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Abstract. We present the development of the RIPLE platform designed for the monitoring at high temporal frequency (~ 10 10 

min) of water discharge, solid fluxes (bedload and suspended load) and properties of fine particles (settling velocity) in 

mesoscale rivers. This platform responds to a request to continuously measure these variables in rivers using a single, 

centralized device, and in the most direct way possible. The platform integrates the following instruments: (i) for water 

discharge: water level and surface velocity radars, digital cameras, echo-sounder; (ii) for fine sediment load: turbidimeters, 

automatic samplers including the SCAF (sediment settling velocity characterization device), (iii) for bedload: a hydrophone, 15 

(iv) for water quality: a conductivity probe and water sampling. As far as water discharge monitoring is concerned, priority 

has been given to non-intrusive instruments to improve the robustness of the system. All the instruments are driven by a data 

logger (Campbell® CR6), which stores locally the data and then upload them to a remote server every hour during the day 

using a 3G modem. SMS (Short Message Service) alerts can be sent depending on scheduled conditions (e.g. low battery 

voltage, water level threshold, all samples of the automatic sampler collected). The platform has been designed to be as 20 

autonomous as possible: it is powered by a battery supplied by a solar panel. Limiting the power consumption of the platform 

was one of the main technical challenges, because of the quantity of instruments integrated. A simple 100 W solar panel is 

sufficient to power up the entire platform, even during winter or low insulation conditions. The RIPLE platform has been 

designed to facilitate its use and maintenance. A user-friendly interface has been developed enabling to visualize the data 

collected by the platform from an internet connection. It is also possible to remotely configure the platform within this interface, 25 

for example to modify water sampling thresholds or alert thresholds. Finally, the platform is relatively easy to move from one 

site to another site because its installation requires little civil engineering. To date, RIPLE has been tested on two rivers of the 

Alps in France: the Romanche river in Bourg d'Oisans (45.1158°N, 6.0134°E, 710 m elevation) from September, 2016 to July, 

2018 and the Galabre river in La Robine sur Galabre (44.1586°N, 6.2360°E, 680 m elevation) since October, 2018, 

demonstrating the proper functioning of the platform. 30 
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1 Introduction 

Sediment transport has an impact on the ecological status of water bodies, the morphological dynamics of the river, the stability 

of river banks and structures, as well as many human activities such as energy production and drinking water supply (Renwick 

et al., 2005; Lee and Foster, 2013). Two modes of transport are classically considered: bedload and suspended load (Julien, 5 

1995). Bedload consists of coarse particles transported by sliding, rolling or saltation on the bottom of the river. Suspended 

load refers to the transport of fine particles through the turbulent field, within the water column. The river sediment material 

is generally a mixture of coarse and fine particles that can interact together in relation to hydrology (the succession of floods 

and low flows), vegetation and human activities (material extraction, riverbed modification, presence of dams and weirs) 

(Corenblit et al., 2007). The transfer of coarse and fine particles downstream can lead to progressive siltation of structures, 10 

such as hydroelectric power plants (Morris and Fan, 1998; Walling and Fang, 2003), or to degradation of river quality by 

clogging the bottom or by direct attack on the respiratory organs of fish species (Owens et al., 2005). Alternatively, high-

energy rivers with insufficient supply of sediment load can lead to erosion of the main channel (Frings et al., 2014). Suspended 

sediments are also a privileged vector for the transport of nutrients (C, N, P) or contaminants (pesticides, metals, organic 

products, microorganisms). Finally, the increase in turbidity leads to significant over costs for water treatment when it is used 15 

as drinking water. Overall, there is a need for systems able to monitor water and solid discharges in rivers, and these systems 

should take into account both fine and coarse sediments. 

 

High frequency monitoring of water and solid discharges is also a key element for the scientific community interested in the 

functioning of the Critical Zone (earth's near surface) in response to global changes (climatic change, land use and land cover 20 

changes). The understanding of the Critical Zone requires a holistic approach involving the monitoring of a combination of 

variables such as hydrological, chemical and biological variables (Brantley et al., 2016; Gaillardet et al, 2018) in different 

compartments of the catchment, i.e. soil, groundwater, river, surface-atmosphere interface, vegetation. One of the main issues 

of the people working on the Critical Zone is the determination of mass balance of water and associated mater and energy 

balance. The fluxes exported through the river system are of primary importance as the river collects a large part of the surface 25 

and subsurface flows within the catchment. There has been a recent attempt by the French Critical Zone community (Gaillardet 

et al, 2018) to develop a list of variables to be monitored continuously in each of the compartments of the Critical Zone. For 

rivers, this list includes variables such as flow discharge, electrical conductivity, temperature, turbidity, suspended sediment 

concentration (SSC), chemical and isotopic composition of the water. 

 30 

The suspended sediment flux is usually obtained by multiplying the water discharge by the SSC, typically expressed in g/l of 

the mixture of water and suspended sediment. High-frequency SSC monitoring is required for reliable estimate of the 
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suspended sediment flux. Nevertheless, a reliable and easy method to obtain a direct, continuous SSC measurement is not 

currently available. Alternatively, a proxy of the SSC, which can be easily monitored continuously and related to SSC, is 

employed. The most commonly used proxy to date is turbidity (Gray and Gartner, 2009; Rasmussen et al., 2009; Navratil et 

al., 2011). In turbulent rivers, it is assumed that the SSC is relatively homogeneous within the cross section and therefore that 

a point measurement of turbidity from the river bank is acceptable. This is easily the case in rivers where the slope of the bed 5 

is greater than 0.1% (Mano, 2008.; Navratil et al., 2011) and for silt size particles or finer. This assumption is questionable for 

sand-sized particles (Camenen et al., 2019). However, there is no reference method for sand-sized particles to date. The 

turbidity-SSC rating curve is established from direct measurements of SSC that are performed through automatic water 

sampling. Samples collected at regular intervals or when thresholds are exceeded (e. g. water level, turbidity) are returned to 

the laboratory and analysed to measure the SSC using the filtration method (for low SSC, typically < 2 g/l) or the total 10 

evaporation method (for higher SSC) (Navratil et al., 2011; Nord et al., 2014). A global turbidity-SSC rating curve can be 

established using all direct SSC measurements performed at a station and allow the turbidity time series to be converted into 

the SSC time series. However, in headwater catchments where sediment sources can vary rapidly during a flood, it is strongly 

recommended to perform a specific calibration for each flood to reduce measurement uncertainty (Navratil et al., 2011). Indeed, 

turbidity is very sensitive to particle size and also to the shape and colour of the particles. 15 

 

High-frequency bedload sampling is required for reliable estimate of the bedload flux since bedload transport is a very dynamic 

process and can even be discontinuous through the occurrence of intermittent pulses (Aigner et al., 2017). However bedload 

samplings are very challenging to be performed continuously over long periods. Alternatively, hydraulically-based equations 

are mostly used to compute bedload sediment budget (e.g. Recking et al., 2012) but their reliability is sometimes questionable 20 

(Gray and Simões, 2008). In the last decades, several proxies were used to get a continuous monitoring of bedload processes 

with surrogate methods (Gray et al., 2010). Among these methods, three of them do not need the installation of heavy, dedicated 

structures in the stream flow:  (i) acoustic Doppler current profiler (aDcp), (ii) passive acoustic and (iii) seismic. aDcp can be 

used to measure an apparent bedload velocity which is related to bedload fluxes (Rennie et al., 2002, 2017). However, the 

deployment of aDcp operating from the surface is not appropriate in the case of rivers with steep slope (typically > 1%) because 25 

the presence of waves at the surface of the water hinders the measurement and floating objects transported during floods may 

damage the device. Passive acoustic and seismic monitoring consist in recording the noises that are naturally generated by 

bedload transport when impacting the riverbed (Thorne and Foden, 1988; Tsai et al., 2012). Passive acoustic monitoring is 

achieved with hydrophones that sense the acoustic waves propagating under water. The acoustic power of bedload sounds has 

been related to bedload fluxes by using site-specific calibration curves (Marineau et al., 2016; Geay et al., 2017a). Seismic 30 

monitoring is achieved with geophones or seismometers which record the seismic waves propagating in the soil layer (surface 

waves). Similarly, the power of bedload seismic noises has been related to bedload fluxes in laboratory experiments (Gimbert 

et al., 2018) and partially in field-experiments (Roth et al., 2016). Acoustic and seismic monitoring provide continuous proxies 

that are related to bedload fluxes but these proxies are also dependent on additional bedload parameters (i.e. grain size 
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distribution, bedload kinematics) and on processes related to wave propagation (Geay et al., 2017b). Up to date, whatever the 

indirect method used, calibration efforts with direct bedload samplings are needed to elaborate rating curves and to finally 

provide a continuous monitoring of bedload fluxes. 

