
Reviewer 1:

The paper Mathematical foundation of Capon’s method for planetary magnetic
field analysis provides the underlying formalism for applying Capon’s method 
to planetary magnetic fields and illustrates it with simulated data relevant for 
BepiColombo mission. While this is a valuable contribution to the field, a 
number of points need to be addressed before publication.

1. Extension of Capon’s method to planetary magnetic fields. As indicated in 
the first and last paras of Section 3, L73–75 and L202–206, the paper 
generalizes the Capon method, previously used for the analysis of wave data. 
This is a major result that could be emphasized better, perhaps in a separate
discussion section. This section could include a closer analysis of the case in 
the paper as compared to the wave case, by referring to Motschmann et al. 
(1996).
The discussion section could also detail the key principle(s) underlying the 
method, like maximum likelihood / minimum variance, along the line of Narita
(2019). The divergence free feature of the magnetic field could be discussed 
on top, as in Motschmann et al. (1996).

Reply: Agreed. We added a section dedicated to the connection of the Capon 
method to other inversion methods (e.g., maximum likelihood, least square fit)
and highlighted the difference from the wave analysis method (Motschmann et
al., 1996) on p. 16. We also added a discussion about the divergence-free 
nature of  the magnetic field (p. 2, ll. 45--52).

Related:
• L166-168: I am not sure I understand the text here, even though I could 
essentially follow Eqs. 30 to 41. Eventually, the underlying model makes the 
main contribution to the data (e.g., in the test application of Section 5). I 
guess this ‘minimal contribution’ has rather the meaning of Motschmann et al.
(1996), where the filter w absorbs all the energy not associated with k (here 
not associated with the parametrized field) and leaves the part related to k 
undistorted (here the part related to the parametrized field). Same issue at 
L256.

Reply: Surely it is possible that the underlying model makes the main 
contribution to the data. But the distribution of the parameterized and the 
non-parameterized parts is unknown. Therefore, we stay conservative and 
assume safely that a large part of data is influenced by the noise and non-
parametrized signals. (Explanation added on p. 7, l. 182 f)

• L200-201: Is this expression derived by Narita (2019)? Or could be derived 
by further processing of the maximum likelihood estimator? (e.g., in the 
suggested discussion section?)

Reply: Yes, Narita (2019) derived the expression for Capon‘s estimator by 
regarding the likehood function as nearly Gaussian (particularly around the 
peak of the likelhood function).



2. Illustration & Validation. In view of upcoming BepiColombo data, the 
authors chose to illustrate the method with simulated observations of Mercury
magnetic field. While this is certainly helpful to prepare BepiColombo, I 
wonder if it is also the best test bed for the method. Earth magnetic field is 
known much better, at various altitudes – such that the weight of the external 
field and its influence on the results could be analyzed too. Including an 
example at the Earth, or at least a brief discussion of this validation 
possibility, would be more than welcomed.

Reply: The application of Capon‘s method to the analysis of Mercury‘s 
magnetic field has been emphasized as an example. Surely, the test against 
the Earth' magnetic field would be a good alternative. But such an analysis 
would have the size of a separate paper and it could not be pressed in a 
paragraph. The simulated data have the advantage that the ideal solution is 
known and thus a doubtless evaluation is possible. (Discussion added on p. 15,
ll. 336--339)

Regarding the test exercise of Section 5, Table 1 shows that the largest errors
are associated with g21 and, to some extent, with h21 . Is this by chance, or 
related to some systematics?

Reply: The deviation of these coefficients is related to the underlying model 
and therefore it is systematic noise. (Discusson added on p. 15, ll. 352--354).

3. Technicalities. Considering the target audience of the journal, different to a 
good extent from the signal processing community, the mathematical 
language of the paper may prevent the optimal transmission of the message. 
Additional explanations may help, inserted in the text or collected in an
Appendix – when detailing the math would perturb the flow too much:

• L69-71: Please clarify this sentence, possibly including an example.
Reply: For example, when the magnetic field data are known on a dense grid 
in the vicinity of the planet, the Gauss coefficients can be estimated
via integration. But in the case of a limited data set those integrals cannot be 
evaluated. (Sentence added on p. 3, ll. 78--80)

• L93-97: The intuitive introduction of the filter matrix w via Eq. 8 s a bit 
confusing, since eventually the non-parametrized (external) part of B does not
show up in the g C formula, Eq. 41.
Reply: Eq. 8 has been written down, since it is the first intuitive idea to solve 
the inverse problem. An explanation that the non-parameterized parts <v> 
are unknown and have to be truncated by w has been added on p. 4, l. 104.

• Eqs. 9 and 10 fall pretty much out of the blue. The use of M and P becomes 
clear later, but some clarification would be good already at this point.
Reply: Agreed. We added motivation on page 4, l. 109.



• L106-110: Please detail why the determinant vanishes (even though it may 
look straight), how does statistical average prevent this, how is statistical 
average achieved.
Reply: It is a mathematical nature. The calculation of vanishing determinant 
of the outer product is shown in Appendix A on page 18. The statistical 
average is achieved by averaging over several numbers of measurements 
(added on p. 5, l. 119)

• L127: Please indicate also the second order moments.
Reply: Maybe the structure of the sentence was confusing, but <g o g> are 
the second order moments. We changed the order of the sentence and the 
equation accordingly (p. 6, l. 140).

• Eq. 21: Please explain why 2<Hg> o <v> and not <Hg> o <v> + <v> o 
<Hg> (given that, in general, the external product does not commute).
Reply: The outer product commutates in this special case because <Hg> and 
<v> have the same dimension (added on p. 6, l. 156).

• Eq. 27 and L154: Please explain why this is not enough to uniquely 
determine w.
Reply: It is because the parts that have to be truncated are unknown. (added 
on p. 7, l. 174)

• L155-158: Feels confuse. As long as the filter matrix truncates the non-
parametrized part, it is not clear why its contribution to the data matters, 
neither how ‘this yields the following procedure’.
Reply: The contribution matters because the parts that have to be truncated 
are unknown. The sentence ‘this yields the following procedure’ has been 
deleted (p. 7, l. 173).

• L191: Why is tr P a convex function?
Reply: trP is a convex function since it is the sum of the quadratic averaged 
expansion coefficients and thus it follows the same structure as for example 
the function f(x)=x^2 (explanation added on p. 8, Eq. 41)

•Eqs. 42 and 43: Please detail what is meant by ‘input’ and ‘output’. 
Regarding Eq. 43, is there an equation analogous to Eq. 23, to clarify the 
meaning of ‘signal’ and ‘noise’ also for output?
Reply: By input we mean the measured data. By output we mean the filtered 
data (added on p. 9, l. 227 and l. 230); 
Yes, one can construct an equation analogous to Eq. 23, which results, when 
w^T(...)w is applied to this equation. This can be seen within SNR_o.

•Eq. 44: Please explain why this ratio is dominated by 1/trace.
Reply: The array gain is dominated by  1/trace, since P, H and v are given by 
the model and the data and do not depend on the method (w does). 
(explanation added on page 9, l. 235)



•L266-267: Please provide a brief demonstration.
Reply: The eigenvalues of M are calculated in the Appendix B (p. 18/19).

•L267-269: Please explain briefly what is this about.
Reply: Done. (p. 12, l. 288)

•L278: How is the ‘compromise’ quantified?
Reply: The compromise can be understood in the sense that trace reaches its 
minimal value under the condition that P_d is maximal. (added on p. 12, 
l.297/298)

•L278-282: This is quite opaque for those not familiar with signal processing 
and in particular with these techniques.
Reply: The basic idea of the Tikhonov regularisation is briefly explained on 
page 12, ll. 299--304.

