three Equations (24), (25), and (26) are the primary measurements terms. In the spin plane, the ambient

magnetic field only has a BX =Bp component. Consequently, the first term of BX′ is approximately Bp, while the first term

of BY ′ is approximately 0 as φa ≈ 0 and δφS12 ≈ 0. In the spin axis, we find BZ′ ≈Ba with Ga ≈ 1 and OS3 ≈ 0. In addition,

superposed first and second harmonic signals are expected as functions of the calibration parameters. The first harmonic signals

are described by the second and third terms in Equations (24), (25), and (26). In the spin plane, Equations (24) and (25), the20

spin tone signals are the result of spin plane offsets OS1/2 and projections of the spin axis field Ba onto the spin plane. In the

spin axis, Equation (26), first harmonic disturbances are due to the projection of spin plane fields onto the spin axis, the reason

being an incorrect description of the spin axis direction by the angles σPx/y . Second harmonic signals are only expected in the

despun spin plane components (fourth and fifth terms of Equations 24 and 25). These are due to a mismatch in spin plane gains

(parameter g) or an unaccounted non-orthogonality between the spin plane sensor axes S1 and S2 (parameter δφS12).25
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Table 2. Parameters and favorable conditions

Group Parameters Disturbances Conditions Uncertainties

1 σPx and σPy at ω along spin axis high Bp, low Fa ∆σPx/y ≈ Fa/Bp

2 g and δφS12 at 2ω in spin plane high Bp, low F2p ∆g ≈ F2p/Bp and ∆φS12 ≈ 2F2p/Bp

3 OS1 and OS2 at ω in spin plane low Ba, low Fp ∆OS1/2 ≈ Fp +Ba∆σPx/y +Ba∆θS1/2

4 δθS1 and δθS2 at ω in spin plane high Ba, low Fp ∆θS1/2 ≈ Fp/Ba + ∆OS1/2/Ba + ∆σPx/y

4 Favorable Conditions for the Determination of the Calibration Parameters

From the factors pertaining to the first and second harmonic terms of BX′ , BY ′ , and BZ′ (Equations 24 to 26) it is possible to

derive the conditions that should be favorable for the determination of the 8 previously mentioned parameters. These factors

are:[
OS1 +

Ba(σPx− δθS1)

gGp

]
and

[
OS2 +

gBa(σPy − δθS2)

Gp

]
(27)5 [

BpσPx

Ga

]
and

[
BpσPy

Ga

]
(28)[

Bp(1− g2)

2gGp

]
and

Bp

2Gp

[
gφa−

φa
g

+ gδφS12

]
(29)

Here, the factors (27) and (28) pertain to the spin tone disturbances in the despun spin plane and spin axis components,

respectively, and (29) pertains to the second harmonic frequency disturbance (double spin tone frequency) in the spin plane

components.10

As can be seen, the first factor of the latter group (29) is dependent on Bp, the external field in the spin plane which we

assume to be constant, on Gp, the absolute gain factor in the spin plane which should be approximately 1, and on 1/g− g,

which is 0 only if g = 1. Hence, the presence of one part of the second harmonic disturbance, though modulated by Bp, is

ultimately dependent only on g, the ratio of spin plane gains. Consequently, this relation can be used to determine g correctly.

The signal to do that and, in particular, the signal to noise ratio (SNR) is larger if Bp is larger. We capture this relation in the15

second line of Table 2. As the second harmonic disturbance in the spin plane is to be minimized to get g, the natural fluctuations

around that frequency (of amplitude F2p) should also be low in the spin plane. The uncertainty in g is then expected to be on

the order of F2p/Bp.

The same is true for the complementary factor, on the right side of (29): Also this second harmonic disturbance is modulated

by Bp. When g is accurately determined, then the φa influence vanishes, and the entire factor can only vanish by correctly20

choosing δφS12. Hence, to determine this parameter accurately, also Bp should be large and the natural fluctuations at the

second harmonic should be of low amplitude (low F2p). The uncertainty ∆φS12 of δφS12 and, ultimately, φS12 is expected to

be on the order of 2F2p/Bp (see line 2 in Table 2).

Let’s focus on the group of factors (28). The spin frequency disturbance is clearly modulated by Bp, as Ga should be close

to 1, so Bp benefits the SNR. These disturbances vanish if σPx and σPy become 0, i.e., if they are precisely determined. A low25
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amplitude in the natural fluctuations at the spin frequency along the spin axis Fa would also support the determination. The

uncertainty in σPx and σPy is then expected to be on the order of ∆σPx/y ≈ Fa/Bp (line 1 in Table 2).