 

Whether it is for estimating suspended sediment fluxes, dissolved matter fluxes, nutrient or contaminant fluxes associated with 5 

fine particles, knowledge of water discharge is essential. The monitoring of water discharge is not easy, especially in 

mountainous rivers where flow discharge can vary of several orders of magnitude in a few hours (Borga et al., 2014) and solid 

discharges can demonstrate a very dynamic behavior over time, even more impulsive than the flow itself, resulting in 

significant changes in the morphology of the river. Therefore monitoring discharge deserves a special attention. The 

conventional monitoring of flow discharge involves the measurement of a primary variable such as water depth or water level. 10 

A calibration curve, so-called stage-discharge rating curve, is usually established based on information such as gauging 

(punctual discharge measurements performed using different techniques such as slug injection of a tracer in solution, current 

meter, aDcp, handheld surface velocity radar gun) or hydraulic modelling to convert the water level time series into flow 

discharge time series (World Meteorological Organization 2010; Tomkins, 2012). This work typically involves significant 

human and financial effort. It is indeed very demanding to mobilize technical work force to carry out gauging. Moreover, the 15 

mobilization of work force during floods is not without risk for the operators. It is also not so frequent to be present in the field 

during the biggest hydrological events. Finally, when a morphogenic flood occurs, the changes of the river geometry implies 

to start over the calibration curve. Thus, new methods are required to provide more direct access to the water discharge (without 

using the stage-dicharge rating curve) and therefore reduce the field work related to gauging and bathymetry surveys. These 

methods involve the use of other variables in addition to the water level. The first variable that has been added to hydrometric 20 

stations is velocity. During the last decade, the introduction of fixed flow velocity monitoring systems (transit time ultrasonic 

flow meters, acoustic Doppler current profiler horizontal (H-aDcp) and vertical (V-aDcp), surface velocity radars) into 

hydrometric stations equipment has gradually become more widespread (Costa et al., 2006; Levesque and Oberg, 2012; Nord 

et al., 2014; Thollet et al., 2017). These systems all provide a more or less local monitoring of flow velocity. More recently, 

systems using cameras and the Large Scale Particle Imagery Velocity (LSPIV) method have been developed and deployed in 25 

the field to estimate the surface velocity field (Hauet et al., 2008; Leduc et al., 2018; Le Coz et al., 2010 ; Muste et al., 2008; 

Stumpf et al., 2016). These systems provide field data of velocity on a stretch of river. Whether it is fixed flow velocity 

monitoring systems or LSPIV systems, there is no direct access to the mean channel velocity which is the variable of interest 

to estimate directly the flow discharge by multiplying the mean channel velocity by the cross-sectional flow area. Thus the 

development of innovative methods is necessary to estimate the mean channel velocity from surrogate monitoring. The first 30 

attempts concern the index velocity method but this approach is still largely based on the use of gauging (Levesque and Oberg, 

2012; Morlock et al., 2002). Continuous monitoring of the cross-sectional flow area by a direct method is not possible to date 

because of the lack of dedicated technology. Alternatively, a relation between stage and channel area, called a ‘stage-area 

rating’ is established based on topographic surveys, which are repeated typically once a year or after each morphogenic flood. 
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Changes in the water level-velocity relationship make it possible to detect changes in the bathymetry and the need to survey 

new bathymetry of the section (Thollet et al., 2017). 

 

Therefore, being able to carry out high frequency monitoring of water and solid discharges in any river and at any site of 

convenience is a high expectation for both operational and research applications. This should make it possible to extend the 5 

monitoring to isolated sites that have not yet been gauged, in environments that may be remote, difficult to access, under 

potentially extreme conditions (humidity, temperature, wind, radiation) or subject to destructive phenomenon (cyclone, floods, 

vandalism, etc.). The availability of power, continuous data transmission and possible remote configuration remains a 

challenge in these environments. There have been studies that have developed autonomous monitoring platforms in hostile 

environments to remain unattended for several months or years (Musko et al., 2009; Bhatti and Ridley, 2014; Clauer et al., 10 

2014; Peters et al., 2014; Morschhauser et al., 2017) but little or no for monitoring of water and solid (both fine and coarse 

particles) discharges in rivers (Mueller et al., 2013; Navratil et al., 2011; Comiti et al., 2014; Griffiths et al., 2014). This study 

presents the development of a multi-instrumental platform called RIPLE (River Platform for monitoring Erosion). The different 

variables measured relate to the flow discharge, water quality, fluxes of fine and coarse sediment and optionally the properties 

of suspended fine sediments (settling velocity). A user interface is also presented that enables data visualization and remote 15 

configuration of the platform. A case study is described to validate the platform's operation. 

2 Design consideration 

The development of RIPLE is preferably aimed at mesoscale rivers, with potentially high SSC values (peak values typically 

between 1 and 100 g/l), flow discharge ranging over several orders of magnitude in a short period of time (from a few dozen 

l/s to several hundred of m3/s) and bedload particles composed of a variety of grains from sand to cobbles or even boulders. 20 

However, it should be noted that the proposed instrumentation could be applied directly or after some modifications to lowland 

rivers and/or larger rivers. The choice was made to integrate into the platform instruments with a level of development that 

allows them to be easily assembled and to include recently developed instruments in the laboratory when company equipment 

do not yet exist. Priority was given to non-intrusive instruments because of their robustness. Indeed, floods may produce 

important damage or destructions to any device present in the water. However, if non-intrusive instruments are commonly 25 

available for hydrometric applications, they do not really exist for the monitoring of sediment fluxes in this type of 

environment. The minimum set of variables to be integrated in the platform is as follows for: (i) hydrometry: surface velocity 

and water level; (ii) water quality: water conductivity, temperature and water sampling; (iii) suspended sediment: turbidity and 

SSC via water sampling; (iv) bedload: acoustic power and elevation of the river bed. A staff gauge and a control camera are 

also required to establish a local elevation reference frame and check the general state of the platform. All instruments should 30 

be controlled by a central control system. 
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The platform should allow interaction between the different measurements (enabling triggering conditions to be activated and 

easily parametrized), data storage, remote data transfer, sending alarms, remote and real-time management. In addition, the 

platform should be autonomous in energy and easily movable from one site to another. The different functions taken into 

account in the development of this platform are shown in the diagram of Figure 1. 

The sections presented in the following correspond to the sequential tasks that have been performed during the development 5 

of the platform: 1) the definition of the architecture and the choice of the acquisition and control system; 2) the development 

of an integrated solution: definition, development, test and formalization of protocols: power supply, sensors electronics, data 

storage, remote data transfer, enclosure/mechanics, and control software; 3) the development of a software interface allowing 

remote archiving and visualization of data and maintenance of the platform by sending new programs to modify the operation 

of the control system and the interaction between measurements; 4) the deployment of the platform in the field for test and 10 

validation. 

3 System design 

3.1 Control system 

The instruments integrated in RIPLE are listed in Table 1. They are sorted according to the type of measurement they provide: 

hydrometry, water quality, suspended load, and bedload. The name of the variable, the physical principle of the measurement, 15 

the name of the model, the name of the manufacturer and the integration status in RIPLE are given for each instrument. A 

detailed description of each instrument is given in Section 3.3. All instruments are produced and marketed by manufacturers 

with the exception of the optic fiber turbidimeter (so-called “capteur marseillais”) for high turbidity, and PASS (automatic 

water sampling) which are developed in public research laboratories and individually manufactured at the moment. The SCAF 

(sediment settling velocity) has recently been marketed by the Aqualabo company. Two instruments, i.e. PASS (automatic 20 

water sampling) and SCAF, are now integrated in RIPLE but were not included in the case study presented in Section 6. They 

therefore appear as optional in Table 1. 

The devices integrated in RIPLE are all controlled by the Campbell CR6 data logger (Figure 2). This data logger was chosen 

because of its robustness in isolated sites and under difficult environmental conditions (humidity, temperature), its flexibility 

in terms of ports (universal ports), Ethernet port, Secure Digital (SD) memory card slot, large number of possible expansion 25 

modules (CDM-A108: analog expansion module, SDM-SIO1A: RS-232 RS-485 RS-422 expansion modules) enabling to 

control the large number of instruments integrated. This control system has a wireless connection option, allowing to remote 

control the system from the car or from a shelter during bad weather. The type of communication with each instrument is 

shown in Figure 2. The other technical elements necessary for the operation of the platform are a solar panel, a solar regulator, 

a battery and a modem. The electrical diagram of RIPLE is presented in the Appendix A.  30 

The sampling period of the platform is 10 minutes which is a good compromise between saving energy and obtaining a good 

description of water and sediment fluxes temporal variability in mesoscale rivers (Navratil et al., 2011). During the day, data 
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is streamed every hour via a 3G/GPRS modem to the server located in the laboratory in Grenoble and a digital control image 

is also transmitted. The modem is switched off at night to limit power consumption. For sites where a 3G connection would 

not be available, it is possible to switch to a 2.5G connection. It is still acceptable for ASCII data but it should be kept in mind 

that few images can be transmitted in this case. Alternatively, a satellite connection could be considered taking into account 

the higher subscription cost. 5 

3.2 Power supply 

RIPLE is powered by a combination of battery and photovoltaic panel to make it autonomous in energy and installable in a 

wide range of site, even if there is no wired power grid. The power of the solar panel must be checked for each installation 

according to the sunshine on the site (latitude and elevation of the site, orientation and angle of the panel, presence of masks).  

In Table 2, the detail of the power balance is displayed for the case study presented in Section 6. The total consumption of the 10 

platform was estimated at 7758 mA.h/day or 97.7 W.h/day. This calculation takes into account a 10 minutes sampling period 

for most of the instruments except the cameras which are switched on only every hour. Furthermore, the calculation is made 

with a sampling of 24 bottles during a single day. The data logger, which operates continuously, has the largest energy 

consumption, then comes the automatic sampler. Considering an autonomy of the battery of 5 days, which means a period of 

5 days without any solar input, and a battery level that should not fall below 25% of its capacity, we obtain a capacity of 51.7 15 

A.h. Considering an additional safety factor of 65%, the minimum battery capacity is 80 A.h. The selected battery model is a 

Sonnenschein Dryfit Solar Block SB 12 / 100A.h. The Photovoltaic Geographical Information System (PVGIS) proposed by 

the European Commission (http://re.jrc.ec.europa.eu/pvgis/) was exploited to define the power of the photovoltaic panel to be 

used in combination with the battery of 100 A.h. The results showed that a photovoltaic panel of 100 W was sufficient to 

comply with the criteria of charge of the battery (at least 25% of its capacity), even at the heart of winter, when the radiation 20 

is at its lowest. A photovoltaic panel Sunmodule SW 100 poly RIB (100 W) and a solar regulator STECA PR1010 10A/12-

24V were therefore selected. 