4. Others
• L17-18: What is non-ideal orbits?
Reply: The sentence was adversely formulated. We changed it to „data
sampled on single orbits“ (p. 1, l. 18).

• L18: simulated Mercury magnetic field data
Reply: Formulation has been changed (p. 1, l. 18).

• L54: ‘closing the void’ => ‘covering the range’ ?
Reply: Done. (p. 3, l. 60)

• Eq. 54 is identical to Eq. 41.
Reply: Reference has been added. (p. 14, l. 312)

• L325: in => at
Reply: Done. (p. 15, l. 355)

• L352: In principle, one could analyze also the external field, if some model is
adopted.
Reply: That‘s very true! Sentence has been added. (p. 15, l. 356)



Reviewer 2:

The manuscript presents well founded support for mathematical analysis of 
planetary magnetic field basing on experimental data. 1. Line 33: “N data 
points xi, i = 1, ...,N” and Line 102 “Q indicates the number of 
measurements”. Are N and Q the same numbers? 2. Line 94: “fulfills in 
principle the resolution of Eq. (7) with respect to g.” Did you mean solution of 
Eq.(7)? 3. As a usual practice, for validation of the model, experimental data 
are divided into two parts. The first one is used for selection/tuning of model 
parameters with the help of the various optimization algorithms. The second 
part provides verification of the model by means comparison of experimental 
data with the data predicted by the built model. It could be helpful to 
demonstrate such an approach here.

Reply: 
1.) Q and N are not the same numbers. N is the number of spatial data points, 
whereas Q indicates the number of measurements at each of these data points
(for example the number of flybys at each point). A comment has been added 
on p. 5, l. 113.

2.) Agreed, we modified the word „resolution“ to „solution“ (p. 4, l. 103).

3.) For the application of several inversion methods (e.g. machine learning) it 
is useful/necessary to divide the data into two parts. Capon‘s method does not 
require this segmentation. For example, each data set corresponds with an 
optimal diagonal loading parameter. Since this parameter depends on the 
measurements and on the underlying model, it has to be calculated for each 
data set individually. When the data and the model are known, for each data 
set the diagonal loading parameter is calculated with the measurements and 
the data points themselves and then Capon‘s estimator can be calculated 
directly.

General changes in the manuscript:

• Changes in the manuscript are marked with „latexdiff“, i.e., added text 
is marked in blue and the old version of the formulation is crossed out 
and marked in red

• The position of changes that are related to Reviewer comments are 
directly stated at the reply.

• We added a section about the discussion of Capon‘s method on p. 16.
• Appendix A and B have been added on p. 18/19
• The literature list has been extended by:

Tikhonov, A. N., Goncharsky, A., Stepanov, V. V., Yagola, A. G.: Numerical 
Methods for the Solution of Ill-Posed Problems, Springer Netherlands, 
1995. ISBN 079233583X
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Abstract.

Minimum variance distortionless projection, the so-called Capon method, serves as a powerful and robust data analysis tool

when working on various kinds of ill-posed inverse problems. The method has not only successfully been applied to multi-point

wave and turbulence studies in the context of space plasma physics, but also is currently being considered as a technique to

perform the multipole expansion of planetary magnetic fields from a limited data set, such as Mercury’s magnetic field analysis.5

The practical application and limits of the Capon method are discussed in a rigorous fashion by formulating its linear-algebraic

derivation in view of planetary magnetic field studies. Furthermore, the optimization of Capon’s method by making use of

diagonal loading is considered.

1 Introduction

Nonlinear and adaptive filter technique has a wider range of applications in geophysical and space science studies to find the10

most likely parameter set describing the measurement data or to decompose the data into a set of signals and noise. Above

all, the minimum variance distortionless projection introduced by Capon (1969) (hereafter, Capon’s method) has successfully

been applied to multi-point data analyses for the waves, turbulence fields, and current sheets (Motschmann et al., 1996; Glass-

meier et al., 2001; Narita et al., 2003, 2013; Contantinescu et al., 2006; Plaschke et al., 2008). The strength of Capon’s method

lies in the fact that the method performs a robust data fitting even when the spatial sampling or data amount is limited in the15

measurement (e.g., successfully applied to four-spacecraft data (Motschmann et al., 1996)). Capon’s method is currently being

considered for planetary magnetic field studies in which the data (i.e., magnetic field samples) are more limited (e.g., non-ideal

:::
data

::::::::
sampled

::
on

:::::
single

:
orbits), and has recently been applied to Mercury’s

::::::::
simulated

:::::::
Mercury

:
magnetic field data in view of

the BepiColombo mission (Toepfer et al., 2020).

20

From a theoretical point of view there exist several origins for the derivation of the method. The first derivation of Capon’s

method (Capon, 1969), constructed for the analysis of seismic waves, is based on the estimation of frequency-wavenumber

spectra. Later on, this approach has been reformulated in terms of matrix algebra (Motschmann et al., 1996). In the light
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of mathematical statistics Capon’s estimator can be regarded as a special case of the maximum likelihood estimator (Narita,

2019). In this work the linear-algebraic formulation of the method (Motschmann et al., 1996) with specific attention to the25

magnetic field analysis is extended and the application of diagonal loading is discussed to improve the quality of data analysis

with more justified applications and limits.

2 Motivation of Capon’s method

The analysis of planetary magnetic fields is of great interest and one of the main tasks in space science. Here we pay special

attention to the analysis of Mercury’s internal magnetic field which is one of the primary goals of the BepiColombo mission30

(Benkhoff et al., 2010). The magnetometer on board the Mercury Planetary Orbiter (MPO) (Glassmeier et al., 2010) measures

the magnetic field vectors bi =
(
bix, b

i
y, b

i
z

)T ∈ R3 at N data points xi, i= 1, ...,N along the orbit in the vicinity of Mercury.

The magnetic fields around Mercury are considered as a composition or superposition of internal fields generated by the dy-

namo process, crustal and induced fields, which are mainly dominated by dipole and quadrupole fields and external fields

generated by the currents flowing in the magnetosphere. For Mercury the external fields contribute a significant amount to the35

total magnetic field within the magnetosphere (Anderson et al., 2011) and therefore, a robust method is required for seperating

the internal fields from the total measured field. Yet, each component has to be properly modeled and parameterized when

decomposing the field.

For example, when only data in current-free regions are analyzed, the planetary magnetic field is irrotational and can be40

parameterized via the Gauss representation (Gauss, 1839). Whithin these current-free regions, the internal magnetic field can

be expressed as the gradient of a scalar potential Φ, which can be expanded into a set of basis functions. Considering the

expansion into spherical harmonics, the potential for the planetary dipole and quadrupole fields results in

Φ(xi) =RM

2∑

l=1

(RM

ri

)l+1 l∑

m=0

[
gml cos(mλi) +hml sin(mλi)

]
Pml
(

cos(θi)
)
,

:::::::
Because

::
of45

∂x ·B = 0,
:::::::::

(1)

::
the

::::::
scalar

:::::::
potential

::
Φ

:::
has

::
to

::::::
satisfy

∂2xΦ = 0,
:::::::

(2)

where
:::
∂2x :

is
:::
the

:::::::::
Laplacian.

::::::::
Choosing

:
planetary centered coordinates with radius ri ∈ [RM,∞), azimuth angle λi ∈ [0,2π] and

polar angle θi ∈ [0,π]are chosen. ,
:::
the

:::::::
solution

::
of
::::
Eq.