The first set of factors in (27) pertain to the spin frequency disturbances in the spin plane components. They consist of two

parts: a spin plane offset component OS1 or OS2, and a term that is modulated by Ba and which may vanish if the difference

(σPx− δθS1) or (σPy − δθS2) vanishes. Obviously, if Ba vanishes, then the spin plane spin frequency disturbances can only5

come from the spin plane offset components. Hence, for their determination it is beneficial if the spin axis field Ba is low and

if the natural fluctuation level around the spin frequency in the spin plane Fp is low. The uncertainty in OS1 and OS2 is then

expected to be on the order of Fp +Ba∆σPx/y +Ba∆θS1/2 (see line 3 of Table 2).

The remaining elevation angles δθS1 and δθS2 are most difficult to determine: it is beneficial if the spin axis field Ba is

high. In addition, however, it is necessary that the spin axis itself is well determined, as the parameters σPx and σPy equally10

influence the spin tone signal in the spin plane as δθS1 and δθS2. Note that σPx and σPy can be independently determined by

minimizing the spin frequency disturbances in the spin axis component. Fp should again be low. Altogether, the uncertainty in

δθS1/2 is on the order of ∆θS1/2 ≈ Fp/Ba + ∆OS1/2/Ba + ∆σPx/y (see line 4 of Table 2).

5 Parameter Determination

Based on the findings from the previous section, we propose algorithms to determine the 8 spin-related parameters in an15

iterative manner (sections 5.2 to 5.5). The algorithms are based on computing estimates of the parameters for short intervals,

and evaluate the uncertainties of those estimates based on the uncertainties indicated in Table 2. Then, the estimates with

uncertainties below a certain acceptable threshold are chosen to form the basis of one parameter correction.

5.1 Precalibration

The temperature dependent gains GT(Ts,Te) determined on ground should be used to convert the raw magnetometer output20

BS to a precalibrated, temperature corrected intermediate product BST, according to Equation (8).

The offset vector OS and the calibration matrices Φ, Σ, Γ, and G should be initiated with the best known values at the time

of calibration. At the beginning, these will be ground obtained values:

– for θS1, θS2, φS12, and OS from ground magnetometer calibration,

– for φa from nominal spacecraft design or mirror/laser based alignment measurements,25

– for σPx and σPy from an initial estimate of the spin axis direction (alternatively σPx = σPy = 0 may be chosen),

– and Gp =Ga = g = 1 due to precalibration.

If in-flight calibration has already taken place, then these values will be superseded by better in-flight determined values.
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5.2 Calibration of the Spin Axis Direction

The entire interval of magnetic field measurements should be divided into small (overlapping) subintervals of length tint =

2πn/ω, with n ∈ N. The factor n should not be too small; hence, the subintervals should contain a number of spin periods, so

that the spin tone at the spin frequency and also the power around that frequency can be accurately determined. On the other

hand, subintervals should not be too large, so that the field/environmental conditions can be assumed constant.5

For each of the subintervals, the uncertainties ∆σPx/y ≈ Fa/Bp need to be calculated (line 1 in Table 2). Conservatively,

we choose Bp to be the minimal modulus of the spin plane field over the subinterval: min
(√

B2
x +B2

y

)
. Fa can be estimated

by taking the maximum of the discrete Fourier components Fa± of the spin axis magnetic field Bz at frequencies ω± that are

slightly over and under the spin frequency: ω± = 2πn±/tint with n± ∈ N and slightly over/under n:

Fa± = F(Bz,ω±) =

∣∣∣∣∣ 2

N

N−1∑
k=0

Bz(t0 + kδt) exp(−iω±kδt)

∣∣∣∣∣ (30)10

Fa = max(Fa±) (31)

Here t0 is the start of a subinterval considered, N is the number of magnetic field measurement samples in that subinterval,

and δt is the sampling period. The frequencies ω+ and ω− should sufficiently differ from ω to avoid leakage from spin tone.

However, ω+ and ω− should also be close enough to ω so that the amplitudes at those frequencies resemble the natural

amplitude level at the spin frequency. Note that the optimal choice of ω+ and ω− is subinterval specific. In practice, however,15

fixed frequencies can be used that are at some distance |ω±−ω|, if that distance is safely larger than usual spin tone spectral

peak widths.

