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The application of the log-normal approach can be made even more con-
vincing and consistent

Contents:

Random errors are usually modelled with a normal distribution and a common error
standard deviation. The paper shows that both assumptions are inadequate, at least for
single measurements from soil CO2 efflux devices. These findings may well generalize
to many other environmental measurements. The alternative model of a log-normal,
multiplicative random error appears much more suitable and plausible and leads to
more efficient and appropriate analyses.

Theory:
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The theory on the lognormal distribution, the distribution of sums of such variables and
the variance of sums of correlated variables is nicely summarized.

There is, however, a misnomer: The notion of “confidence interval” should be reserved
for the interval that covers the true PARAMETER value with the given confidence level,
but it is used to name an interval in which approximately 95% of the observations
should be contained. This may be called a scatter interval. It is related, but not identical
to a prediction interval or a tolerance interval.

Application:

Fig. 1: The comparison of the two main methods - using the normal or the lognormal
assumption - is first examined by a respective qq plot of residuals. The residuals are
obtained as the differences between 4 individual observations and their average either
on the original or the log scale. However, these 4 observations stem from 4 measure-
ment devices in 4 fixed places, and an inspection of Fig. 3 shows that they are clearly
subject to systematic differences. Thus, the 4 residuals do not represent 4 indepen-
dent random errors. In addition, the 4 residuals are collected from many half hours
and then shown in a single qq plot. As the authors show in Fig.2 (and also emphasize
in the text), these groups of 4 do not have the same variances in case of the "normal
method". Therefore, they should not be shown in a common qq plot.

Fig. 2 (left panel) and the related comments show quite convincingly that the assump-
tion of constant standard deviations does not hold - they rather increase with expected
values. This disappears when the lognormal distribution is used (right panel), since
for this model, the standard deviation is proportional to the expectation. However, an
alternative would be to model the random error as normal with standard deviation pro-
portional to the mean. (Note that I would NOT prefer this approach over the log-normal
model!)

Fig. 4 shows that the scatter interval ("confidence interval") for values aggretated over
a day are most often considerably narrower for the lognormal method. In the text, the
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authors call them "the same" and discuss the few exceptions instead. Note, however,
that one should first make sure that the intervals produced by the two methods indeed
show approximately the same percentage of covering the observations.

In summary, while the theory has a good potential to improve the methodology, the way
it is applied is not convincing.

A suggestion:

Fig. 3 suggests that the measurements follow a model

Ytk = h(t) · γk · εtk

or, on the log scale,
log(Ytk) = g(t) + βk + log(εtk)

where t is the time, k, the measurement device (chamber), g() = log(h()), smooth
functions of time, and Ytk and εtk are the observations and the (lognormal) random
error. Thus, it would be adequate to fit this model (on the log scale) and then show its
adequacy using diagnostic plots (residuals against fitted values and time, qq plot).

(The smooth function g may - at least for other target variables than CO2 efflux - advan-
tageously be related to explanatory variables such as a daily and/or a seasonal cycle
and environmental variables, still allowing for a smooth additional term.)

This model can be fitted to half hourly measurements or daily averages. (The averages
may be the usual arithmetic means or robust version of them.)

If the above model fits well, without showing heteroscadasticity, an alternative method
for aggregating measurements to daily averages may be used: the fitted values can be
aggregated, and the correction factor for getting an expectation from the first parameter
of a log-normal, exp(σ2/2), can be applied to the result. This is similar in spirit as using
the estimated parameters of the lognormal distribution obtained from the 4 measure-
ment devices, as done in the paper, but that method wrongly includes the systematic

C3

effect γk in the random variability of the error term.

Discussion:

The model just described has consequences for

• spatial aggregation: The dominant term in such means are the mean of the γk.
They can be interpreted as random effects if the locations of the measurement
devices are randomly chosen from the plot (or region). This is why aggregating
over time first (“space last”) produced a more plausible interval (Fig. 6). The
authors correctly explain this fact in other words - that this occurs “because it
wrongly assumed true replicates when in reality there are only pseudo-spatial
replicates.”

• temporal aggregation: If there is a daily or seasonal cycle, the time points should
not be treated as a stationary time series. If the smooth function g looks like
a stationary function without further patterns, then it can be integrated into the
correlated error term.

The authors say: “We argued that several spatially distributed chambers correspond to
samples of a lognormal distribution.”
It would be difficult to judge the distributional form from 4 independent values γk. Thus,
this amounts to an over-interpretation.

Process error:

The authors give many reasons why the magnitude of the process error may depend
on the magnitude of the CO2 efflux itself. In fact, in biology and other fields, all kinds of
variation typically depend on the magnitude of the variable under consideration, and it
would be more necessary to find explanations if for some process this is not the case.

This is even true for measurement errors. I do not see an intrinsic reason why the mea-
surement error should be better described by a normal than a log-normal distribution.
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Hopefully, it is small enough that the two models cannot be distinguished. The authors
might adapt their comments on measurement errors accordingly.

This contradicts their recommendation to “use the normal assumption for high- fre-
quency, e.g. hourly measurements,” for which I do not find a convincing reason.

Recommendations:

These might be recast along the following line:
The lognormal model and methods are more appropriate for this kind of data. The
feature of standard deviations being proportional to expectations is the dominant tigger
of the improvements. When measurements are aggregated to means or sums, the
central limit theorem grants that the fit of the normal distribution gets better, but it will
rarely be better than the fit of the log-normal for environmental and similar measure-
ments, even after aggregation. However, the use of the log-normal is most needed
when considering single measurements, for example, when they are compared with
model values from any models (as the authors mention it).

Since this discussion suggests major changes of the analyses and interpretations, I do
not go into details of the text at this stage.
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