:::
(2)

:
is
:::::
given

:::
by

:::::::
spherical

::::::::::
harmonics,

::
so

::::
that

:::
the

:::::::
potential

::::::
results

::
in50

Φ(xi) =RM

2∑

l=1

(RM

ri

)l+1 l∑

m=0

[
gml cos(mλi) +hml sin(mλi)

]
Pml
(

cos(θi)
)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)
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::
for

:::
the

::::::::
planetary

::::::
dipole

:::
and

::::::::::
quadrupole

:::::
fields.

:::::
Here, RM indicates the radius of Mercury and Pml are the Schmidt-normalized

associated Legendre polynomials of degree l and order m. Within this series expansion there occurs a set of expansion co-

efficients gml and hml , named internal Gauss coefficients. By constructing the Gauss coefficients in a vectorial fashion and

defining the true coefficient vector as g =
(
g01 ,g

1
1 ,h

1
1,g

0
2 ,g

1
2 ,h

1
2,g

2
2 ,h

2
2

)T
, the magnetic field vectors at every data point xi and55

the expansion coefficients are related via

bi =−∂xiΦ(xi) +vi +ni (4)

= Hig +vi +ni, (5)

where the terms of the series expansion are arranged in the matrix Hi
(
ri,θi,λi

)
, called shape matrix. The vector vi describes

the parts that are not parameterized by the underlying model, e.g. the external parts, closing the void
::::::
covering

::::
the

:::::
range be-60

tween the parameterized field and the measurement noise of the sensors, which is symbolized by the vector ni. Especially, the

measurement noise is neither correlated with the parameterized part Hig nor with the non-parameterized part vi.

Summarizing the magnetic field measurements for all N data points into a vector B =
((

b1
)T

. . .
(
bN
)T)T ∈ R3N , the

field can be written as65

B = H g +v +n, (6)

where n =
(
n1 . . .nN

)T ∈ R3N , v =
(
v1 . . .vN

)T ∈ R3N and H =
[
H1 . . .HN

]T ∈ R3N×G. G indicates the number of ex-

pansion coefficients.

Within Eq. (6) the magnetic field vector B and the shape matrix H, given by the underlying model, are known. The coef-70

ficient vector g is to be determined by data fitting. Since in most applications the number of known magnetic data points is

much larger than the number of wanted expansion coefficients (G� 3N ), H is a rectangular matrix in general. Furthermore,

the non-parameterized parts of the field and the noise are unknown. Therefore, the direct inversion of Eq. (6) is impossible and

g has to be estimated. In this case, Capon’s method establishes a robust and useful tool to find the estimated solution for the

expansion coefficients in Eq. (6).75

Since the method does not require the orthogonality of the basis functions, it has a wider range of applications when decom-

posing the measured data into a set of superposed signals, especially when the number of data points is limited.
:::
For

::::::::
example,

::::
when

:::
the

::::::::
magnetic

::::
field

::::
data

:::
are

::::::::
measured

::
on

::
a
:::::
dense

::::
grid

::
in

:::
the

::::::
vicinity

::
of

:::
the

::::::
planet,

:::
the

:::::
Gauss

::::::::::
coefficients

:::
can

:::
be

::::::::
estimated

::
via

::::::::::
integration

::
of

:::
the

::::
data.

:::
But

::
in
:::
the

::::
case

:::
of

:
a
::::::
limited

::::
data

:::
set

::::
those

::::::::
integrals

::::::
cannot

::
be

::::::::
evaluated.

:
80

3 Derivation of Capon’s method

The following derivation of Capon’s method is based on the linear-algebraic formulation (Motschmann et al., 1996) which was

formerly applied to the analysis of plasma waves in the terrestrial magnetosphere. Now we are focussing on the analysis of

3



planetary magnetic fields.

85

As illustrated in the previous section, the magnetic field bi measured at data point xi in the vicinity of Mercury and the

wanted expansion coefficients g are related via

bi = Hig +vi +ni (7)

or in a compact form for all N data points

B = H g +v +n, (8)90

where the shape matrix H describes the underlying model.

For every data point xi the noise vector ni is assumed to be Gaussian with variance σn and zero mean, so that 〈ni〉= 0

and 〈ni ◦ni〉= σ2
nI, where I is the identity matrix. The angular brackets indicate averaging over an ensemble, e.g., different

samples, realizations or measurements. Therefore, 〈bi〉= Hi g + 〈vi〉 holds and equivalently

〈B〉= H g + 〈v〉, (9)95

since the model H and the true coefficient vector g are not affected by the averaging.

Because H is not always a square matrix but is in general a rectangular matrix with different sizes between rows and

columns, the direct inversion of Eq. (9) is not guaranteed. Let us ignore for the moment the non-existence of H−1 and write

down the equation100

g = H−1 (〈B〉− 〈v〉) . (10)

Despite its simplicity it is obviously incorrect. As H−1 does not exist, let us look for another matrix w called filter ma-

trix, which follows the structure of this equation and fulfills in principle the resolution
::::::
solution

:
of Eq. (9) with respect to g.

::::::::::
Furthermore,

::::
the

:::::::::::::::
non-parameterized

:::::
parts

:::
〈v〉

:::
are

::::::::
unknown

::::
and

::::::::
therefore,

::
it
::
is

::::::::
desirable

::
to

:::::::
truncate

:::::
these

:::::
parts

::
by

:::
the

:::::
filter

::::::
matrix. Capon’s method is just the procedure to construct the filter matrix w and to calculate or better to say estimate g. To105

do so, some helpful quantities are introduced. In order to distinguish between the true coefficient vector g and the estimated

solution, in the following Capon’s estimator will be symbolized by gC .

For the inversion of Eq. (6) the
:
it
::
is

:::::
useful

:::
to

::::::
rewrite

:::
the

::::::
vectors

:::
B

:::
and

:::
gC::

in
::::::

terms
::
of

:
a
::::::
matrix

:::::::::::::
representation.

:::::
Thus,

:::
the

data covariance matrix M and the coefficient matrix P are introduced as follows:110

M = 〈B ◦B〉=
1

Q

Q∑

α=1

Bα ◦Bα ∈ R3N×3N (11)
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P = 〈gC ◦ gC〉 ∈ RG×G (12)

Here Q indicates the number of measurements
:
at
:::::

each
::::
data

::::
point

:::
xi,

:::
for

:::::::
example

:::
the

:::::::
number

::
of

::::::
flybys

::
at

::::
each

::::
data

::::
point

:
and

the circle ‘◦’ symbolizes the outer product, which is defined by

x ◦y = x ·y† ∈ Rn×m (13)115

for any pair of vectors x ∈ Rn, y ∈ Rm. The dagger † indicates the Hermitian conjugate and the dot stands for the multipli-

cation of the matrices x ∈ Rn×1 and y† ∈ R1×m. Therefore, the diagonal of the matrix P contains the quadratic averaged

components of the wanted estimator. It is important to note here that the covariance matrix M must be statistically averaged ,

otherwise
::::
over

::::::
several

:::::::
numbers

::
of

:::::::::::::
measurements.

::::::::
Otherwise

:
the matrix is singular with a vanishing determinant

::
(cf.

:::::::::
Appendix

::
A)

:
and the further analysis cannot be achieved.120

If the non-invertibility of the matrix Bα ◦Bα is neglected, for every measurement α= 1, . . . ,Q an estimator gαC for the true

coefficient vector g can be determined, so that

Bα = H gαC +vα +nα (14)

is valid. Thereby, each estimator deviates from the true coefficient vector by an error vector εα = g−gαC . Note that because of125

the non-invertibility of the matrix Bα ◦Bα the single estimator gαC cannot be calculated. Since the invertibility is solely given

by the averaging over Q measurements, only the averaged estimator

gC =
1

Q

Q∑

α=1

gαC , (15)

with its related error

〈ε〉=
1

Q

Q∑

α=1

εα (16)130

is available.