From here on, we use F(B,ω) to denote the Fourier component of B at frequency ω. It should be noted that it may be

recommended to de-trend theB data before computing F(B,ω), by simply subtracting a linear fit. Linear trends will not occur

if the external field can be assumed to be constant. In many real applications, however, the spacecraft will move through field20

gradients during subintervals considered, and in these cases, the linear trend in the field measurements will increase the spectral

content across the spectrum.

Parameter estimates σPx and σPy are determined by minimization of the spin tone Sa in the spin axis component: Sa =

F(Bz,ω). This minimization is performed for each subinterval. Hence, we obtain for each subinterval one estimate for σPx,

for σPy , and for the uncertainty ∆σPx/y . A final parameter update for σPx and σPy for the entire interval of interest may be25

obtained by selecting the most accurate subinterval estimates of those parameters, pertaining to minimal uncertainties ∆σPx/y .

From those estimates, the median or average may be computed. The selection of the best estimates can be threshold based with

respect to ∆σPx/y .

5.3 Calibration of Gain Ratio and Azimuthal Angle

As detailed in the previous section 5.2, an interval of interest is divided into short (overlapping) subintervals of length30

tint = 2πn/ω. For each of these subintervals, the uncertainties ∆g and ∆φS12 are computed (see line 2 in Table 2). There-

for, the fluctuation amplitudes F2p = max(F(
√
B2

x +B2
y ,2ω±)) need to be computed, with 2ω± = 4πn±/tint and n± ∈ N
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slightly over/under n. Subsequently, the parameters g and δφS12 are determined for each subinterval by minimization of

S2p = F(
√
B2

x +B2
y ,2ω). From the set of g and δφS12 estimates from all subintervals, those associated to lowest uncertainties

can be chosen to yield final updates for g and δφS12.

It should be noted that we are using here the modulus of the spin plane field (
√
B2

x +B2
y =

√
B2

X +B2
Y ) to compute F2p

and S2p instead of any individual spin plane component (BX or BY ) in a despun coordinate system, as would be suggested5

by the analytical treatment outlined in section 3. Both approaches (using the modulus or a despun component) are, however,

mathematically equivalent. To show this, we can compute
√
B2

X′ +B2
Y ′ using Equations (24) and (25). From the sum B2

X′ +

B2
Y ′ , only those terms are large which contain the first term of Equation (24), because all other terms are products of multiple

small factors and, hence, can be omitted due to linearization. Taking that into account, we obtain
√
B2

X′ +B2
Y ′ ≈BX′ . Hence,√

B2
x +B2

y contains field and variations corresponding to the despun component, along which the external field is pointing.10

Evaluating
√
B2

x +B2
y is hence equivalent to evaluating BX if the field points in the X-direction. This result is based on

the assumption of the spin tone and second harmonic terms being small in comparison to the constant spin plane magnetic

field, which should be fulfilled even in low field conditions if the initial set of calibration parameters is not too inaccurate.

Note also that it is not possible to obtain additional information with respect to the calibration parameters by evaluating the

field-perpendicular component BY , because the coefficients pertaining to the sin and cos terms of BX′ and BY ′ are the same15

(compare Equations 24 and 25).

The equivalence of the approaches (using the modulus or a despun component) brings up two questions: (i) Why did we

not use the modulus when calculating the influences of the spin-related parameters in section 3 and (ii) why would we prefer

using the modulus over a despun component here and in any practical application of the calibration algorithms outlined in

this section 5? The answer to question (i) is that the mathematical treatment of the modulus is slightly more involved than20

the treatment of the individual despun coordinates. Furthermore, section 3 follows the approach of Kepko et al. (1996) who

also use despun coordinates. Thereby, our results from section 3 become directly comparable to the results of their study. In

their and our analytical treatments, the despinning process is exactly defined, perfectly known, and accurate. Hence, it does

not introduce additional uncertainty into the calibration process. This latter statement is not true in any real application, which

leads us to the answer of question (ii): The modulus of the spin plane field is readily available in any spinning coordinate25

system. Despinning is not necessary for magnetometer calibration, and it is not advised because it could introduce additional,

unnecessary uncertainty.

