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Abstract.

Minimum variance distortionless projection, the so-called Capon method, serves as a powerful and robust data analysis tool

when working on various kinds of ill-posed inverse problems. The method has not only successfully been applied to multi-point

wave and turbulence studies in the context of space plasma physics, but also is currently being considered as a technique to

perform the multipole expansion of planetary magnetic fields from a limited data set, such as Mercury’s magnetic field analysis.5

The practical application and limits of the Capon method are discussed in a rigorous fashion by formulating its linear-algebraic

derivation in view of planetary magnetic field studies. Furthermore, the optimization of Capon’s method by making use of

diagonal loading is considered.

1 Introduction

Nonlinear and adaptive filter technique has a wider range of applications in geophysical and space science studies to find the10

most likely parameter set describing the measurement data or to decompose the data into a set of signals and noise. Above

all, the minimum variance distortionless projection introduced by Capon (1969) (hereafter, Capon’s method) has successfully

been applied to multi-point data analyses for the waves, turbulence fields, and current sheets (Motschmann et al., 1996; Glass-

meier et al., 2001; Narita et al., 2003, 2013; Contantinescu et al., 2006; Plaschke et al., 2008). The strength of Capon’s method

lies in the fact that the method performs a robust data fitting even when the spatial sampling or data amount is limited in the15

measurement (e.g., successfully applied to four-spacecraft data (Motschmann et al., 1996)). Capon’s method is currently being

considered for planetary magnetic field studies in which the data (i.e., magnetic field samples) are more limited (e.g., non-ideal

orbits), and has recently been applied to Mercury’s magnetic field data in view of the BepiColombo mission (Toepfer et al.,

2020).

20

From a theoretical point of view there exist several origins for the derivation of the method. The first derivation of Capon’s

method (Capon, 1969), constructed for the analysis of seismic waves, is based on the estimation of frequency-wavenumber

spectra. Later on, this approach has been reformulated in terms of matrix algebra (Motschmann et al., 1996). In the light
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of mathematical statistics Capon’s estimator can be regarded as a special case of the maximum likelihood estimator (Narita,

2019). In this work the linear-algebraic formulation of the method (Motschmann et al., 1996) with specific attention to the25

magnetic field analysis is extended and the application of diagonal loading is discussed to improve the quality of data analysis

with more justified applications and limits.

2 Motivation of Capon’s method

The analysis of planetary magnetic fields is of great interest and one of the main tasks in space science. Here we pay special

attention to the analysis of Mercury’s internal magnetic field which is one of the primary goals of the BepiColombo mission30

(Benkhoff et al., 2010). The magnetometer on board the Mercury Planetary Orbiter (MPO) (Glassmeier et al., 2010) measures

the magnetic field vectors bi =
(
bix, b

i
y, b

i
z

)T ∈ R3 at N data points xi, i= 1, ...,N along the orbit in the vicinity of Mercury.

The magnetic fields around Mercury are considered as a composition or superposition of internal fields generated by the dy-

namo process, crustal and induced fields, which are mainly dominated by dipole and quadrupole fields and external fields

generated by the currents flowing in the magnetosphere. For Mercury the external fields contribute a significant amount to the35

total magnetic field within the magnetosphere (Anderson et al., 2011) and therefore, a robust method is required for seperating

the internal fields from the total measured field. Yet, each component has to be properly modeled and parameterized when

decomposing the field.

For example, when only data in current-free regions are analyzed, the planetary magnetic field is irrotational and can be40

parameterized via the Gauss representation (Gauss, 1839). Whithin these current-free regions, the internal magnetic field can

be expressed as the gradient of a scalar potential Φ, which can be expanded into a set of basis functions. Considering the

expansion into spherical harmonics, the potential for the planetary dipole and quadrupole fields results in

Φ(xi) =RM

2∑

l=1

(RM

ri

)l+1 l∑

m=0

[
gml cos(mλi) +hml sin(mλi)

]
Pml
(

cos(θi)
)
, (1)

where planetary centered coordinates with radius ri ∈ [RM,∞), azimuth angle λi ∈ [0,2π] and polar angle θi ∈ [0,π] are45

chosen. RM indicates the radius of Mercury and Pml are the Schmidt-normalized associated Legendre polynomials of de-

gree l and order m. Within this series expansion there occurs a set of expansion coefficients gml and hml , named internal