In contrast to the estimator, the true coefficient vector is a theoretical given vector, that is not affected by the averaging

(g ≡ 〈g〉, Eq. (9)). This property directly links the estimator to the true coefficient vector, which can be rewritten as

g = gαC + εα. (17)135

Averaging over Q measurements and using g ≡ 〈g〉 results in

g = gC + 〈ε〉 (18)
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and

g ◦ g = 〈gC ◦ gC〉+ 〈gC ◦ ε〉+ 〈ε ◦ gC〉+ 〈ε ◦ ε〉

analogously for the second order moments .140

g ◦ g = 〈gC ◦ gC〉+ 〈gC ◦ ε〉+ 〈ε ◦ gC〉+ 〈ε ◦ ε〉.
::::::::::::::::::::::::::::::::::::::::

(19)

In the limit of vanishing errors 〈ε〉 → 0, 〈ε ◦ ε〉 → 0 respectively, Capon’s estimator converges to the true coefficient vector

gC → g (20)

and therefore

〈gC ◦ gC〉 → g ◦ g. (21)145

For the further evaluation of Eq. (6) the definition of the outer product (Eq. 13) is utilized. Matrix multiplication of Eq. (6)

with its Hermitian adjoint and averaging yields

〈B ·B†〉= 〈(H g +v +n) · (H g +v +n)
†〉 (22)

and therefore

〈B ◦B〉= H · g ◦ g ·H†+ 2(Hg) ◦ 〈v〉+ 〈v ◦v〉+ 〈n ◦n〉 , (23)150

assuming, that n is Gaussian with variance σn and zero mean (〈n〉= 0). By means of the limit 〈ε〉 → 0 in Eq. (21) the unknown

matrix g ◦ g and the true coefficient vector g can be approximated by Capon’s estimator, resulting in

〈B ◦B〉= H · 〈gC ◦ gC〉 ·H†+ 2(HgC) ◦ 〈v〉+ 〈v ◦v〉+ 〈n ◦n〉. (24)

Taking into account that 〈n ◦n〉= σ2
nI and using the above defined abbreviations, Eq. (24) can be rewritten as

M = HPH†+ 2(HgC) ◦ 〈v〉+ 〈v ◦v〉+σ2
nI., (25)155

::::::
because

:::::
HgC::::

and
:::
〈v〉

::::
have

:::
the

:::::
same

:::::::::
dimension,

::
so

::::
that

:::
the

::::
outer

:::::::
product

:::::::::::
commutates.

Since Eq. (25) cannot be directly solved for P, the goal is to find the best estimator gC for g, so that P = 〈gC ◦ gC〉 is

obtained as an approximate solution of Eq. (25). Therefore, a filter matrix w is constructed, that separates the parameterized

field from the noise by projecting the measured data onto the parameter space160

w†〈B〉= gC (26)
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and simultanously truncates the non-parameterized parts, i.e.

w†〈v〉= 0. (27)

Applying the filter matrix to the average of the non-parameterized parts of the field in Eq. (6)

0 = w†〈v〉= w† (〈B〉−HgC) = w†〈B〉−w†HgC = gC −w†HgC , (28)165

where the true coefficient vector has been replaced by Capon’s estimator (Eq. 18) and taking into account that 〈n〉= 0 leads

to the distortionless constraint

w†H = I. (29)

This equation is one of the important constraints for the construction of the wanted filter matrix w but it is not enough.

Let us look for another criterion. The basic idea is that in Eq. (6) there may be contributions 〈v〉 in the data B which are not170

caused by the internal magnetic field and thus, these contributions are not modeled by Hg. Although the filter matrix w is

already designed to truncate these parts, i.e. w†〈v〉= 0, their contributions to the data are unknown . This yields the following

procedure.
:::
and

:::::::::
therefore,

:::
the

::::
parts

:::
that

:::::
have

::
to

::
be

::::::::
truncated

:::
by

::
w

:::
are

::::::::
unknown.

Conferring to Eq. (26) the average output power, which is defined as the sum of the quadratic averaged components of the175

estimator, can be rewritten as (Pillai , 1989)

trP = tr〈gC ◦ gC〉= tr
(
w†〈B ◦B〉w

)
, (30)

where tr〈gC ◦ gC〉 is the trace of the matrix 〈gC ◦ gC〉.

Using Eq. (30), the coefficient matrix P can be expressed by the weight w and the data covariance M as180

P = 〈gC ◦ gC〉= w†〈B ◦B〉w = w†Mw. (31)

Since the
:::
The

:
amount of the data’s noise and the amount of the non-parameterized parts are unknown

:
.
:::::
Thus,

:
it
::
is
:::::::::::
conservative

:::
and

::::
save

::
to

::::::
assume, we assumehere, that a large part of the data are

:
is
:
influenced by the noise and the non-parameterized parts,

that have to be truncated by the matrix w and the underlying model keeps the minimal contribution to the data. This minimal

contribution has to be extracted.185

Therefore, the output power P = trP has to be minimized with respect to w†, subject to the distortionless constraint w†H =

I or equivalently H†w = I. Using the Lagrange multiplier method this minimization problem can be formulated as

minimize tr
[
w†Mw + Λ

(
I−H†w

)]
, (32)
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where Λ are the related Lagrange multipliers and the minimum is taken with respect to w. Since the components wij and w†ij190

of the matrix w and w† respectively, are independent of each other, Eq. (32) can be expanded as

minimize P = tr
[
w†Mw + Λ

(
I−H†w

)
+
(
I−w†H

)
Γ
]

(33)

or equivalently

minimize P = w†ijMjkwki + Λii−ΛijH
†
jkwki + Γii−w†ijHjkΓki (34)

with related additional Lagrange multipliers Γ. Taking the derivatives with respect to wki and w†ij results in195

0 = ∂wki
P = w†ijMjk −ΛijH

†
jk (35)

yielding

w†M = ΛH† (36)

and

0 = ∂w†ij
P =Mjkwki−HjkΓki (37)200

resulting in

Mw = HΓ . (38)

Multiplication of Eq. (36) with w from the right and multiplication of Eq. (38) with w† from the left considering the

distortionless constraint delivers

P = w†Mw = Γ = Λ (39)205

and therefore

P = trP = trΓ = trΛ. (40)

Because P = trP

P = trP =
∣∣〈gC〉

∣∣2
:::::::::::::::

(41)

is a convex function, Λ and Γ are realizing the minimal output power.210

Due to the ensemble averaging the matrix M is invertible and M−1 exists. Multiplying Eq. (38) with H†M−1 and again

considering the distortionless constraint yields

P = Λ = Γ =
[
H†M−1H

]−1
. (42)
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By means of Eq. (36) the filter matrix results in215

w† = PH†M−1 (43)

and therefore Capon’s estimator is given by

gC =
[
H†M−1H

]−1
H†M−1〈B〉. (44)

Regarding the expensive derivation, this compact formular for Capon’s estimator is surprising. The same expression can be

derived by treating Capon’s method as a special case of the maximum likelihood estimator (Narita, 2019).220

Since Capon’s method has formerly been applied to the analysis of waves, the existing derivations treat the non-parameterized

parts of the field as Gaussian noise. Considering the analysis of planetary magnetic fields this assumption is indefensible. For

example, the external parts of the field are systematic noise and cannot be modeled by a Gaussian distribution. Therefore, the

above presented derivation generalizes the previous derivations of Capon’s method.

4 Diagonal Loading225

The filter matrix w is the key parameter to distinguish between the parameterized and the non-parameterized parts of the field.