5.4 Calibration of Spin Plane Offsets

The uncertainties for each subinterval are computed as suggested in line 3 of Table 2. Thereto, the maximum of the spin axis

field (Ba = max |Bz|) over each subinterval should be used. Fp is evaluated following Equation (31). Furthermore, estimates30

for the uncertainties ∆σPx/y and ∆θS1/2 need to be obtained. These may be based on the variability of the selected estimates

of σPx/y (see section 5.2) and δθS1/2 (see next section 5.5) used to compute the final values of those parameters.

The offset estimatesOS1 andOS2 are determined for each subinterval by minimization of Sp = F(
√
B2

x +B2
y ,ω). From the

set of OS1 and OS2 estimates, the most accurate can be chosen to compute final updates for the spin plane offsets. It should be

12



noted that the offsets are known to be the most variable parameters. Hence, it could be desirable to compute final offset updates

more often than updates of other spin-related parameters, if possible.

5.5 Calibration of Elevation Angles

The uncertainties for each subinterval are computed as suggested in line 4 of Table 2, this time using Ba = min |Bz|. Es-

timates for the uncertainties ∆σPx/y and ∆OS1/2 need to be obtained, e.g., from the variability of selected σPx/y and5

OS1/2 estimates. Subsequently, the elevation angles δθS1 and δθS2 are determined for each subinterval by minimization of

Sp = F(
√
B2

x +B2
y ,ω). From the set of δθS1 and δθS2 estimates, the most accurate can be chosen (lowest uncertainties) to

yield final updates of those parameters.

It should be noted that the same quantity Sp is minimized to obtain the elevation angles δθS1 and δθS2 and the offset

components OS1 and OS2. Hence, the final selection of estimates according to the uncertainties ∆θS1/2 and ∆OS1/2, which10

are heavily dependent on |Bz|, is very important here. In low |Bz|, minimization of Sp yields the offset components, whereas in

high fields the offsets do not matter any more and any spin tone may safely be attributed to an incorrect choice of the elevation

angles, if the spin axis direction is precisely known.

5.6 Exclusion of Data Intervals

Certain intervals may be excluded from parameter determination, as some of the underlying assumptions may not be met well.15

For instance, intervals featuring large spacecraft/sensor temperature changes should be avoided, as parameters may vary within

such intervals. Hence, uncertainties in the parameters may be significantly higher than what is reflected in the uncertainty

estimates stated in Table 2. Large temperature variations are expected during eclipse intervals, where the spacecraft is in

shadow (e.g., of Earth), and hours after eclipse intervals as temperatures relax to stationary values. Furthermore, magnetic

field measurements at saturation levels need to be avoided. Lastly, intervals during and after spacecraft maneuvers may be20

problematic for calibration, as the spin axis will fluctuate during maneuvers and nutation may be visible for periods of time

after maneuvers. It should be noted that all these considerations are spacecraft and orbit specific.

6 Application to THEMIS Data

To ascertain the accuracies that parameters may be determined with in different regions of near Earth space, on a highly ellipti-

cal orbit around Earth, we apply the algorithms detailed above to two days (20 and 21 July 2007) of THEMIS-C (Angelopoulos,25

2008) fluxgate magnetometer (FGM) data (Auster et al., 2008). The data are available at 4Hz sampling frequency (data prod-

uct: FGL); they are already fully calibrated and the applied calibration parameters do not change over the two days considered.

The magnitudes of the magnetic field along the spin axis |Bz| and in the spin plane
√
B2

x +B2
y are displayed in Figure 2a in

red and blue, respectively.

The different regions that THEMIS-C went through during these two particular days are best identified using the omni-30

directional ion spectral energy flux densities, measured by the electrostatic analyzer (ESA, McFadden et al., 2008) and dis-
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Figure 2. From top to bottom: (a) magnitude of the spin axis and spin plane magnetic fields in red and blue, (b) omni-directional ion spectral

energy flux densities, (c) – (f) uncertainties of the estimates of the respective calibration parameters calculated in accordance to Table 2.