3.3 Sensors 

The different instruments integrated in the RIPLE platform are presented in Table 1 and Figure 2. This section aims to provide 

more detailed information on each of the sensors and equipment. 25 

3.3.1 Control camera 

The control camera acts as a webcam, allowing to remotely visualize the instruments and the river. The camera can help to 

make a remote diagnosis in case of malfunctioning of the platform. The selected camera is an AXIS P1427-E based on various 

criteria such as image quality, zoom and focus, power consumption, robustness to the environment and transfer in real time of 

images. The maximal image resolution of the camera is 5 Mega Pixels (MP). Tests in the lab have shown that the image 30 

resolution should be at least 3 MP to allow details to be seen by zooming in the image. The minimum–maximum focal lengths 

https://doi.org/10.5194/gi-2019-33
Preprint. Discussion started: 23 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

8 

 

of the zoom lens are 2.8–9.8 mm. The lens has a fixed aperture of f/1.6. The horizontal angle of view ranges between 27° and 

92°. A wide horizontal angle of view (at least 80° to 100°) is required to get an overview of the site and of all the sensors. It 

means that the entire section of the river on which the platform is located and the adjacent river reach (about ten meters 

upstream and downstream) should be visible in the image. This makes it possible to understand the hydraulic behaviour of the 

river reach under all water level conditions. The control camera is usually installed at the opposite river bank to the staff gauge 5 

in order to see both the staff gauge and most of the sensors. The consumption of the camera is 5 W and it can be turned off 

while it is not taking pictures. The camera supports for HTTP, UDP and FTP protocols. The camera is connected to a Power 

over Ethernet (PoE) injector, which in turn is connected to the data logger via an Ethernet cable (see Appendix A). The PoE 

injector is connected to the power supply (12 V). The data logger controls a relay that supplies power to the PoE injector. In 

terms of protection against solids and liquids, the enclosure of the camera complies with the Ingress Protection IP66. The 10 

camera can operate from -30 °C to 50 °C and with  relative humidity between 10% and 100% (including condensation). 

The triggering of the acquisition is programmed as follows: (i) the camera is started by the data logger via the electrical relay 

(typically once an hour) (ii) the camera takes a picture at the end of a 2 minutes heating period (iii) the camera sends the picture 

to a FTP address via the data logger and also locally records a copy of the image on its 64 GB SD memory card (iv) the camera 

is switched off via the relay.  15 

Ideally it would have been possible to zoom in and even orient the camera remotely. However, these specifications were not 

retained since they would have had a strong impact on the power consumption of the platform (motors within the camera, need 

to keep the modem on when driving the camera) and on the amount of data passing through the network (limited by the GPRS 

subscription). As a result, the camera maintains fixed position, focal length and focus. 

It is necessary to regularly retrieve the images that are stored directly on the SD card of the control camera by connecting to 20 

the camera from a Personal Computer (PC) using the Ethernet link from the RIPLE cabinet during the field visits. This allows 

to retrieve all the control images for subsequently archiving because it is possible for some images to be poorly or not at all 

remotely transferred by the data logger due to the variable quality of the 3G connection. 

 

3.3.2 Large Scale Particle Image Velocimetry digital camera 25 

This camera is dedicated to the Large Scale Particle Image Velocimetry (LSPIV) analysis, an optical technique for measuring 

surface velocity fields from image processing algorithms, analyzing the movement of natural tracers (leaves, floating branches, 

turbulent eddies) present on the water surface using a video of the river. A transect of surface velocity along the cross section 

of the river is extracted and converted to a transect of depth averaged velocity over the vertical using a coefficient that 

commonly ranges between 0.75 and 0.85 (Hauet et al., 2008; Le Coz et al., 2010; Welber et al., 2016). Afterwards, knowing 30 

the cross section geometry, discharge is calculated by integrating depth averaged velocities along the cross section with an 

accuracy of approximately 20% (Welber et al., 2016).  
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The major advantages of this technique are the non-intrusive aspect (sensor out of water) and the automation of the acquisition 

which allows to obtain surface velocity fields without any manpower on site. There is no risk for operators and no risk of 

missing the peaks of the floods, with the exception of night time and technical problems. In this study, the LSPIV technique is 

not used to obtain continuous time series of discharge due to the limitations of the method (see below) and our inability to 

monitor the bathymetry of the section continuously. Alternatively, this technique provides a set of “automatic” discharge 5 

measurements that makes easier and faster the building of a stage-discharge relationship. The main drawbacks of the technique 

are as follows: (i) a manual selection of the video sequences is necessary because some videos are not usable (e.g. lack of 

brightness, sun reflections, presence of dirt or water drops on the lens); (ii) the LSPIV processing steps are relatively time 

consuming and require a specific expertise. These steps include a possible correction (depending on the focal length used) of 

image distortion, orthorectification of images (transformation of the image from fixed objects whose exact GPS location is 10 

known) in order to have the same scale at each point of the images, calculation of surface velocity and flow discharge. These 

steps are performed using the Fudaaa-LSPIV software, a free software available online (https://forge.irstea.fr/projects/fudaa-

lspiv/files) that uses the Fudaa libraries released under the GPL licence; (iii) the method is not applicable during the night. 

The selected camera is an AXIS P1435-LE based on various criteria such as image resolution, acquisition frequency, zoom 

and focus, power consumption, robustness to the environment, possibility of recording on SD card and presence of an 15 

integrated IR projector for tests at night-time. The camera has an adjustable resolution from 160 * 90 to 1920 * 1080 (2 MP). 

Preliminary tests have shown that a minimum resolution of 600 * 400 is required for rivers with widths less than 30 m but 

resolution can be increased if needed. Resolution is more important for the precise positioning of the bitter points than for the 

visualization of the tracers. There is a link between resolution and focal length to be taken into account. The minimum–

maximum focal lengths of the zoom lens are 3–22 mm. The aperture is f/1.4 for focal lengths from 3 to 10.5 mm and f/1.85 20 

for focal lengths from 10 to 22 mm. The horizontal angle of view ranges between 18° and 95°. This wide range of angle of 

view makes it possible to adapt to many sites. For positioning the camera and adjusting the angle of view, the following 

conditions must be respected (Le Boursicaud et al., 2016): (i) both river banks have to be visible in the image so that a complete 

cross-section is monitored; (ii) fixed and permanent markers (tree trunk, boulder, bridge pier, etc.) should be present within 

the images, ideally placed on both sides of the flow; (iii) the targeted cross-section should be close to the cross section that 25 

includes the water level sensor and the staff gauge to have an accurate estimation of the wetted cross section. Furthermore, to 

optimize the results of the LSPIV technique, it is suitable to focus on an area where surface flow is as regular as possible; 

favour a stretch of river with a hard and stable bottom and avoid as much as possible solar reflections, scintillations and cast 

shadows. To meet all these criteria, it is preferable to install the camera at a significant height above the river. This will also 

prevent the use of a low focal length that causes high distortion with this type of lens and is difficult to correct later. 30 

The frame rate is up to 50/60 frames per second (fps) in all resolution. A minimum frame rate of 25 frames per second is used 

in this study. It is important that the interval between two images be constant and accurate. The consumption of the camera is 

5 W and it can be turned off while it is not taking pictures. The camera is connected to a PoE (Power over Ethernet) injector 

(see Appendix A). The PoE injector is connected to the power supply. The data logger controls a relay that supplies power to 
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the PoE injector. In terms of protection against solids and liquids, the enclosure of the camera complies with the Ingress 

Protection IP66. The camera can operate from -30 °C to 55 °C and with a relative humidity between 10% and 100% (including 

condensation). The duration of the video sequences is 10 s. It is a compromise between, on the one hand, the minimum number 

of image pairs required to make a robust calculation and to average turbulent velocities and, on the other hand, the amount of 

data to be stored. The video sequences can be recorded on a SD memory card. A 10-second film at a resolution of 2 MP and 5 

an acquisition rate of 25 fps without further compression typically generates a 30 Mega Bytes (MB) file. A 64 Giga Bytes 

(GB) SD memory card is therefore used in this application. For night measurements, an integrated Infra-Red (IR) projector 

based on highly efficient Light Emitting Diodes (LEDs) with adjustable intensity and angle of illumination is available. 

However, primarily tests have shown that the projector is not powerful enough to illuminate up to the water surface. 

The triggering of the acquisition is programmed as follows: (i) the camera is started by the data logger via the relay for 2 10 

minutes at regular intervals (typically every 30 minutes) when triggering conditions of turbidity and water levels are overcome, 

i.e. during flood (ii) the camera takes a short video (10 seconds) of the river and records the acquisition directly on its 64 GB 

SD memory card (iii) the camera is switched off via the relay.  

The video sequences stored in the LSPIV camera are retrieved regularly during field visits by connecting to the camera from 

a PC using the Ethernet link from the RIPLE cabinet. The LSPIV processing steps will be executed back in the laboratory in 15 

Grenoble. It is important not to change the position, angle of view and focus of the camera in order to easily reproduce the 

LSPIV processing chain. Finally, it was chosen not to use the same camera for the control and for the LSPIV, even if this 

solution had initially been considered, because the installation constraints specific to each of them are generally very different. 

3.3.3 Surface velocity radar 

The surface velocity radar model  RG-30 from Sommer company was selected in this study. It was designed for non-contact 20 

measurement of the surface flow velocity of river and channels. The sensor is mounted above the river, usually installed on 

bridges or river banks using extension arms (Figure 4). The radar sensor requires a low maintenance operation over many 

years. 