Conferring to Eq. (25) the ratio of these parts defines the input signal-noise-ratio
:::::
(given

::
by

:::
the

:::::
data)

SNRi =
tr
(
HPH†

)

tr(2(HgC) ◦ 〈v〉+ 〈v ◦v〉+σ2
nI)

. (45)

The filter matrix is applied to the disturbed data for estimating the output power, that is related to Capon’s estimator. Thus, the

output signal-noise-ratio
::::::::
(resulting

::::
from

:::
the

::::::::
filtering) can be expressed as (Haykin, 2014; Van Trees, 2002)230

SNRo =
tr
(
w†HPH†w

)

tr(2w† (HgC) ◦ 〈v〉w + w†〈v ◦v〉w) +σ2
n tr(w†w)

=
tr(P)

σ2
n tr(w†w)

, (46)

since the filter fulfills the distortionless constraint w†H = I and truncates the non-parameterized parts of the field, i.e. w†〈v〉=

0. The ratio of the output and the input signal-noise-ratio is the so-called array gain (Van Trees, 2002)

SNRo
SNRi

=
1

tr(w†w)

tr(P)

σ2
n tr(HPH†)

tr
(
2(HgC) ◦ 〈v〉+ 〈v ◦v〉+σ2

nI
)
∼ 1

tr(w†w)
, (47)

which is controlled by tr
(
w†w

)
,
:::::
since

:::
H,

::
P

:::
and

::
v

:::
are

:::::
given

::
by

:::
the

::::
data

:::
and

:::
the

:::::::::
underlying

::::::
model.235

The input signal-noise-ratio is given by the data and the underlying model and therefore, SNRi = const. in Eq. (47). In

contrast to the input signal-noise-ratio, the output signal-noise-ratio depends on the filtering. When tr
(
w†w

)
is large, the

output signal-noise-ratio can decrease (SNRo→ 0), resulting in signal elimination and thus, the performance of Capon’s

estimator degrades. To prevent the signal elimination and to improve the robustness of Capon’s estimator it is desirable to240
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restrict tr
(
w†w

)
with an upper boundary T0 = const. (Van Trees, 2002), which can be expressed by the additional quadratic

constraint

tr
(
w†w

)
= T0. (48)

For reasons of mathematical aesthetics, the constant T0 is expressed as the trace of a matrix T. For example, one can choose

T =
T0
G

I ∈ RG×G, (49)245

where G again indicates the number of wanted expansion coefficients and I ∈ RG×G is the identity matrix, so that

tr(T) =
T0
G

tr(I) = T0 (50)

holds. Thus, Eq. (48) can be rewritten as

tr
(
w†w−T

)
= 0. (51)

It should be noted that the matrix T can be chosen arbitrarily as long as it is independent of w and w†.250

Conferring to the previous section and considering the additional quadratic constraint, the filter matrix can be calculated by

solving

minimize tr
[
w†Mw +σ2

d

(
w†w−T

)
+ Λ

(
I−H†w

)
+
(
I−w†H

)
Γ
]

(52)

with respect to w, where σ2
d is the related additional Lagrange multiplier. Carrying out the same procedure as described in255

section 3, the constrained minimizer is given by

w =
(
M +σ2

dI
)−1

H
[
H†
(
M +σ2

dI
)−1

H
]−1

. (53)

The comparison of Eq. (43) with Eq. (53) shows that the quadratic constraint results in the addition of the constant value σ2
d to

the diagonal of the data covariance matrix M, which is known as diagonal loading (Van Trees, 2002). Consequently, the filter

matrix is designed for a higher Gaussian background noise than is actually present (Van Trees, 2002).260

In Figure 1 tr
(
w†w

)
is displayed with respect to σ =

√
σ2
d +σ2

n. For σd→ 0, tr
(
w†w

)
is large resulting in a small output

signal-noise ratio, which can cause signal elimination. For increasing values of σd, tr
(
w†w

)
decreases and for σd→∞

Capon’s filter converges to the least square fit filter

w†
σd→∞−→

[
H†H

]−1
H† (54)265

or equivalently

w†w
σd→∞−→

[
H†H

]−1
, (55)
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tr

w†w




σ

T0 tr




H†H



−1

Figure 1. Sketch of the trace of the filter matrix with respect to σ =
√
σ2
d +σ2

n. For increasing values of the diagonal loading parameter σd

the output signal-noise ratio increases and Capon’s filter converges to the least square fit filter, if the diagonal loading parameter is large.

that treats all data equally.

Since tr
(
w†w

)
is a monotonically decreasing function, σd→∞might be the best choice for the diagonal loading parameter.270

To check this expectation we have to take a look at the output power Pd for the synthetic increased noise, which can be estimated

by replacing M→M +σ2
dI in Eq. (42), resulting in (Pajovic, 2019; Richmond et al., 2005)

Pd = tr
[
w†
(
M +σ2

dI
)

w
]

= tr
[
H†
(
M +σ2

dI
)−1

H
]−1 σd→∞−→ σ2

d tr
[
H†H

]−1
. (56)

Thus, Pd is an increasing function of σd. Since the output power has to be minimized one would expect that σd = 0 is the best

choice, which is in contradiction to the argumentation above. Therefore, the maximization of the array gain is not equivalent275

to the minimization of the output power (Van Trees, 2002). Since σd cannot be directly calculated within the minimization

procedure (Eq. 52), it is not clear how to choose the optimal diagonal loading parameter σopt., that lies somewhere between

those extrema.

In the literature there exist several methods for determining the optimal diagonal loading parameter (Pajovic, 2019). In280

contrast to the analysis of waves, we favor measurements that are stationary up to the Gaussian noise for the analysis of plan-

etary magnetic fields. Comparing the measurement times with planetary geology time scales this assumption is surely valid

for the internal magnetic field. For the external parts of the field this can be realized by choosing data sets of preferred situa-

tions, e.g. calm solar wind conditions. By virtue of the stationarity, the data covariance matrix M = 〈B〉 ◦ 〈B〉+σ2
n I contains

only one non-trivial eigenvalue λ1 =
∣∣〈B〉

∣∣2 +σ2
n and λi = σ2

n, for i= 2, . . . ,3N elsewhere .
:::
(cf.

::::::::
Appendix

::::
B). Therefore,285

estimators for the diagonal loading parameter, that are related to eigenvalues corresponding to interference and noise (Carl-
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son, 1988) or estimators taking into account the standard deviation of the diagonal elements of the data covariance matrix
:
,

::
i.e.

::::::::::::::::::::
σ2
d = std{λ1, . . . ,λ3N} (Ma and Goh, 2003) cannot be applied. When simulated data are analyzed the deviation between

Capon’s estimator and the true coefficient vector, implemented in the simulation, is a useful metric for estimating the optimal

diagonal loading parameter (Pajovic, 2019; Toepfer et al., 2020). But when the method is applied to real spacecraft data no true290

coefficient vector is available and therefore, another estimation method for the diagonal loading parameter, that solely depends

on the data and the underlying model is required.