Gauss coefficients. By constructing the Gauss coefficients in a vectorial fashion and defining the true coefficient vector as

g =
(
g0
1 ,g

1
1 ,h

1
1,g

0
2 ,g

1
2 ,h

1
2,g

2
2 ,h

2
2

)T
, the magnetic field vectors at every data point xi and the expansion coefficients are related

via50

bi =−∂xiΦ(xi) + vi + ni (2)

= Hig + vi + ni, (3)

where the terms of the series expansion are arranged in the matrix Hi
(
ri,θi,λi

)
, called shape matrix. The vector vi describes

the parts that are not parameterized by the underlying model, e.g. the external parts, closing the void between the parameterized
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field and the measurement noise of the sensors, which is symbolized by the vector ni. Especially, the measurement noise is55

neither correlated with the parameterized part Hig nor with the non-parameterized part vi.

Summarizing the magnetic field measurements for all N data points into a vector B =
((

b1
)T

. . .
(
bN
)T)T ∈ R3N , the

field can be written as

B = H g + v + n, (4)60

where n =
(
n1 . . .nN

)T ∈ R3N , v =
(
v1 . . .vN

)T ∈ R3N and H =
[
H1 . . .HN

]T ∈ R3N×G. G indicates the number of ex-

pansion coefficients.

Within Eq. (4) the magnetic field vector B and the shape matrix H, given by the underlying model, are known. The coef-

ficient vector g is to be determined by data fitting. Since in most applications the number of known magnetic data points is65

much larger than the number of wanted expansion coefficients (G� 3N ), H is a rectangular matrix in general. Furthermore,

the non-parameterized parts of the field and the noise are unknown. Therefore, the direct inversion of Eq. (4) is impossible

and g has to be estimated. In this case, Capon’s method establishes a robust and useful tool to find the estimated solution for

the expansion coefficients in Eq. (4). Since the method does not require the orthogonality of the basis functions, it has a wider

range of applications when decomposing the measured data into a set of superposed signals, especially when the number of70

data points is limited.

3 Derivation of Capon’s method

The following derivation of Capon’s method is based on the linear-algebraic formulation (Motschmann et al., 1996) which was

formerly applied to the analysis of plasma waves in the terrestrial magnetosphere. Now we are focussing on the analysis of

planetary magnetic fields.75

As illustrated in the previous section, the magnetic field bi measured at data point xi in the vicinity of Mercury and the

wanted expansion coefficients g are related via

bi = Hig + vi + ni (5)

or in a compact form for all N data points80

B = H g + v + n, (6)

where the shape matrix H describes the underlying model.
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For every data point xi the noise vector ni is assumed to be Gaussian with variance σn and zero mean, so that 〈ni〉= 0

and 〈ni ◦ni〉= σ2
nI, where I is the identity matrix. The angular brackets indicate averaging over an ensemble, e.g., different

samples, realizations or measurements. Therefore, 〈bi〉= Hi g + 〈vi〉 holds and equivalently85

〈B〉= H g + 〈v〉, (7)

since the model H and the true coefficient vector g are not affected by the averaging.

Because H is not always a square matrix but is in general a rectangular matrix with different sizes between rows and

columns, the direct inversion of Eq. (7) is not guaranteed. Let us ignore for the moment the non-existence of H−1 and write90

down the equation

g = H−1 (〈B〉− 〈v〉) . (8)

Despite its simplicity it is obviously incorrect. As H−1 does not exist, let us look for another matrix w called filter matrix,

which follows the structure of this equation and fulfills in principle the resolution of Eq. (7) with respect to g. Capon’s method

is just the procedure to construct the filter matrix w and to calculate or better to say estimate g. To do so, some helpful quan-95

tities are introduced. In order to distinguish between the true coefficient vector g and the estimated solution, in the following

Capon’s estimator will be symbolized by gC .