The sensor emits a 24 GHz microwave beam (K-band) towards the water surface inclined by an angle of 58 ° from the vertical 

axis. The radar sensor has an opening angle of 12°, hence, the projected area over the water surface of the river is an ellipse. 25 

The measurement of the flow velocity is based on the principle of the Doppler frequency shift. The reflected electromagnetic 

wave from the water surface is received by the antenna, analyzed and converted into surface water velocity. Every 

measurement is space averaged over the elliptical area targeted. The size of the targeted area, which depends on the distance 

from the sensor to the reflecting water surface, increases as water level decreases. The velocities appearing in this area have a 

specific distribution depending on the flow conditions. The velocity distribution is determined with a digital signal processor 30 

via spectral analysis and the dominant velocity in the measurement area is calculated (internal processing developed by the 

Sommer company and not available to the user). Spectra can be output using the RQCommander software (Sommer company) 

by connecting directly a PC to the RG30 using a serial connection (RS485) with no connection to the data logger. These spectra 
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cannot be sent to the data logger, they can therefore only be used to evaluate the quality of the measurements during visits to 

the site. The quality of radar velocity measurements depends on flow surface patterns. As the flow surface gets exposed to 

external disturbance, caused by wind or rain, the system measurements become less reliable. Similarly, when no surface 

patterns are present on the surface, the measurement is biased (Welber et al., 2016). Velocity measurements are possible, if 

the wave height exceeds 3 mm, higher waves improve the reproducibility of the measurement. In the same way, best 5 

measurements are obtained when water is turbid. 

The enclosure of the RG-30 complies with the Ingress Protection IP68. It has been designed to withstand exceptional floods 

with punctual immersion and can operate from -30 °C to 55 °C. The radar sensor can be mounted in a range from 0.5 to 30 m 

above the water surface or river bed. The radar sensor can either be mounted in or opposite to the flow direction. The view 

direction against the flow direction is recommended by the manufacturer. The measuring range is from 0.30 m/s to 15 m/s, the 10 

accuracy is +/- 0.02 m/s and the resolution is 1 mm/s. However, the experience shows that the signal can be noisy at low 

velocity, typically less than 0.5 m/s. 

Every 10 minutes, the measurement is ordered by the data logger using a Serial Data Interface at 1200 baud (SDI12) protocol. 

Every measurement is time averaged over 30 records obtained in a time interval of 30 seconds. In addition to the velocity, a 

quality value of the measurement is provided and recorded. The radar is put on standby by the data logger between each 15 

measurement to limit power consumption. 

3.3.4 Water level radar 

The water level radar CRUZOE manufactured by Paratronic was selected in this study. It is designed for non-contact 

measurement of water level in rivers or channels. The sensor is mounted above the river, usually installed on bridges or river 

banks using extension arms (Figure 4). Flow areas that can be hydraulically disturbed by bridge piers must be avoided. The 20 

sensor should preferably be placed in the same section as the staff gauge.  

The system emits a short microwave impulse (24.125 GHz, K band) towards the water surface and captures the reflected signal. 

The radar sensor has an opening angle of 12°. The radar antenna is both emitting and receiving. The sensor derives the time 

of flight of the impulse. Accounting for the velocity of the wave in the air and applying a correction with respect to the air 

temperature, the radar derives the distance separating the radar from the water surface. There is therefore a blind area of 0.15 25 

m directly under the sensor.  

The radar CRUZOE is easy to use. It does not require any parameter setting. Indeed, the "factory settings" allow its direct use 

in most cases. It is only necessary to convert the output value into an elevation in the staff gauge which is the absolute elevation 

reference of the station. Readings of the staff gauge during field visits or by mean of the images sent by the control camera 

allow to check the validity of the measurement and detect any possible changes in the geometry of the riverbed. 30 

The enclosure of the CRUZOE radar complies with the Ingress Protection IP68. It has been designed to withstand exceptional 

floods with immersion of 100 days under 1 m and can operate from -20 °C to 60 °C. The radar sensor can be mounted in a 

range from 0.15 m to 30 m above the water surface or river bed. The accuracy is +/- 5 mm and the resolution is 1 mm. 
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This radar implements the JBUS protocol on an RS485 link. MODBUS instructions of the data logger allow communication 

with this radar. Every 10 minutes, the measurement is ordered by the data logger. Each logged value is the average of three 

measuring cycles, each lasting 4 s and separated by 5 s. During the measurement cycles, the instrument makes 16 measurements 

per second. In addition, the standard deviation of water level, the ambient air temperature, and four quality indicators of the 

distance measurement are recorded. The radar is put on standby by the data logger between each measurement to limit power 5 

consumption. 

3.3.5 Conductivity and temperature probes 

The Campbell Scientific 547 (CS547) probe with the A547 interface were selected for the measurement of electrical 

conductivity (EC) and temperature of water. The EC sensor consists of three stainless steel rings mounted in an epoxy tube. 

Resistance of water in the tube is measured by excitation of the center electrode with positive and negative voltage. 10 

Temperature is measured with a thermistor since the EC of a solution is highly dependent on the water temperature. Indeed, 

as the temperature of a sample increases, the viscosity of the sample decreases, resulting in increased ion mobility. As a result, 

the observed conductivity of the sample also increases, even if the ion concentration remains constant. To obtain comparable 

results, the measured values must be reported at a uniform reference temperature, generally 25° C. A simple method of 

correction of the effect of temperature on the EC measurement is applied assuming a linear relationship between temperature 15 

and EC. 

The CS 547 probe is resistant to water and corrosion. It is easy to clean. The output signal is analogical (4-20 mA). The range 

of measurement for EC is from 0.005 to 7 mS/cm and the accuracy is +/- 10% of reading for 0.005 to 0.44 mS/cm and +/- 5% 

for 0.44 to 7.0 mS/cm. The range of measurement for temperature is from 0°C to 50°C and the accuracy is +/- 0.4 °C. 

Every 10 minutes, the measurement is ordered by the data logger. Every measurement is time averaged over 30 records 20 

obtained in a time interval of 30 seconds. In addition to the average EC and average temperature of water, the min and max 

values of EC, the standard deviation of EC and the average value of raw EC (the value with no correction for temperature 

effect) are recorded. 

 

3.3.6 Automatic river water samplers 25 

Two types of automatic river water samplers were selected for this study: (i) the ISCO 3700 manufactured by Teledyne, and 

(ii) the PASS developed by IRD (Institut de Recherche pour le Développement) for low-cost applications with adaptable 

number and volume of sampling bottles. As shown in Figure 2, automatic water samplers are useful both for measuring SSC 

and for all subsequent analyses of dissolved and particulate phases (major ions, nutrients, contaminants, microorganisms, 

DNA...). 30 
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(i) The ISCO 3700 portable sampler is commonly used in hydrological, biogeochemical and suspended sediment studies. It 

can contain 24 wedge shaped, 1 liter polypropylene bottles or 24 cylindrical, 350 ml glass bottles. The ISCO 3700 allows to 

perform sequential or composite samples based on time or physical conditions that come from other sensors (e.g. water level, 

discharge or turbidity). In this study, only sequential samples are taken and the sampling is triggered with external impulses 

coming from the data logger. The ISCO 3700 features a patented liquid detector. It is equipped with a peristaltic pump which 5 

delivers accurate, repeatable sample volumes time after time. The system includes an automatic compensation for changes in 

head heights and an automatic suction line rinsing to eliminate sample cross contamination. The pump maintains a suction 

velocity of 0.66 m/s recommended by ISO standard 5667-10 up to 4.5 m of vertical drop. The suction strainer is generally 

located relatively low in the river depth to sample any type of flood and any type of suspended particle.  

Above some turbidity and water level thresholds, the values of which depend on the site and the season, the data logger will 10 

send an impulse to the sampler which will initiate the sampling of a river water sample. If both turbidity and water level 

thresholds continue to be exceeded and if a time interval is reached since the last sampling, the next sample will be collected. 

The time interval between two sampling depends mainly on the site and the season.  

 

(ii) The PASS sampler is a more flexible alternative than the ISCO in terms of the number and shape of its containers. Any 15 

container in plastic, glass or other material with a top opening can be used. This system is controlled by a Campbell CR200 

data logger that controls a pump and 4 stepper motors (2 in X and 2 in Y).  This system was completely developed and tested 

in the M-TROPICS Critical Zone Observatory in Laos (Ribolzi et al, 2017). In this study, the same pump as the ISCO 3700 

portable sampler was tested. 

 20 

3.3.7 Turbidimeters 

Two types of turbidimeters were selected for this study: (i) a standard instrument manufactured by MJK (the Susix sensor) for 

turbidity ranging from 0.001 to 9999 FNU/NTU (equivalent to suspended solids ranging from 0.001 to 400 g/l of SiO2 

according to the manufacturer) and (ii) a turbidimeter developed by IUSTI (Institut Universitaire des Systèmes Thermiques 

Industriels) for the specific case of rivers with very high SSC (up to several hundreds of g/l of SSC). 25 

 

(i) The SuSix sensor uses a multi-beam, pulsed infrared light system (wave length = 860 nm). The beam forming optics for 

multi-angle detection combined with a progressive algorithm using neural logic constitutes a reliable high quality measurement 

of turbidity in a single sensor according to the manufacturer. The turbidity measurement complies with ISO standard 7027. 

The Susix sensor is equipped with a wiper to remove mineral and organic deposits from the optical cells. A SuSix Converter 30 

without display (10 - 30 V DC) on which certain parameters can be adjusted (unit, measuring range) is needed between the 

Susix sensor and the data logger. The standard RS-485 is used for the serial communication between the sensor and the 

converter with a proprietary protocol. An additional Display Unit for SuSix is installed and connected exceptionally for the 
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configuration of the system and the sensor. During normal operation, the converter without display allows the most economical 

use possible in terms of power consumption. The converter outputs a 4-20 mA signal to the data logger. The setting of the 4-

20 mA output range depends on the turbidity range. In the case of a river with high SSC, the following values are used: 4mA 

= 0 FNU, 20mA = 9999 FNU. The SuSix sensor is constructed of stainless steel with chromium-dioxide coating and scratch 

resistant sapphire lenses in a highly polished stainless steel sensor face. The accuracy is +/- 0,1% of reading. 5 

The converter is started by the data logger via the relay every 10 minutes. Every measurement lasts for 30 seconds and records 

30 values. In addition to the average turbidity, the min and max values of turbidity, the standard deviation of turbidity and raw 

value of turbidity in mV are recorded. Finally, the converter is switched off via the relay. The wiper for cleaning the sensor is 

activated when a 12V pulse is received, generated once a day by the data logger. 