The additional quadratic constraint (Eq. 48), resulting in diagonal loading, bounds the trace of the filter matrix, that is

the solution of the minimization procedure (Eq. 52). To prevent signal elimination, tr
(
w†w

)
and Pd have to be minimized295

simultanously. Since tr
(
w†w

)
is decreasing for higher values of σd (cf. Figure 1), Pd is an increasing function and thus, they

act as competitors. At the optimal value σopt. the two competitors compromise
:
,
:::::
which

::::
can

::
be

:::::::::
unterstood

::
as

::::::::
tr
(
w†w

)
:::::::
reaches

::
its

:::::::
minimal

:::::
value

:::::
under

::::
the

::::::::
constraint

::::
that

:::
Pd ::

is
:::::::
maximal. Therefore, the diagonal loading of the data covariance matrix is

equivalent to the Tikhonov regularization for ill-posed problemsand the
:
.
:::
The

:::::::::
Tikhonov

:::::::::::
regularization

::::::::
improves

:::
the

:::::::::
robustness

::
of

:::
the

::::
least

:::::
square

:::
fit

:::::::
problem:

:
300

minimize
∣∣Hg−B

∣∣2
:::::::::::::::::::

(57)

::::
with

::::::
respect

::
to

:
g
:::::
under

:::
the

:::::::::
constraint

::
of

::::::::
solutions

:
g
::::
with

::::::::
minimal

:::::
norm,

:::
i.e.

minimize
∣∣Hg−B

∣∣2 +α
∣∣g
∣∣2,

::::::::::::::::::::::::::
(58)

:::::
where

::
α

:
is
:::
the

::::::::::::
corresponding

::::::::
Lagrange

:::::::::
multiplier,

:::::
which

::
is
::::
also

::::::
known

::
as

:::
the

:::::::::::
regularization

:::::::::
parameter

:::::::::::::::::::
(Tikhonov et al., 1995)

:
.
::
In

::::::
analogy

::
to
:::
the

::::::::
Lagrange

:::::::::
multiplier

::
α,

:::
the optimal diagonal loading parameter can be estimated analogously by the method305

of the L-curve (Hiemstra et al. (2002)). The L-curve arises by plotting lg
[
tr
(
w†w

)]
versus lg

[
tr
(
w†
(
M +σ2

dI
)
w
)]

for

different values of σd and is displayed in Figure 2. The optimal value σopt. is located in the vicinity of the L-curve’s knee,

which is defined by the maximum curvature of the L-curve (Hiemstra et al., 2002).
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lg

tr


w†w






σd small

lg

tr


w† (

M + σ2dI
)

w





σd large

Figure 2. Sketch of the L-curve for estimating the optimal diagonal loading parameter σd. The optimal value is located in the vicinity of

the L-curves knee (dashed circle).
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5 Practical application of Capon’s method310

When Capon’s method is applied to the reconstruction of Mercury’s internal magnetic field (Toepfer et al., 2020), several

computationally burdensome matrix inversions are necessary to calculate the estimator
:::
(cf.

:::
Eq.

:::
44)

gC =
[
H†M−1H

]−1
H†M−1〈B〉. (59)

Thus, for the practical application of Capon’s method it is useful to rewrite the method in terms of the least square fit method.

315

Capon’s estimator inherits the matrix operation structure of the least square fit estimator, which is given by (Haykin, 2014)

gL =
[
H†H

]−1
H†〈B〉. (60)

Substituting H→M−1/2H and 〈B〉 →M−1/2〈B〉 in Eq. (60), the least square fit estimator may be converted into Capon’s

estimator.

320

The least square fit method minimizes the deviaton between the disturbed measurements B and the underlying model Hg,

measured in the Euclidian norm ||.||2, so that

gL = argmin
g

∣∣∣∣Hg−B
∣∣∣∣2
2
. (61)

Conferring to the above mentioned substitutions, Capon’s method can be interpreted as measuring the deviation in Eq. (61)

in a different norm325

∣∣∣∣Hg−B
∣∣∣∣2
M−1 =

∣∣∣∣M−1/2 (Hg−B)
∣∣∣∣2
2

, (62)

so that Capon’s estimator is given by

gC = argmin
g

∣∣∣∣Hg−B
∣∣∣∣2
M−1 . (63)

Thus, Capon’s method can be regarded as a special case of the least square fit method or more precisely of the weighted

least square fit method, where the data and the model are measured and weighted with the inverse data covariance matrix.330

This property is useful for the practical application of Capon’s method. In contrast to the computationally burdensome matrix

inversions in Eq. (44), the usage of minimization algorithms, such as gradient descent or conjugate gradient method, for solving

Eq. (63) is more stable and computationally inexpensive.
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To illustrate the above presented mathematical foundations, Capon’s method is applied to simulated magnetic field data in

order to reconstruct Mercury’s internal magnetic field. As a proof of concept, the underlying model is restricted to the internal335

dipole and quadrupole contributions to the magnetic field as discussed in section 2.
::::
Since

:::::::::
simulated

:::::::
magnetic

:::::
field

::::
data

:::
are

::::::::
analyzed,

:::
the

::::::
special

:::::::::
application

::
to

:::::::::
Mercury’s

:::::::
magnetic

::::
field

::
is
::
of

::::::
minor

::::::::::
importance,

::::::
because

:::
the

:::::
ideal

:::::::
solution

:
is
::::::
known

:::::
from

::
the

::::::::::
simulation.

::
If

:::
the

:::::::
method

:::::
would

:::
be

:::::
tested

::::::
against

::::::
in-situ

:::::::::::
measurement

::::
data,

:::
the

::::::::::
application

::
to

:::
the

:::::::
analysis

::
of

:::
the

:::::::
Earth’s

:::::::
magnetic

::::
field

::
is
:::::
more

:::::::
suitable

::::
since

:::
the

::::::
Earth’s

::::::::
magnetic

::::
field

::
is

:::::
better

::::::
known

::::
than

:::::::::
Mercury’s

:::::::
magnetic

:::::
field.

340

For the reconstruction of Mercury’s internal dipole and quadrupole field the internal Gauss coefficients g01 =−190nT and

g02 =−78nT (Anderson et al., 2012; Wardinski et al., 2019), defining the non-vanishing components of the true coefficient

vector g are implemented in the hybrid code AIKEF (Müller et al., 2011) and the magnetic field data resulting from the

plasma interaction of Mercury with the solar wind are simulated. The data are evaluated along selected parts of the prospective

trajectories of the BepiColombo mission on the night side of Mercury within a distance of 0.2RM up to 0.4RM from Mercury’s345

surface. Since simulated data are analyzed, the deviation between the true coefficient vector g and Capon’s estimator gC can

be used as a metric to verify the estimation of the optimal diagonal loading parameter by making use of the L-curve technique.

The optimal diagonal loading parameter results in σopt. ≈ 800nT which corresponds with the vicinity of the L-curve’s knee.

The reconstructed Gauss coefficients for the internal dipole and quadrupole field are presented in Table 1.

Table 1. Implemented and reconstructed Gauss coefficients for the internal dipole and quadrupole field.

Gauss coefficient input in nT output Capon in nT

g01 -190.0 -189.2

g11 0.0 1.9

h1
1 0.0 0.2

g02 -78.0 -68.4

g12 0.0 26.1

h1
2 0.0 11.4

g22 0.0 -2.4

h2
2 0.0 0.0

The deviation
∣∣gC −g

∣∣ between Capon’s estimator and the true coefficient vector results in 30.2 nT or 14.7%, respectively,350

for the optimal diagonal loading parameter. When the magnetic field data are evaluated at an ensemble of data points with

a distance of 0.2RM from Mercury’s surface this deviation is of the same order (Toepfer et al., 2020).
::::
Since

:::
the

::::::::::
underlying

:::::
model

:::::::
neglects

:::
the

:::::::
external

:::::
parts

:::
and

::::
only

:::
the

:::::::
internal

::::
parts

:::
are

::::::::::
considered,

:::
the

::::::::::
coefficients

:::
g12 :::

and
:::
h12 ::::

show
:::::

large
:::::::::
deviations

::
to

:::
the

:::::::::::
implemented

::::::::::
coefficients. Extending the underlying model by a parameterization of the external parts of the magnetic

field improves Capon’s estimator especially when the magnetic field data are evaluated in
::
at some distance above Mercury’s355

surface.
:
In

:::::::::
principle,

:::
one

:::
can

:::::::
analyze

::::
also

::
the

:::::::
external

:::::
field,

::
if

::::
some

::::::
model

::
is

:::::::
adopted.