For the inversion of Eq. (4) the data covariance matrix M and the coefficient matrix P are introduced as follows:

M = 〈B ◦B〉=
1
Q

Q∑

α=1

Bα ◦Bα ∈ R3N×3N (9)100

P = 〈gC ◦ gC〉 ∈ RG×G (10)

Here Q indicates the number of measurements and the circle ‘◦’ symbolizes the outer product, which is defined by

x ◦y = x ·y† ∈ Rn×m (11)

for any pair of vectors x ∈ Rn, y ∈ Rm. The dagger † indicates the Hermitian conjugate and the dot stands for the multipli-

cation of the matrices x ∈ Rn×1 and y† ∈ R1×m. Therefore, the diagonal of the matrix P contains the quadratic averaged105

components of the wanted estimator. It is important to note here that the covariance matrix M must be statistically averaged,

otherwise the matrix is singular with a vanishing determinant and the further analysis cannot be achieved.
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If the non-invertibility of the matrix Bα ◦Bα is neglected, for every measurement α= 1, . . . ,Q an estimator gαC for the true

coefficient vector g can be determined, so that110

Bα = H gαC + vα + nα (12)

is valid. Thereby, each estimator deviates from the true coefficient vector by an error vector εα = g−gαC . Note that because of

the non-invertibility of the matrix Bα ◦Bα the single estimator gαC cannot be calculated. Since the invertibility is solely given

by the averaging over Q measurements, only the averaged estimator

gC =
1
Q

Q∑

α=1

gαC , (13)115

with its related error

〈ε〉=
1
Q

Q∑

α=1

εα (14)

is available.

In contrast to the estimator, the true coefficient vector is a theoretical given vector, that is not affected by the averaging120

(g ≡ 〈g〉, Eq. (7)). This property directly links the estimator to the true coefficient vector, which can be rewritten as

g = gαC + εα. (15)

Averaging over Q measurements and using g ≡ 〈g〉 results in

g = gC + 〈ε〉 (16)

and125

g ◦ g = 〈gC ◦ gC〉+ 〈gC ◦ ε〉+ 〈ε ◦ gC〉+ 〈ε ◦ ε〉 (17)

analogously for the second order moments.

In the limit of vanishing errors 〈ε〉 → 0, 〈ε ◦ ε〉 → 0 respectively, Capon’s estimator converges to the true coefficient vector

gC → g (18)130

and therefore

〈gC ◦ gC〉 → g ◦ g. (19)
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For the further evaluation of Eq. (4) the definition of the outer product (Eq. 11) is utilized. Matrix multiplication of Eq. (4)

with its Hermitian adjoint and averaging yields

〈B ·B†〉= 〈(H g + v + n) · (H g + v + n)†〉 (20)135

and therefore

〈B ◦B〉= H · g ◦ g ·H†+ 2(Hg) ◦ 〈v〉+ 〈v ◦v〉+ 〈n ◦n〉 , (21)

assuming, that n is Gaussian with variance σn and zero mean (〈n〉= 0). By means of the limit 〈ε〉 → 0 in Eq. (19) the unknown

matrix g ◦ g and the true coefficient vector g can be approximated by Capon’s estimator, resulting in

〈B ◦B〉= H · 〈gC ◦ gC〉 ·H†+ 2(HgC) ◦ 〈v〉+ 〈v ◦v〉+ 〈n ◦n〉. (22)140

Taking into account that 〈n ◦n〉= σ2
nI and using the above defined abbreviations, Eq. (22) can be rewritten as

M = HPH†+ 2(HgC) ◦ 〈v〉+ 〈v ◦v〉+σ2
nI. (23)

Since Eq. (23) cannot be directly solved for P, the goal is to find the best estimator gC for g, so that P = 〈gC ◦ gC〉 is

obtained as an approximate solution of Eq. (23). Therefore, a filter matrix w is constructed, that separates the parameterized

field from the noise by projecting the measured data onto the parameter space145

w†〈B〉= gC (24)

and simultanously truncates the non-parameterized parts, i.e.

w†〈v〉= 0. (25)

Applying the filter matrix to the average of the non-parameterized parts of the field in Eq. (4)

0 = w†〈v〉= w† (〈B〉−HgC) = w†〈B〉−w†HgC = gC −w†HgC , (26)150

where the true coefficient vector has been replaced by Capon’s estimator (Eq. 16) and taking into account that 〈n〉= 0 leads

to the distortionless constraint

w†H = I. (27)

This equation is one of the important constraints for the construction of the wanted filter matrix w but it is not enough.