 10 

(ii) The turbidimeter developed by IUSTI, so-called “capteur marseillais”, is a sensor made up of a bundle of optical fibers. 

This sensor which was initially designed for the Draix Observatory has shown great robustness, operating on site without 

maintenance since July 1994. Four sensors and their electronics are still in operation today. The operating principle of the 

"capteur marseillais" is described in detail by Bergougnoux (1995), Bergougnoux et al. (1998) and Bellino et al. (2001). The 

sensor head is made of optical fibers with a diameter of 750 µm. There is an emitting fibre in the centre surrounded by two 15 

rings of receiving fibres. The first layer contains 6 receiving fibers, the second layer contains 12 receiving fibers. The sensor 

consists of a stainless steel head to be immersed in the river, a flexible black polyamide sheath to guarantee good mechanical 

protection of the optical fibers, a waterproof housing containing the LED and the two photodiodes to which the two families 

of receiving fibers are connected. An electronic box connected to the fiber optic sensor by 3 BNC connectors of 5 m cable 

allows the amplification of the signals delivered by the two families of receiving fibers. This electronic box, powered by a 0-20 

12V DC supply, is equipped with 2 analog outputs in voltage between 0 and 5V, compatible with the acquisition system. These 

devices are located in the main electronics box of the platform (Figure 3). The gains applied to 0-5V analog outputs must be 

adjusted in relation to the expected turbidity range. The ratio between the signals of the two receiver fibers layers gives a proxy 

of the turbidity. The accuracy of the turbidity measurement depends on the absorption capacity of the particles, it is about 3% 

for suspended sediment concentration (SSC) between 1 and 40% in volume. This sensor is limited to the measurement of high 25 

turbidity values. In addition, it does not have a cleaning system (e.g. wiper or ultrasonic system). It was therefore decided to 

install it above the water surface for low flow conditions so that it would only be submerged during floods. 

Every 10 minutes, the data logger starts up the power supply of the "capteur marseillais" via the relay. Every measurement 

lasts for 30 seconds and records 30 values. The recorded measurements are the average and standard deviation of the output 

voltage of each receiver fibers layers as well as the average and standard deviation of the logarithm of the ratio between the 30 

signals of the two receiver fibers layers. 
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3.3.8 SCAF 

The System Characterizing Aggregates and Flocs (SCAF) is an optical settling column composed of a series of 16 infrared 

emitters/receivers regularly spaced every centimeter (Wendling et al., 2015). The device allows to measure the temporal 

evolution of the vertical profile of optical absorbance during the quiescent settling of a suspension, immediately after its 

sampling from the river. From the slopes of multiple isoabsorbance lines, settling velocity distributions (SVD) of suspended 5 

solids can be calculated, as well as an indicator of the propensity of particles to flocculate (Wendling et al. 2015). The SCAF 

is able to operate for a wide range of SSC (from one to several tens of g/l) and settling regimes (free, flocculated, and hindered 

settling regimes) as illustrated in Legout et al. (2018). The data produced by the SCAF are useful for the understanding and 

the modelling of the suspended sediment transport in rivers.  

 10 

Each unit instrument was designed to be incorporated into sequential samplers. The SCAF was adapted to fit into typical 1 l 

wedge shaped polypropylene bottles used for ISCO 3700 automatic samplers. A round bottle in glass (0.20 m high and 0.035m 

in diameter) receiving the suspension sampled from the river (170 ml) and the associated memory card is housed inside the 1 

l wedge shaped polypropylene bottle. The optical system is composed of 16 infrared (λ =980 nm) emitters and 16 diametrically 

opposed photo-sensors measuring at a frequency of 210 Hz. Currently, up to 8 units can be placed in a ISCO 3700 sampler 15 

dedicated to the SCAF device.  

The SCAF measurements begin after a delay of 20 seconds following the impulses emitted by the data logger to the ISCO. 

The delay corresponds to the time of purge and pumping of the 170 ml of the suspension by the ISCO sampler. Measurements 

are acquired every 100 ms each value being the average of 10 measurements. The SCAF measurements typically last over 5 

hours as shown in Legout et al. (2018). Each SCAF unit is working separately, waiting for the various impulses sequence of 20 

the data logger.  

 

3.3.9 Echo sounder 

The echo sounder Airmar SS510 was selected to be integrated into RIPLE platform. It allows to perform a continuous 

measurement of the distance to the riverbed at one point of the cross section. As a result, changes in the geometry of the cross 25 

section related to erosion/deposition of sediment or bedload transport can be detected at high temporal resolution, especially 

during flood events when geomorphic processes may occur. As shown in Figure 2, the echo sounder provides information on 

the bathymetry of the cross section that is useful for both bedload and hydrometry. The Airmar SS510 sensor, featuring 

embedded micro-electronics, processes depth and temperature signals inside the sensor, transmits data via two separate 

communication protocols. The first is a bi-directional interface compliant with the NMEA-0183 protocol and the second is a 30 

transmit-only interface with a proprietary protocol using RS-485, which is used in this study. The acoustic frequency used by 

the sensor is 235 kHz. The power output from the transmitter is 100 W. There are minimal side lobes for concentrated energy 
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on target. The beam width is 8° and the range of depth is between 0.4 and 200 m with an accuracy of +/-0.03 m for applications 

in mesoscale rivers (depth typically lower than 5 m) with the sensor tilt with angles of less than 25° from the vertical axis. The 

accuracy of temperature sensor is +/-0.05°C. The operating temperature ranges from -5°C to 60°C. The sensor is robust with 

stainless-steel housing and an acoustic window in urethane. The cylindrical shape and the relatively small size (diameter of 

0.007m) of the sensor offers flexibility in types of mounting. An adjustable attachment piece was designed in this study to fix 5 

the echo sounder from a river bank or bridge pier. The mechanical integration of the echo sounder into the river is the main 

problem associated with this instrument as it is potentially exposed to bedload transport and there is not always a hard point 

available to fix it. 

Every 10 minutes, the measurement is ordered by the data logger via a RS-422 serial communication. By default, the echo 

sounder returns the measured depth and water temperature every second. Every measurement is time averaged over 30 records. 10 

The recorded measurements are the average, min, max and standard deviation of depth as well as the average, min, max and 

standard deviation of water temperature. 

Additionally, the RS-485 interface available on the echo sounder allows to retrieve detailed information on each measurement 

made by the echo sounder. To do this, it is necessary to establish a connection from a PC to the echo sounder with a converter 

from FTDI (Future Technology Devices International) USB to RS-485 and open a 921600 baud terminal to display this data. 15 

3.3.10 Hydrophone 

The deployment of hydrophones in the watercourse enables a continuous monitoring of the sounds naturally generated by 

bedload transport in the river (Marineau et al., 2016; Geay et al., 2017a). The hydrophone Colmar GP0190 interfaced with the 

SDA14 acoustic data recorder were selected in this study. The Colmar GP0190 is a preamplified omnidirectional hydrophone, 

for application up to 170 kHz (working band: 5 -170.000 Hz). The hydrophone can work up to 1000 m depth. The body of the 20 

instrument is in stainless steel. The SDA14 acoustic data recorder was designed by the RTsys company for the acquisition of 

acoustic signals from passive or pre amplified hydrophones. It integrates four analog receivers, allowing recording four sound 

sources simultaneously. Its broadband analog inputs allow over 500 kHz (from 3 Hz to over 500 kHz) with a dynamic range 

greater than 100 dB guaranteeing efficient signal to noise ratio. The embedded digital signal processor allows high speed 

acquisition, filtering, storage and pre-processing of the acoustic data. Its power consumption is between 600 mW to 2 W in 25 

active mode (i.e. during measurements) and less than 1 mW in sleep mode. The system is designed to operate in standalone 

mode or towed mode. The standalone mode is used in this study. Configuration of the SDA14 acoustic data recorder is possible 

by connecting a PC via Ethernet and using a web interface.  

 

The SDA14 is controlled by the data logger via an RS-232 link and a 0-5 V output. The triggering of the acquisition is 30 

programmed as follows: (i) the data logger sends a 5V pulse to wake up the SDA14; (ii) the SDA14 starts and automatically 

launches an acquisition (manual mode): a record of 30 seconds at 156 Khz and with a 24 bits resolution is performed. For 

information, the parameters of duration, frequency and resolution of the acquisition can be modified in the data logger 
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acquisition program; (iii) data are stored in files with .wav format; (iv) a fast Fourier transform algorithm is operated by the 

SDA14 to compute the acoustic root mean square power in third-Octave bands; (v) the SDA transmits integrative spectrum 

data (RMS power in third-Octave bands, about twenty points of the spectrum) to the data logger via an RS-232 link, so that 

useful information on the operation of the hydrophone can then be tele-transmitted to the manager of the platform (it would 

not be possible to tele-transmit the .wav files by GPRS or 3G as they are too heavy, i.e. 10 MB for 30 seconds of recording) 5 

(vi) the data logger puts the SDA14 in standby via the RS-232 link.  

 

Concerning step (iii) on data storage, the SDA14 is equipped with a 128 GB SD memory card and a 2 Tera Bytes (TB) hard 

disk drive (HDD) (ext4 format). In order to limit the number of on/off times of the HDD (which would severely limit its 

lifetime), acquisitions are first recorded on an SD memory card and once it is full, the HDD is turned on to empty the SD card. 10 

This is called the "hybrid" mode. There is an RS-232 command returning the available memory in the SD card and in the HDD. 