:
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6
:::::::::
Discussion

::
of

:::::::
Capon’s

:::::::
method

:::::::
Capon’s

::::::
method

:::
has

::::::::
formerly

::::
been

::::::
applied

::
to
:::
the

:::::::
analysis

::
of

::::::
waves.

:::::
Thus,

:::
the

:::::::
existing

:::::::::
derivations

::::
treat

:::
the

::::::::::::::::
non-parameterized

::::
parts

::
of

:::
the

::::
field

:
v
::
as

::::::::
Gaussian

:::::
noise,

::
so

::::
that

:
v
::::
and

::
the

:::::::::::
measurement

:::::
noise

::
n

:::
are

::
of

:::
the

::::
same

::::::::
character

:::::::::::::::::::::
(Motschmann et al., 1996)

:
.
::::::::::
Considering

:::
the

:::::::
analysis

:::
of

::::::::
planetary

::::::::
magnetic

:::::
fields

::::
this

::::::::::
assumption

::
is

:::::::::::
indefensible.

:::
For

::::::::
example,

::::
the

:::::::
external

::::
parts

:::
of360

::
the

:::::
field

:::
are

:::::::::
systematic

:::::
noise

::::
and

::::::
cannot

:::
be

::::::::
modeled

:::
by

:
a
::::::::

Gaussian
:::::::::::

distribution.
::::::
When

:::
the

::::::::::::::::
non-parameterized

::::
parts

::::
are

::::::::
Gaussian,

:::
i.e.

:::::::
〈v〉= 0,

::::
the

::::::::
truncation

:::
of

:::::
these

::::
parts

:::
by

:::
the

:::::
filter

::::::
matrix

:::::::::
w†〈v〉= 0

::::
(cf.

:::
Eq.

::::
27)

::
is

:::::::
fulfilled

:::::::
trivially,

::::::
which

::::::
reduces

:::
the

:::::
terms

::::::
within

:::
the

::::::::
derivation

::::
and

:::
the

:::::::::
estimation

::
of

:::
the

::::::::
diagonal

::::::
loading

:::::::::
parameter.

:::::::::
Therefore,

:::
the

:::::
above

:::::::::
presented

:::::::::::
mathematical

::::::::::
foundations

:::::::::
generalize

:::
the

:::::::
previous

:::::::::
derivations

::
of

::::::::
Capon’s

::::::
method

:::
and

:::::::
transist

:::
into

:::
the

:::::::::
derivation

::::::::
presented

:::
by

:::::::::::::::::::::
Motschmann et al. (1996)

::
for

:::
the

::::::
special

::::
case

:::
of

:::::::
〈v〉= 0.365

::
As

:::::::
already

::::::::
mentioned

:::
in

::
the

:::::::::::
introduction

::::
(Sec.

:::
1),

:::::::
Capon’s

::::::
method

::::
can

::
be

:::::::
regarded

:::::
from

::::::
several

:::::::::::
mathematical

:::::::::::
perspectives.

:::::
Within

:::
the

:::::::::
derivation

::::::::
presented

::::::
above,

:::
the

:::::
output

::::::
power

::
P ,

::::::
which

::
is

::::::
defined

::
as

:::
the

:::::
trace

::
of

:::
the

:::::::::
coefficient

::::::::::
(covariance)

::::::
matrix

:
is
:::::::::
minimized

:::::
with

::::::
respect

::
to

:::
the

::::
filter

::::::
matrix

:::
w,

::::::
subject

::
to

:::
the

:::::::::::
distortionless

::::::::
contraint

:::::::::
w†H = I.

::::
This

::::::::
procedure

:::::::::::
corresponds

::::
with

:::
the

:::::
name

::::::::
Minimum

::::::::
Variance

::::::::::::
Distortionless

::::::::
Response

::::::::
Estimator

:::::::::
(MVDR),

:::::
since

::
P

:::::::
contains

:::
the

::::::::
variance

::
of

:::
the

::::::
model370

::::::::::
coefficients.

::::::::::::
Narita (2019)

::::::
showed,

::::
that

:::::::
Capon’s

::::::::
estimator

::::
can

:::
also

:::
be

::::::
derived

:::
by

:::::::
treating

:::::::
Capon’s

:::::::
method

::
as

:
a
:::::::

special
::::
case

::
of

:::
the

::::::::
maximum

:::::::::
likelihood

::::::::
estimator

:::
by

::::::::
regarding

:::
the

:::::::
likehood

::::::::
function

::
as

::::::
nearly

:::::::
Gaussian

:::::::::::
(particularly

::::::
around

:::
the

::::
peak

:::
of

::
the

::::::::
likelhood

:::::::::
function).

:::
As

::::::::
discussed

::
in

::::
Sec.

::
5,

:::::::
Capon’s

::::::
method

::::
can

:::
also

:::
be

:::::::::
interpreted

::
as

::
a

::::::
special

::::
case

::
of

:::
the

::::::::
weighted

::::
least

:::::
square

:::
fit.

::::
This

:::::::::
illustrates,

:::
that

:::
the

::::::
several

:::::::
existing

::::::::
inversion

:::::::
methods

:::
for

:::::
linear

::::::
inverse

::::::::
problems

::
are

:::::::::
connected

::::
with

::::
each

:::::
other

:::
and

:::
are

:::
not

::
as

:::::::
different

:::
as

:::
they

:::::
seem

::
to

:::
be

:
at
::::
first

::::::::::
appearance.

:
375
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7 Conclusions

Capon’s method is a robust and useful tool for various kinds of ill-posed inverse problems, such as Mercury’s planetary

magnetic field analysis. The derivation of the method can be regarded from different mathematical perspectives. Here we revis-

ited the linear-algebraic matrix formulation of the method and extended the derivation for Mercury’s magnetic field analysis.

Capon’s method becomes even more robust by incorporating the diagonal loading technique. Thereby, the construction of a380

filter matrix is vital to the derivation of Capon’s estimator.

Especially the trace of the filter matrix determines the array gain, which is defined as the ratio of the output and the input

signal-noise-ratio. If the trace is large, the output signal-noise-ratio can decrease resulting in signal elimination and thus, the

performance of Capon’s estimator degrades. Bounding the trace of the filter matrix results in diagonal loading of the data385

covariance matrix, which improves the robustness of the method. The main problem of the diagonal loading technique is that

in general it is not clear how to choose the optimal diagonal loading parameter. Since for the analysis of planetary magnetic

fields we prefer measurements that are stationary up to the Gaussian noise, estimators for the diagonal loading parameter, that

are related to eigenvalues of the data covariance matrix corresponding to interference and noise cannot be applied. Making use

of the L-curve’s technique enables a robust procedure for estimating the optimal diagonal loading parameter.390

For the calculation of Capon’s estimator several computationally burdensome matrix inversions are necessary. Interpretation

of Capon’s method as a special case of the least square fit method enables the usage of numerically more stable and less burden

minimization algorithms, e.g. gradient descent or conjugate gradient method, for calculating Capon’s estimator.

395

It should be noted that the parameterization of Mercury’s internal magnetic field via the Gauss representation, as mentioned

in section 2, is only one of several possibilities for modeling the magnetic field in the vicinity of Mercury. The underlying

model can be extended by other parameterizations, for example the Mie representation (toroidal-poloidal decomposition) or

magnetospheric models and Capon’s method can be applied to estimate the related model coefficients. Besides the analysis

of Mercury’s internal magnetic field, the extention of the model also enables the reconstruction of current systems flowing in400

the magnetosphere. Concerning the BepiColombo mission this work establishes a mathematical basis for the application of

Capon’s method to analyze Mercury’s internal magnetic field in a robust and manageable way.