played in Figure 2b. At the beginning of 20 July 2007, THEMIC-C is located in the dayside magnetosheath. This is clearly

visible in the broad ion energy spectrum which is characteristic for the thermalized solar wind plasma population present down-

stream of the bow shock. THEMIS-C fully transitions through the magnetopause into the magnetosphere at about 05:06 UT,

moving inbound towards perigee at about 10:27 UT. At about 15:33 UT, THEMIS-C went back into the magnetosheath until

about 22:33 UT, when it transitioned through the bow shock into the solar wind, characterized by a narrow energy signature5

corresponding to a cold plasma moving at the solar wind speed. On 21 July, THEMIS-C went back into the magnetosheath at

about 06:07 UT, and then went further into the magnetosphere at about 10:53 UT. The perigee pass at that day took place at

about 17:47 UT.
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As can be seen in panel (a), the solar wind interval is characterized by low magnetic fields, typically below 10nT. In the

dayside magnetosheath, the field strength is somewhat higher, on the order of a few tens of nT, and highly fluctuating. Inside

the magnetosphere, the fluctuation level is again low. The lowest field strengths of a few tens of nT are measured on the

earthward side of the magnetopause, so just inside the inner magnetosphere. The field strength continuously increases towards

Earth. On this particular THEMIS-C orbit, field strengths on the order of 104 nT are reached along the spin axis and in the5

spin plane close to perigee. As discussed above, both the fluctuation levels and field strengths have a major influence on the

expected uncertainties of the calibration parameter estimates. We determine the parameters and the corresponding uncertainties

for overlapping subintervals of 100 spin periods each, a spin period lasting for approximately 3s. Hence, the subintervals have

interval lengths of approximately 5 minutes. Note that we do not consider subintervals containing fields above 2·104 nT, due to

FGM instrument saturation, and also excluded intervals in eclipse (Earth shadow) around perigee that lasted for approximately10

22min per orbit. Over the remaining times, temperature variations at the FGM sensor and electronics are limited to within

3 degrees. In the THEMIS case, these small variations are not expected to have a significant influence on the calibration

parameters.

Subinterval lengths of 100 spin periods ensure good estimates of the power at around (and double) the spin frequency

ω = 2π/(3s)≈ 2rad/s, while the calibration parameters to be determined and the ambient magnetic field conditions may15

well be considered constant over such short intervals. Estimates of the power Fa±, Fp±, and F2p± around (double) the spin

frequency are taken at 85% and 115% of ω and at 185% and 215% of ω, respectively. Following the equations from Table

2 and from the subsections 5.2 to 5.5 above, we determine the uncertainties for the calibration parameter estimates for all

subintervals. They are shown in Figures 2c to 2f.

Figures 2c and 2d show the uncertainties ∆g = ∆φS12/2 and ∆σPx/y . For the corresponding parameters, uncertainties on20

the order of 10−4 (rad) are generally acceptable. In the case of the gain ratio parameter g, an error of 10−4 would translate

into an absolute error of 1nT in 10000nT fields. With respect to the angle φS12 (or δφS12) and to the spin axis angles σPx/y ,

an error of 1 · 10−4 rad is equivalent to approximately 0.5% of a degree. Uncertainties below 10−4 (rad) are marked in blue

in Figures 2c and 2d. As can be seen, estimates of g, φS12, and σPx/y with uncertainties below this threshold can be obtained

almost everywhere in the inner magnetosphere, where fields are relatively stable, but not in the magnetosheath (fluctuations25

too high) or in the solar wind (fields too low). Estimates associated with uncertainties below 10−5 (rad) are marked in red in

Figures 2c and 2d. These are obtained only in the regions of highest ambient fields, close to perigee.

The parameter estimates themselves (g, δφS12, σPx, and σPy) are shown in Figures 3a to 3d as a function of their respective

uncertainties. Again, uncertainty thresholds of 10−4 (rad) and 10−5 (rad) are marked in blue and red, respectively. Taking the

averages of the estimates associated with uncertainties below 10−5 (rad), we obtain:30

〈g〉 = 0.99998± 0.00004 (32)

〈δφS12〉 = (−3± 6) · 10−5 rad (33)

〈σPx〉 = (−7± 6) · 10−5 rad (34)

〈σPy〉 = (−1.7± 0.4) · 10−4 rad (35)
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Figure 3. Calibration parameter estimates as a function of their respective uncertainties. Threshold levels for blue and red marked estimates

are the same as in Figure 2. Panels (b) to (d), (g), and (h) have secondary axes in orange, showing parameter values in degrees.

Here, the error values are the corresponding standard deviations of the estimates. We see that all parameters are close to 0 (or 1

in the case of g); an update may only be advised for σPy , as its deviation from 0 is significantly larger than the error value (see

Figure 3d).