The data logger will send an alert when the hard disk is almost full. The SDA14, the SD memory card and the HDD are located 

in the main electronics box of the platform. The transfer time from the 2 TB HDD to a PC would be far too long to be done in 

the field. A second HDD was therefore purchased to allow rotations to be done: when a disk is almost full (the state of the 

storage of the HDD is visible in the RIPLE interface), it is simply replaced by the second HDD previously emptied, and the 15 

transfer of the full HDD can be done in the laboratory. 

 

The hydrophone is housed in a polyethylene tube next to the other immersed instruments (turbidimeter, conductivity and 

temperature probes) which are not switched on during hydrophone acquisitions. 

 20 

3.4 Remote data transmission 

The 2G/3G modem Erco&Gener GenPro 325e was selected in this study as it allows the data logger to upload data and images 

to the FTP server of the laboratory in Grenoble and also to send alert SMS (text) messages. 2G antennas are no longer 

maintained by access providers in France, so we opted for a modem that can use 3G to remotely transmit data. A SIM 

(Subscriber Identity Module) card linked to an M2M (Machine to Machine) subscription is inserted into the modem to ensure 25 

its operation.  

 

The solution of the private IP address was selected in this study. By making this choice, we accept the dependence on the 

Loggernet software of Campbell Scientific, which makes it easy to manage the data logger and set up automatic collections of 

data. Having a private IP address avoids the possibility of being hacked by a "robot" circulating on the net, which could cause 30 

a very significant increase in expenses related to the GPRS subscription. In France, Internet service providers only provide 

dynamic IP addresses. The Loggernet software was configured to establish a connection with a station whose address is 

dynamic by accepting the possibility of losing temporarily the connection because of a change in IP address. 
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All the procedure for the data collection and data transfer to the remote FTP server is presented in Figure 7. The modem queries 

the Internet service provider to obtain a private IP address. The data logger is then connected to the 2G/3G network. The data 

logger contacts the Loggernet server via port 6786. The Loggernet software running on the Loggernet server recognizes the 

data logger with its Pakbus number (225 for RIPLE), the connection between the data logger and the Loggernet server is then 5 

established. It is then possible for the manager of the platform to communicate remotely with the data logger. The Loggernet 

software can manage different stations, the distinction between different data loggers is made by a unique internal Pakbus 

address assigned to each station and not by IP address or domain name. In case of a change of IP address, a connection failure 

occurs until the data logger automatically sends the next tag to the Loggernet server and can communicate once again with it. 

The IP address is changed on average every 24 hours and also when the modem starts up. It is unlikely that the change of IP 10 

address occurs within a few hours after the modem is started. As long as the connection is established, the data logger sends 

its data tables and control images to the FTP server of the laboratory using FTPClient instructions. 

 

The advantages of the selected solution are (i) the possibility to use a classic GPRS modem (low energy consumption and low 

cost), (ii) the management of data flow in case of transmission errors, (iii) the possibility to have a 2-way communication link.  15 

The shortcomings are (i) the dependency to the Loggernet package proposed by Cambpell Scientific, (ii) the likelyhood to lose 

temporarily the connection if the IP address is changed. 

 

The CR6 turns the modem on during the day and off at night to limit the power consumption of the platform. Therefore, no 

data or alerts can be transmitted during night. 20 

 

3.5 Housing 

RIPLE platform is organized in several parts: (i) the control block, (ii) submerged instruments and (iii) non-intrusive 

instruments.  

(i) The control system (CR6, CDM-A108, 4 SDM-SIO1A), the power supply (battery, solar regulator, 4 relays, 2 PoE 25 

injectors), the instrument electronics boxes (SuSix turbidimeter interface, power supply of the “capteur marseillais”, A547 

interface of the conductivity probe, SDA14 card of the hydrophone) and the remote transmission module (modem, antenna) 

are grouped in an electrical box (dimensions H = 1.40 m, L = 0.80 m, D = 0.46 m) located on the the river bank at a height 

sufficient to avoid being flooded (Figure 3). Everything is grouped into a single element to facilitate the installation and 

relocation of RIPLE to other sites. In addition, the ISCO automatic sampler is placed next to the electrical box and the solar 30 

panel is fixed on a mast or against the structure of a bridge. 
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(ii) Three main submerged instruments (conductivity probe, SuSix turbidimeter, hydrophone) are housed in polypropylene 

tubes, 3 m long and 0.10 m in diameter, fixed to the bank of the river, parallel to each other. These tubes are clamped between 

metal profiles at 3 points (top, middle and bottom of the tubes). The metal profiles are themselves anchored in the bank of the 

river (bedrock or large blocks) using threaded rods. The 3 polypropylene tubes are perpendicular to the direction of the flow 

in the river (see Figure 4). The instruments are installed within the tubes using PVC pieces of the inner diameter of the tubes 5 

that are machined to allow the sensors to be inserted. These PVC pieces, connected to the top of the pipes by 4 mm diameter 

threaded rods, prevent the movement of the sensors inside the pipes, allow the sensors to be easily removed without human 

intervention in the river and allow to put the sensors back to the same location. The lower end of the tubes is at a level low 

enough to ensure that the instruments are submerged during low water periods. 

In addition, the "capteur marseillais", which is composed of a waterproof box including the LED source and photodiodes and 10 

a 1.5 m long sheath including the optical fibers, are fixed to the outside of the polypropylene tubes using cable ties. The 

dimensions of the box and the length of the optical fibers mean that this instrument cannot be housed inside the polypropylene 

tubes and the optical fibers heads cannot be lowered to the lower end of the tubes. The measurement is made at a higher level 

in the water column than the SuSix turbidimeter. The flexible plastic tube that allows ISCO to collect water and suspended 

sediment from the river is also attached to the polypropylene tubes using cable ties. The end of the flexible tube is positioned 15 

very close to the SuSix turbidimeter, at the same level in order to have a maximum correspondence between the two 

measurements. The other submerged instrument that is not installed within the polypropylene tubes is the echo sounder. This 

one has a specific support that has been designed to be fixed to a vertical wall (bridge pier for example) by adjusting the angle 

of orientation of the instrument with respect to the vertical. Finally, a staff gauge is installed in the cross section near the water 

level radar. 20 

 

(iii) The four non-intrusive instruments used for hydrometric purposes are fixed on masts for both cameras (control, LSPIV) 

and on extendible mounting brackets for both radars (water level, water surface velocity) as shown in Figure 4. The brackets 

are easily movable to facilitate radar maintenance. These devices (masts or mounting brackets) are attached to the structure of 

a bridge for example. The velocity radar should preferably be placed in the center of the cross section, in the zone of highest 25 

velocities. The cameras must be located on the banks at a level high enough to see the full width of the river and part of the 

banks. 

4 Control software 

The data logger controlling program is written in CRBasic programming language, the proprietary format of Campbell 

Scientific. As shown in Figure 5, there is a main program that reads a configuration file, initializes the instruments and controls 30 

two families of subprograms: those which are active every 10 minutes or every hour.  
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The subprograms that are active every 10 minutes control all instruments except the control camera. When the water level and 

turbidity conditions are exceeded and the time since the last sample exceeds a certain interval set by the user, the first automatic 

sampler is launched. A SCAF measurement is also started, preferably using a second automatic sampler dedicated exclusively 

to SCAF measurements. Similarly, when a water level condition is exceeded and the time since the last video shot exceeds a 

certain interval set by the user, the LSPIV camera records a film sequence. The other subprograms that are called at an hourly 5 

frequency are only active during day time. This concerns the operation of the modem, image capture by the control camera, 

image and data transmission, SMS message sending in case of alerts (low battery voltage, full ISCO sampler, etc.). 

 

RIPLE platform is interfaced with the rest of the world via the FTP server, which allows exchanges between the interface (see 

section 5) and the platform as shown in Figure 6. The procedure for the operation of data storage and transfer can be illustrated 10 

by Figure 7. 

 

Concerning specifically the control camera, we use the data logger as an FTP server, on which the camera places an image 

every hour. The data logger then transmits this image to the FTP server of the laboratory in Grenoble. Since the Loggernet 

software is not able to automatically collect files other than data tables, the data logger must therefore perform PUSH on the 15 

FTP of the laboratory server to retrieve the control images (the data logger can be both server and FTP client). The advantage 

of this method is that a traditional GPRS modem can be used. A drawback is that the images have to pass through the data 

logger storage memory but this does not have much impact on performance and consumption of the control system. 

5 User interface 

A solution with a remote web server was chosen, i.e. it is the server in the lab that generates a web page from the collected 20 

data. The RIPLE user interface is developed in R using the Shiny package (JavaScript elements for web interfaces) and 

dygraphs (graphics). An executable file for this application has been generated to display the results on a dedicated web page  

to avoid having to install RStudio and to have access to the interface from any terminal equipped with an internet connection. 

5.1 Data visualization 

By default, the interface starts on the "Data visualization" menu, in which all the data transmitted by RIPLE platform can be 25 

seen (the display may take a little time due to the amount of data). It is possible to choose the type of time series to display: 

- Fixed time series (default): these are 4 graphs displaying the more common data as shown in Figure 8, the water level being 

present in each of these graphs as a common reference. There is a first graph with water level and surface water velocity, a 

second graph with water level and turbidity, a third graph with water level and water temperature, a fourth graph with water 

level and water electrical conductivity. These graphs gives an overview of how the station works for the basic variables. 30 
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- Customized time series (optional): there is a single graph on which it is possible to add two curves on each y axis, among all 

the variables transmitted by RIPLE platform as illustrated by Figure 9. 