Data availability. The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Appendix A:
:::::::::::
Determinant

::
of

:::
the

:::::
outer

:::::::
product
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:::
The

::::::::
influence

::
of

:::
the

::::::::
averaging

::
to

:::
the

::::::::::
determinant

::
of

::
the

::::
data

:::::::::
covariance

:::::
marix

:::
M

:
is
::::::::::
exemplarily

:::::::::
illustrated

::
for

:::
the

:::::::::::::::
three-dimensional405

::::
case.

:::::
Thus,

:::
the

::::::::
magnetic

::::
field

:::::
vector

::
is

:::::
given

::
by

:

B =




Bx

By

Bz




::::::::::

(A1)

:::
and

::::::::
therefore,

:::
the

:::::
outer

::::::
product

::::::
results

::
in

:

B ◦B =




B2
x BxBy BxBz

BxBy B2
y ByBz

BxBz ByBz B2
z




:::::::::::::::::::::::::::::

(A2)

::::
with

:
a
::::::::
vanishing

::::::::::
determinant

:
410

det(B ◦B) = 3B2
xB

2
yB

2
z − 3B2

xB
2
yB

2
z = 0.

:::::::::::::::::::::::::::::::::::

(A3)

:::::::::
Throughout

:::
the

:::::::::
averaging

::
of

:::
the

::::
data,

:::
the

::::
data

:::::::::
covariance

::::::
matrix

:::::
results

:::
in

M = 〈B ◦B〉= 〈B〉 ◦ 〈B〉+σ2
nI =




〈B2
x〉+σ2

n 〈Bx〉〈By〉 〈Bx〉〈Bz〉
〈Bx〉〈By〉 〈B2

y〉+σ2
n 〈By〉〈Bz〉

〈Bx〉〈Bz〉 〈By〉〈Bz〉 〈B2
z 〉+σ2

n




::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A4)

::::
with

:
a
::::::::::::
non-vanishing

::::::::::
determintant

:

det(M)
::::::

= (〈B2
x〉+σ2

n)(〈B2
y〉+σ2

n)(〈B2
z 〉+σ2

n)−〈B2
x〉〈B2

y〉〈B2
z 〉−σ2

n〈B2
y〉〈B2

z 〉−σ2
n〈B2

x〉〈B2
z 〉−σ2

n〈B2
x〉〈B2

y〉
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A5)415

= σ4
n(〈B2

x〉+ 〈B2
y〉+ 〈B2

z 〉) +σ6
n

::::::::::::::::::::::::::

(A6)

6= 0.
:::

(A7)

:::::
Thus,

::
the

:::::::
inverse

::
of

::
M

::::::
exists,

:::::::
whereas

:::
the

:::::
outer

::::::
product

::::::
B ◦B

::
is

:::::::
singular.

:

Appendix B:
::::::::::
Eigenvalues

::
of

:::
the

:::::
data

:::::::::
covariance

::::::
matrix

:::
The

::::
data

:::::::::
covariance

::::::
matrix

::
is

::::::
defined

::
as

:
420

M = 〈B ◦B〉= 〈B〉 ◦ 〈B〉+σ2
nI.

::::::::::::::::::::::::::::
(B1)

::::
This

:::::
matrix

::
is
::::::::
quadratic

::::
and

::::::::
especially

:::::::::::::
diagonalisable.

:::::
Thus,

:::::
there

:::::
exists

:
a
::::::

matrix
::::
DM::::::

which
::
is

::::::
similar

::
to

:::
the

::::::
matrix

:::
M,

:::
so

:::
that

DM = V†MV,
:::::::::::::

(B2)
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:::::
where

::
V

::
is
:::
an

:::::::::
orthogonal

:::::::::::::
transformation,

:::
i.e.

::::::::
V†V = I

::::
and

::::
DM ::

is
:
a
::::::::
diagonal

:::::
matrix

::::::
which

:::::::
diagonal

::::::::
elements

:::
are

:::::
given

:::
by425

::
the

::::::::::
eigenvalues

::
of

::::
M.

:::::::
Inserting

:::
the

::::::::
definition

::
of
:::
the

::::::
matrix

:::
M

:::::::
delivers

DM = V†MV = V† 〈B ◦B〉V = V† (〈B〉 ◦ 〈B〉) V +σ2
nI,

::::::::::::::::::::::::::::::::::::::::::::::::::
(B3)

::::
since

:::::::::
V†V = I.

::
To

:::::::::
determine

:::
the

:::::::
diagonal

:::::
form

::
of

:::
the

::::
outer

:::::::
product,

:::
the

::::::::::::::
two-dimensional

::::
case

::::::
where

〈B〉=


〈Bx〉
〈By〉




:::::::::::::

(B4)

:
is
:::::::::
considered

:::::::::::
exemplarily.

:::::
Thus,430

〈B〉 ◦ 〈B〉=


 〈Bx〉2 〈Bx〉〈By〉
〈Bx〉〈By〉 〈By〉2




:::::::::::::::::::::::::::::::

(B5)

:::
and

:::
the

:::::::::::
characteristic

::::::::::
polynomial

:::::
results

::
in
:

(
〈Bx〉2−β

)(
〈By〉2−β

)
−〈Bx〉2〈By〉2 = 0

::::::::::::::::::::::::::::::::::::
(B6)

::
or

::::::::::
equivalently

β2−β
(
〈Bx〉2 + 〈By〉2

)
= β2−β

∣∣〈B〉
∣∣2 = 0,

:::::::::::::::::::::::::::::::::::::
(B7)435

:::::
where

::
β

::::::
denotes

:::
the

:::::::::
eigenvalue

:::::
which

::
is

:::::
given

::
by

::::::
β = 0

:::
and

::::::::::
β =

∣∣〈B〉
∣∣2.

:::::::::
Therefore,

::
in

::::::
general

:::
the

:::::::
diagonal

::::::
matrix

::
of

:::
the

:::::
outer

::::::
product

::
is

:::::
given

::
by

:

D〈B〉◦〈B〉
::::::::

=




∣∣〈B〉
∣∣2 0 · · · 0

0 0 · · · 0
...

. . .
...

0 · · · · · · 0



.

::::::::::::::::::::::

(B8)

:::
The

:::::
noise

::::::
matrix

:::
σ2
nI

::
is

::::::
already

::
a
:::::::
diagonal

::::::
matrix,

:::
so

:::
that

:::
the

:::::::
diagonal

:::::
form

::
of

:::
M

::
is

::::
given

:::
by

DM
:::

=




∣∣〈B〉
∣∣2 0 · · · 0

0 0 · · · 0
...

. . .
...

0 · · · · · · 0




+σ2
n




1 0 · · · 0

0 1 · · · 0
...

. . .
...

0 · · · · · · 1




=




∣∣〈B〉
∣∣2 +σ2

n 0 · · · 0

0 σ2
n · · · 0

...
. . .

...

0 · · · · · · σ2
n



.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B9)440

:::::
Thus,

::
the

::::
data

:::::::::
covariance

::::::
matrix

:::::::
contains

::::
only

::::
one

:::::::::
non-trivial

:::::::::
eigenvalue

::::::::::::::
λ1 = 〈B〉

∣∣2 +σ2
n:::

and
:::::::
λi = σ2

n:::
for

::::::::::::
i= 1, . . . ,3N .

:
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