In Figures 3c and 3d, a split in values associated to low uncertainties can be clearly seen. A closer look on this phenomenon

reveals that lower/higher σPx/σPy values correspond to times before/after perigee passes. Hence, the spin axis direction in the5

orthogonalized sensor package coordinate system changes during perigee. This might be related to a temperature driven change

in spacecraft geometry, i.e., in boom alignment to the spacecraft body, occurring in eclipse during perigee passes.
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In order to calculate the uncertainties of the offset and elevation angle estimates (∆OS1/2 and ∆θS1/2, see lines 3 and 4 in

Table 2), we have to assume uncertainties in the knowledge of the spin axis direction angles (∆σPx/y), the offsets (∆OS1/2),

and the elevation angles (∆θS1/2). Based on Equation (35), we set ∆σPx/y = 6 · 10−5 rad. Furthermore, as we can justify a

posteriori based on Equations (37) and (39), we set ∆OS1/2 = 25pT and ∆θS1/2 = 7 · 10−4 rad. Therewith, we obtain the

uncertainty estimates per subinterval shown in Figures 2e and 2f.5

The offsets directly influence the absolute accuracies of the magnetic field measurements. Typically, uncertainties on the

order or below 0.1nT are desired in low fields. Uncertainties meeting this threshold are marked in blue in Figure 2e. As can be

seen, corresponding offset estimates can be routinely obtained in the solar wind, due to the low fields, and also in the outer, low

field parts of the inner magnetosphere. Within the magnetosheath, however, many estimate uncertainties surpass the threshold

as the fluctuations levels are too high for accurate offset determinations. Estimates with uncertainties below 10pT (in red) can10

only be obtained in the solar wind at low fields. From those (red dots in Figures 3e and 3f), we obtain average offsets of:

〈OS1〉 = (−0.007± 0.023)nT (36)

〈OS2〉 = (0.036± 0.025)nT (37)

The error values here motivate the choice of ∆OS1/2 for the computation of the uncertainties of the elevation angles. These

angles should also be known to the order of 10−4 rad. Unfortunately, estimates with uncertainties lower than this threshold15

are only obtained in very high fields, close to perigee, as can be seen by the red dots in Figures 2f, 3g, and 3h. The blue dots

correspond to the lower threshold of 10−3 rad in this case, already equivalent to 5.7% of a degree in angular uncertainty. From

the δθS1/2 estimates pertaining to uncertainties lower than 10−4 rad we obtain the following averages:

〈δθS1〉 = (5± 4) · 10−4 rad (38)

〈δθS2〉 = (3± 7) · 10−4 rad (39)20

Within the group of sensor orthogonalization angles (δθS1, δθS2, and δφS12) and spin axis angles (σPx and σPy), these elevation

angles are least accurately defined. Apparently, it is difficult to determine them to accuracies on the order of 10−4 rad or

better. When determined on ground, in higher fields, the parameters δθS1/2 may however be better determined, with lower

uncertainties than 10−4 rad. Hence, regular in-flight updating of these parameters may not be recommended, as those updates

may introduce unnecessary jitter without any benefit to the overall accuracy of the magnetometer calibration.25

7 Discussion on Linearization Assumptions

The only purpose of linearizing the calibration equation in section 3 is to obtain the uncertainty relations shown in the right

column of Table 2. These uncertainties (∆σPx/y , ∆g, ∆φS12, ∆OS1/2, and ∆θS1/2) are used to evaluate which calibration

parameter estimates (from which subintervals) are most suitable to compute final calibration parameter updates. The estimates

themselves are calculated using the non-linearized calibration Equation (9). Hence, simplifications and assumptions associated30

to linearization do not influence the accuracy of those estimates. They only influence the accuracy of their uncertainties!
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To obtain these uncertainties, a series of assumptions need to be made, e.g., in the form of the relations (11) to (15). This

approach raises the question of how much the calibration parameters may be allowed to deviate from the assumed values.