All the data that can be displayed is read from the Riple_DATA.txt file (Figure 6) that is located on the FTP server in Grenoble, 

i.e. the file uploaded by RIPLE platform. 

 5 

For each type of time series, it is possible: 

- To modify the time window to be displayed. There are four options: the last day, the last week, the last month or a manual 

selection of start and end dates. 

- To download the displayed data in an ASCII file in the same format as the one originally produced by the CR6. It is possible 

to select either only specific variables or all variables as in the file uploaded by RIPLE. 10 

5.2 Control images 

A second menu “Control images” allows to remotely view the RIPLE platform by displaying the control images that are stored 

on the FTP server in the laboratory. For example, it allows to visualize the hydraulic behaviour during floods and at low flows 

(see Figure 10). Only fully transmitted images are accessible by default. It is still possible to consult all the control images 

later on, after having retrieved manually the control images during field visits. All control images are thus stored in an archive 15 

directory independent on the FTP server. 

5.3 Supervision 

The “Supervisions menu” allows to remotely control the proper functioning of the platform. The data displayed in this menu 

are read from the Riple_SAV.txt file that RIPLE uploads to the FTP (Figure 6). These are technical variables concerning the 

control unit (reference identifiers, OS version, internal battery voltage, PakBus address), the name of the current program of 20 

the control unit, the status of the power supply and temperature in the electrical cabinet of RIPLE platform, the data collected 

(number of measurement, date and time of measurement, watchdog errors, skipped scans, error with the SDA14 card, status 

of the SD memory card and of the HDD of the hydrophone). 

For example, it is possible to check the status of the power supply of the platform by looking at the battery voltage time series 

(Figure 11). The temperature measured by the data logger, i.e. the temperature inside the cabinet, must also be controlled, 25 

especially in winter (be careful if air temperature is below -10 °C) and in summer (be careful if air temperature is above 45°) 

because the battery is also present in the electrical box. Based on these thresholds, a SMS alert is sent and the fan is triggered. 

In addition, if a “skippedScan error message” appears, it means that the measurement time of some instruments should be 

reduced to allows the data logger to perform all the measurements in one cycle. 

https://doi.org/10.5194/gi-2019-33
Preprint. Discussion started: 23 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

22 

 

5.4 Configuration 

Some parameters of the RIPLE platform can be configured remotely, from the "Configuration menu” of the interface (see 

Figure 12). This menu is only used by RIPLE's main "administrators". To modify other variables, e.g. duration of a scan, 

measurement time on each instrument, it is necessary to modify the Campbell program of the data logger. It is also possible to 

do it remotely but it is preferable that it remains exceptional. 5 

6 Case study 

To date, RIPLE platform has been tested on two rivers of the French Alps: the Romanche in Bourg d'Oisans (45.1158°N, 

6.0134°E, elevation 710 m) from September 2016 to July 2018 and the Galabre in La Robine sur Galabre (44.1586°N, 

6.2360°E, elevation 680 m) since October 2018. Photos of the installation sites are shown in Figure 13. 

The first site corresponds to a large embanked river typical of anthropized alpine valleys: presence of dams upstream and dikes 10 

giving rise to a very rectilinear river. The width of the river is about 30 m, the depth is typically between 0.5 and 1 m at low 

flows. SSC typically changes between 0 and 10 g/l all over the year. The platform has benefited from the existing hydrometric 

station managed by the Electricité De France (EDF) company, including regular discharge measurements and a reference 

stage-discharge rating curve. 

The second site corresponds to a more pristine river in the Southern Alps where sediment loads can be high (max SSC ~ 360 15 

g/l) (Esteves et al., 2019), due to the presence of numerous active badland areas. The width of the river is about 10 m, the depth 

is typically 0.1-0.2 m at low flows. The station also benefited from a hydrosedimentary station located 2,5km upstream (Esteves 

et al., 2019), managed since 2007 by the IGE and belonging to the Draix-Bléone observatory and the research infrastructure 

OZCAR (Gaillardet et al., 2018).  

During these two years of testing on two sites, the platform has worked properly, recording a large data set that will be of great 20 

interest for the understanding of sediment transport processes in alpine rivers. The use of RIPLE data is in progress. For 

example, a current work is being done to combine radar surface velocity measurements with LSPIV velocity measurements to 

estimate the mean channel velocity and identify the moments when the geometry of the river is significantly modified by 

deposition and erosion processes. 

7 Conclusions and outlook 25 

The characteristics of the presented platform dedicated to monitoring erosion in mesoscale rivers result from a fifteen-year 

expertise in hydrometric and sediment measurements within the IGE laboratory and more broadly within the research 

laboratories in the Grenoble and Lyon communities and local companies such as EDF. The platform has been designed to be 

applied preferably to rivers in mountainous areas, but much of the system is transferable to lowland rivers. Through this study, 

emphasis was put on water discharge as this elementary variable is not trivial to monitor in situ. Further developments are 30 
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needed to improve this measurement, especially in rivers where geomorphological processes are very active. A future objective 

is to produce methods for accessing continuously and directly to discharge data, with a very limited use of gauging and human 

resources. In addition to the set of measurements provided by the presented platform, a major challenge for the next decade, 

will be the development of methods allowing to monitor continuously the bathymetry within the river cross section. 

 5 

For fine sediment transport, the generalization of the use of the turbidimeter associated with automatic river water sampling 

for the calibration of turbidity-SSC relationships has allowed a fairly rapid extension of the monitoring of suspended sediment 

fluxes during the last decades. However, it is still necessary to improve the spatialization of this measurement within the river 

cross section, particularly in the case of coarse silt or sandy sized particles, which often do not have a homogeneous 

concentration profile within the water column but rather an increasing concentration profile with depth. It seems necessary to 10 

develop non-intrusive technologies for the measurement of suspended sediment fluxes to increase the robustness of the 

measurement and reduce in situ maintenance. Furthermore, the measurement of the physical characteristics of particles is 

important because it provides information on transport capacity and deposition processes, on the spatial origin of eroded 

particles and indicates the propensity of particles to transport adsorbed substances (nutrients, metals, organic products, micro-

organisms, micro plastics, etc.). These measurements must be performed under conditions that most closely resemble those of 15 

the in situ environment to avoid subsequent flocculation/disaggregation processes.  

 

Concerning coarse sediment transported by bedload, recent metrological developments make it possible to start considering 

continuous and high frequency monitoring of fluxes and physical characteristics of particles (size distribution) using proxies 

and inversion models. Passive acoustic and passive seismic methods are experimenting on-going developments. The first 20 

results point to a promising future, although the difficulty lies in validating these methods. Indeed, in situ sampling of 

transported coarse particles is difficult to carry out and cannot be automated. In this study, the choice was made to integrate 

passive acoustics technology. These measurements of bedload correspond to a strong demand from the scientific community 

and more generally from the society.  

 25 

Finally, water quality is partially taken into account in the RIPLE platform through the measurement of electrical conductivity 

and water temperature and also through the automatic sampling of river water which allows, after a filtration step in the 

laboratory, to carry out any type of analysis from the filtered phase, so-called dissolved phase (chemical, microbiological, 

DNA, etc.). Automatic sampling makes it possible to collect water during flood periods or during low water conditions. The 

collected samples are also useful for performing analyses (chemical, microbiological, DNA, etc.) on the particulate phase. 30 

 

In the end, we want to show that RIPLE platform is a unifying tool that contributes to multidisciplinary studies on 

understanding the functioning of the Critical Zone. This is the way this tool has been designed and will continue to evolve. 

RIPLE platform is in constant evolution: new innovative instruments are integrated when they have been validated and are in 
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a development phase that allows their integration. Recent examples of integration are the SCAF and the hydrophone. RIPLE 

is an autonomous and low-power instrument platform, which transmits real time data to a remote server and can be controlled 

remotely enabling to fully exploit its potential. The visualization software interface that has been developed allows an easy 

follow-up of all measured variables and a beginning of data quality control. 

 5 

The CRITEX project has made it possible to purchase an aquatic drone, the FoRiver 1 manufactured by River Drone, which 

offers the opportunity to plan spatial campaigns of certain variables at “hot moments” (low water level, flood, hydraulic 

flushing). The drone can thus carry instruments on board to perform measurement campaigns of the same variables as those 

measured by RIPLE platform at other points in the cross section or at other points in the profile along the river at different 

moments. 10 
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Tables and Figures 

 

Table 1: Selection of instruments integrated in RIPLE paltform. The “ni” exponent in the column “Instrument name” means non-

intrusive instruments. 5 

 

 

IUSTI is an acronym for Institut Universitaire des Systèmes Thermiques Industriels, IRD is an acronym for Institut de 

Recherche pour le Développement, IGE is an acronym for Institut des Géosciences de l’Environnement 

 10 

 

 

 

 

 15 

 

 

 

 

Compartment Variable Physical principle of measurement Instrument name Manufacturer
Integration in RIPLE           

[1: yes, opt: optional]

Water level Time of fl ight radar cruzoe ni Paratronic 1

Surface water velocity Doppler radar RG30 ni Sommer 1

Surface Velocity field Camera + LSPIV* analysis P1435-LE ni Axis 1

Conductivity and Temperature of water Conductivity probe CS547 Campbell Scientific 1

Automatic water sampling (24 x 1 l iter 

polypropylene or 350 ml glass)
3700 Teledyne ISCO 1

Automatic water sampler (variable size and 

number of bottles)
PASS IRD opt

Turbidity Optic backscattering (standard) susix MJK 1

High Turbidity (concentration  10 -> 500g/l)
Optic backscattering (laboratory 

development)
capteur marseillais IUSTI Marseille 1

Automatic water sampling (24 x 1 l iter 

polypropylene or 350 ml glass)
3700 Teledyne ISCO 1

Automatic water sampler (variable size, 

number and material of bottles)
PASS IRD opt

Automatic water sampling (24 x 1 l iter 

polypropylene or 350 ml glass)
3700 Teledyne ISCO 1

Automatic water sampler (variable size, 

number and material of bottles)
PASS IRD opt

Fall velocity optical absorbance SCAF ** bottles IGE opt

Acoustic power Hydrophone (passive acoustic) GP0190 Colmar 1

River bed elevation Echo sounder (Acoustic time of fl ight) echorange Airmar 1

* LSPIV : Large Scale Particle Image Velocimetry

 ** SCAF : Suspended aggregates and flocs caracterisation system 

bedload

hydrometry

water quality
Properties of the dissolved phase

suspended sediment

Suspended sediment concentration

Properties of the particulate phase
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Table 2: Power balance of instruments integrated in RIPLE platform. 