As shown in the previous section 6, we are interested in the orders of magnitude (factor of 10) of the uncertainties ∆σPx/y ,

∆g, ∆φS12, ∆OS1/2, and ∆θS1/2. Conservatively limiting the errors in these uncertainties to a factor of 2, and taking into

account the multiplication of parameters due to Equation (10), we can allocate lower limit individual admissible error factors5

of 4
√

2 = 1.189 to gain factors g,Gp, andGa, as well as angles σPx, σPy , δθS1, δθS2, δφS12, and φa. Such error factors of 1.189

or, equivalently, deviations by 19% from the assumed values are extraordinarily large when compared to the accuracy in the

knowledge of the calibration parameters and of the geometry of the sensor and spacecraft, even before performing any in-flight

calibration. For the angles, this means that deviations from 0 by up to 11◦ are acceptable (arcsin(19%)); note that alignment

uncertainties and deviations from sensor orthogonality should usually be lower than 1◦. For the gains, deviations by 19% would10

be acceptable; ground calibration, however, should reduce these deviations to less than 0.1%. Hence, the assumptions made to

linearize the calibration equation are not restrictive at all and can easily be fulfilled in practice.

8 Further Discussion and Conclusions

The orthogonalization angles are known to be relatively stable when compared to the spin axis direction angles. Fortunately,

as shown in section 6, the spin axis angles can be updated with high accuracy more regularly than the sensor elevation angles15

δθS1 and δθS2. The parameter decoupling introduced in section 2 pays off here, as spin axis variations do not require re-

determination of the sensor elevation angles as would be the case when using the calibration Equation (1) with the coupling

matrix (2) instead of Equation (9).

It should be noted that both Equations (1) and (9) assume raw magnetometer outputs to be linearly transformable into

accurate magnetic field estimates. This assumption of linearity can only be fulfilled to a certain degree when dealing with actual20

magnetometer hardware. Non-linearities (e.g., Auster et al., 2008; Russell et al., 2016) will adversely affect the calibration as

described here if not characterized, quantified, and corrected beforehand, as they produce spin tone and higher harmonic signals

in the magnetic field measurements. THEMIS FGM data, for instance, suffer from slight non-linearities in digital-to-analogue

converters that are part of the magnetometer hardware. These are known from ground characterization of the instruments and

are routinely corrected in advance of any in-flight calibration activities and/or any conversion of magnetometer outputs into25

calibrated magnetic field measurements (Auster et al., 2008).

Assuming instrument linearity, the uncertainty-based approach to determining the spin-related calibration parameters allows

for a meaningful estimation of the error alongside with any parameter updates. These errors can be compared to the uncer-

tainties of the already known parameters, determined either on ground or in-flight. Therewith, it is possible to decide whether

any update of the calibration parameters is necessary/advised or, instead, would just introduce unnecessary variations in the30

calibration parameters over time.

In addition, the availability of calibration parameter estimates associated to low uncertainties, sufficient in number and

quality, determines what is possible in terms of cadence of parameter updates. This availability depends on the orbit of the
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spacecraft (the presence in regions of certain field conditions), and also on the spin period of the spacecraft. In general, short

spin periods (high spacecraft spin frequencies) are favorable, as they increase the number of spins that may be taken into

account in subintervals of certain length. A larger number of spin periods reduces the influence of natural field fluctuations

at (double) the spin frequency, while short subinterval lengths ensure the constancy of the parameters and environmental

conditions. In the given THEMIS-C example, the spin plane offsets OS1/2 may be continuously tracked while the spacecraft5

remained in the solar wind and in the low field parts of the magnetosphere. The spin axis components σPx/y , the gain ratio

g and azimuthal orthogonalization angle φS12 can easily be determined separately before/after each perigee pass, whereas

accurate determinations of the elevation angles θS1/2 may only be possible when taking into account estimates from several

spacecraft orbits.

Finally we would like to note that the benefits of parameter decoupling (i.e., a sensible choice of parameters when taking10

into account the behavior of the magnetometer and spacecraft hardware) and of the uncertainties-based determination of those

parameters are not tied to the exact definitions of the calibration Equation (9) and matrices (4) to (7). For example, the offsets

may be applied in an orthogonal, spacecraft-fixed coordinate system instead of in the sensor coordinate system, if the main con-

tribution to the offsets is expected from spacecraft stray fields at the sensor position. The order of the gain, orthogonalization,

and alignment matrices (here G, Γ, Σ, and Φ) may be changed, and/or the 12 degrees of freedom of the calibration parameters15

may be distributed over a larger number of matrices and offset vectors to account for changes pertaining to different parts of

the magnetometer/spacecraft system in different coordinate systems (e.g., see equations in Fornaçon et al., 1999; Auster et al.,

2008). Hence, while following the principles set out in this paper, a different set of calibration parameters and corresponding

calibration equation may be specifically selected for each magnetometer/spacecraft combination.
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