 

 5 

 

System

Number of 

measurements 

per day

Operating 

consumption

[mA.h/day]

Standby 

consumption

[mA.h/day]

Integration in current 

version of RIPLE

[0: no, 1: yes]

Total daily 

consumption

[mA.h/day]

Total daily 

consumption

[W.h/day]

Campbell CR6 x 1560.0 780 1 2340.0 29.5

Module CDMA-108 x 240.0 187.2 1 427.2 5.4

Modem 1 193.7 10 1 203.7 2.6

Water level radar 144 18.0 0 1 18.0 0.2

Water velocity radar 144 132.0 22.8 1 154.8 2.0

LSPIV camera 24 333.3 0 1 333.3 4.2

Control camera 24 333.3 0 1 333.3 4.2

IQ Plus 144 300.0 48 0 0.0 0.0

Conductivity probe 144 12.0 0 1 12.0 0.2

S::CAN 144 840.0 108 0 0.0 0.0

Turbidimeter 144 664.0 0 1 664.0 8.4

Optic fiber turbidimeter 144 540.0 0 1 540.0 6.8

Aquascat 0 100.0 1.9 0 0.0 0.0

Water sampler 0 1600.0 165.2 1 1765.2 22.2

SCAF 4 666.7 0 0 0.0 0.0

Hydrophone 144 400.0 86.4 1 486.4 6.1

Echo sounder 144 480.0 0 1 480.0 6.0

TOTAL 8413.0 1409.5 7758 mA.h/day 97.7 W.h/day
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Figure 1: Diagram of the functions to be taken into account for the design of the RIPLE platform. 
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* LSPIV : Large Scale Particle Image Velocimetry   

** SCAF : Suspended aggregates and flocs caracterisation system 

 5 

Figure 2: RIPLE platform architecture. 
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Figure 3 : Photos of the box that houses all the electronics of the platform and the battery: (a) outside view where we also see the 

solar panel and the ISCO automatic river water sampler, (b) inside view. 

 

 5 

Electronic cabinet, ISCO sampler, PV Inside the electronic cabinet

(a) (b) 

https://doi.org/10.5194/gi-2019-33
Preprint. Discussion started: 23 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

35 

 

 

Figure 4: Photos illustrating the deployment of instruments in situ (a) submerged instruments (conductivity probe, turbidimeters 

and hydrophone) housed in the polypropylene tubes anchored to the river bank, (b) water level and surface velocity radars supported 

by extensible brackets fixed to the bridge parapet, (c) control digital camera and LSPIV digital camera fixed at the top of a mast 

located on a river bank. 5 
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Figure 5: Architecture of the main program that controls the RIPLE platform 
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Figure 6: Diagram describing the links between the RIPLE platform, the remote server and the user interface 

 

The “Riple_IP.txt” file contains the current IP address (public and dynamic) of the RIPLE platform. 

The “Riple_DATA.txt” file contains the data from each instrument of the RIPLE platform. 5 

The “Riple_SAV.txt” file contains the data that enable to remotely control the proper functioning of the RIPLE platform. 

“imageControle_Date.jpg” is the image file that data logger puts them on the FTP. A copy of the image is saved locally on the 

camera in order to make a reliable archiving of the images (in case of malfunction of the remote transmission for example). 

“Config.ini” is the configuration file of the platform, which is generated when the user wants to change the configuration of 

the platform from a remote location using the RIPLE interface (section 5). A backup of the old configuration is made in the 10 

“Config_old.ini” file. 
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Figure 7: Diagram of the data collection and data transfer to the remote FTP server 

0. The data logger continuously retrieves data from the instruments integrated in RIPLE and stores the result in a table. 

1. The data logger supplies power to the control camera for a few minutes, which automatically takes an image when it 

starts up. 5 

2. The camera, configured as an FTP client, places the image on the data logger, which includes an FTP server. 

3. The data logger supplies power to the GPRS modem. 

4. The modem queries the Internet service provider to obtain a private IP address. 

5. The data logger is then connected to the 2.5G, 3G, 4G network. 

6. The data logger contacts the Loggernet server via port 6786. 10 

7. The Loggernet software running on the Loggernet server recognizes the data logger with its Packbus number, the 

connection is established. It is now possible for the manager of the platform to communicate remotely with the data logger. 

8. The data logger sends its data tables to the FTP server of the laboratory (FTPClient instruction). 

9. The data logger transmits the control image to the FTP server of the laboratory (FTPClient instruction). 

10. The data logger switches off the modem after a few hours. 15 

11. A web page created under Shiny (R package) is updated after each new data transmission. 
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 5 

Figure 8: Screenshot of the “data visualization menu” of the user interface in the default mode. Four time series graphs are displayed 

from top to bottom: (1) water level and surface water velocity, (2) water level and turbidity, (3) water level and temperature, (4) 

water level and conductivity 

 

https://doi.org/10.5194/gi-2019-33
Preprint. Discussion started: 23 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

40 

 

 

 

Figure 9: Screenshot of the “data visualization menu” of the user interface in the personalized mode. A graph can be created with 

two variables on the 1st y-axis, two variables on the 2nd y-axis and in abscissa the time. In this case, the water level, water surface 

velocity and distance measured by the echo sounder are displayed. 5 
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Figure 10: Screenshots of the “images of control menu” of the user interface at two dates: (a) 06/11/2018 12:00 (UTC) for low water 

conditions, (b) 19/12/2018 10:00 (UTC) during a flood 

 5 

(a) 

(b) 
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Figure 11: Screenshots of the “supervision menu” of the user interface. A time series graph is displayed with minimum and maximum 

battery voltage on the 1st y-axis, min and max air temperature on the 2nd y-axis 5 
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Figure 12: Screenshots of the “configuration menu” of the user interface. All the external variables of the program that can be 

modified are given below. 

 “Numéros de tel pour alertes SMS”: List of phone numbers that receive SMS alerts sent by RIPLE platform. 

“SEUIL_ALERT_PTEMP”: Threshold on the temperature of the data logger [in °C] above which an SMS alert is sent. 5 

“SEUIL_ALERTE_BATTERIE”: Threshold on the battery voltage [in V] below which an SMS alert is sent. 

“SEUIL_VENTILO_PTEMP”: Threshold on the temperature of the data logger [in °C] above which the fan is switched on. 

“SEUIL_VENTILO_BATTERIE”: Minimum battery voltage [in V] to allow the fan to work. 

“HEURE_MODEM_ON”: UTC time at which the RIPLE modem turns on each day, allowing data and images to be 

transmitted remotely. 10 

“HEURE_MODEM_OFF”: UTC time at which the RIPLE modem turns off to limit power consumption. 

“INTERVALLE_SMS”: Time interval [in hours] between two SMS alerts. 

“SEUIL_TURB_ACQ_LSPIV”: Turbidity threshold [in FNU] above which the LSPIV digital camera takes a video. 

“SEUIL_H_ACQ_LSPIV”: Water level threshold in [mm] above which the LSPIV digital camera takes a video. 
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“INTERVALLE_LSPIV”: Time interval between 2 consecutive LSPIV video acquisitions [in min]. Must be a multiple of the 

scan time (10 minutes in this study). 

“HAUTEUR_CRUZOE”: difference in elevation between the 0 of the staff gauge and the position of the radar [mm]. The 

water level is then calculated as the difference between “HAUTEUR_CRUZOE” and the distance measured by the radar.  

“INTERVALLE_CLEAN_TURBI”: Interval between two consecutive cleanings of the turbidimeter using a small brush [in 5 

hours]. 

“SEUIL_TURB_PRELEV_ISCO”: Turbidity threshold above which the automatic water sampler starts its regular sampling 

[in FNU]. 

“SEUIL_H_PRELEV_ISCO”: Water level threshold above which the automatic water sampler starts its regular sampling [in 

mm]. 10 

“INTERVALLE_ISCO”: Time interval between two samples [in min]. Must be a multiple of the scan time (10 minutes in this 

study). 

“SEUIL_MEM_HDD”: Threshold of the remaining memory on the hydrophone's HDD below which a collection must be 

planed [in GB]. 

 15 

The button « charger la configuration actuelle » triggers the reading of the "config.ini" file on the FTP by the data logger. This 

file contains the values of the variables currently loaded by RIPLE paltform. 

The button « charger l’ancienne configuration » triggers the reading of the file "config_old.ini" on the FTP by the data logger, 

in which there is a backup of (n-1) configuration of RIPLE platform (in case of false manipulation). 

The button « modifier la configuration » [ADMIN]: after entering the password, it allows to edit the value of each variable to 20 

change the RIPLE platform configuration. 
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Figure 13: Overview (from downstream) of the river section where the RIPLE platform is located on a) the Romanche in Bourg 

d'Oisans (45.1158°N, 6.0134°E, elevation 710 m) and b) the Galabre in La Robine sur Galabre (44.1586°N, 6.2360°E, elevation 680 

m). 5 

(a) 

(b) 
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Appendix A: the electric diagram of RIPLE platform 
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