Let us look for another criterion. The basic idea is that in Eq. (4) there may be contributions 〈v〉 in the data B which are not155

caused by the internal magnetic field and thus, these contributions are not modeled by Hg. Although the filter matrix w is

already designed to truncate these parts, i.e. w†〈v〉= 0, their contributions to the data are unknown. This yields the following

procedure.

6
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Conferring to Eq. (24) the average output power, which is defined as the sum of the quadratic averaged components of the

estimator, can be rewritten as (Pillai , 1989)160

trP = tr〈gC ◦ gC〉= tr
(
w†〈B ◦B〉w

)
, (28)

where tr〈gC ◦ gC〉 is the trace of the matrix 〈gC ◦ gC〉.

Using Eq. (28), the coefficient matrix P can be expressed by the weight w and the data covariance M as

P = 〈gC ◦ gC〉= w†〈B ◦B〉w = w†Mw. (29)165

Since the amount of the data’s noise and the amount of the non-parameterized parts are unknown, we assume here, that a large

part of the data are influenced by the noise and the non-parameterized parts, that have to be truncated by the matrix w and the

underlying model keeps the minimal contribution to the data. This minimal contribution has to be extracted.

Therefore, the output power P = trP has to be minimized with respect to w†, subject to the distortionless constraint w†H =170

I or equivalently H†w = I . Using the Lagrange multiplier method this minimization problem can be formulated as

minimize tr
[
w†Mw + Λ

(
I−H†w

)]
, (30)

where Λ are the related Lagrange multipliers and the minimum is taken with respect to w. Since the components wij and w†ij
of the matrix w and w† respectively, are independent of each other, Eq. (30) can be expanded as

minimize P = tr
[
w†Mw + Λ

(
I−H†w

)
+
(
I−w†H

)
Γ
]

(31)175

or equivalently

minimize P = w†ijMjkwki + Λii−ΛijH
†
jkwki + Γii−w†ijHjkΓki (32)

with related additional Lagrange multipliers Γ. Taking the derivatives with respect to wki and w†ij results in

0 = ∂wki
P = w†ijMjk −ΛijH

†
jk (33)

yielding180

w†M = ΛH† (34)

and

0 = ∂w†ij
P =Mjkwki−HjkΓki (35)
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resulting in

Mw = HΓ . (36)185

Multiplication of Eq. (34) with w from the right and multiplication of Eq. (36) with w† from the left considering the

distortionless constraint delivers

P = w†Mw = Γ = Λ (37)

and therefore

P = trP = trΓ = trΛ. (38)190

Because P = trP is a convex function, Λ and Γ are realizing the minimal output power.

Due to the ensemble averaging the matrix M is invertible and M−1 exists. Multiplying Eq. (36) with H†M−1 and again

considering the distortionless constraint yields

P = Λ = Γ =
[
H†M−1 H

]−1
. (39)195

By means of Eq. (34) the filter matrix results in

w† = PH†M−1 (40)

and therefore Capon’s estimator is given by

gC =
[
H†M−1 H

]−1
H†M−1〈B〉. (41)

Regarding the expensive derivation, this compact formular for Capon’s estimator is surprising. The same expression can be200

derived by treating Capon’s method as a special case of the maximum likelihood estimator (Narita, 2019).

Since Capon’s method has formerly been applied to the analysis of waves, the existing derivations treat the non-parameterized

parts of the field as Gaussian noise. Considering the analysis of planetary magnetic fields this assumption is indefensible. For

example, the external parts of the field are systematic noise and cannot be modeled by a Gaussian distribution. Therefore, the205

above presented derivation generalizes the previous derivations of Capon’s method.

4 Diagonal Loading

The filter matrix w is the key parameter to distinguish between the parameterized and the non-parameterized parts of the field.

Conferring to Eq. (23) the ratio of these parts defines the input signal-noise-ratio

SNRi =
tr
(
HPH†

)

tr(2(HgC) ◦ 〈v〉+ 〈v ◦v〉+σ2
nI)

. (42)210
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The filter matrix is applied to the disturbed data for estimating the output power, that is related to Capon’s estimator. Thus, the

output signal-noise-ratio can be expressed as (Haykin, 2014; Van Trees, 2002)

SNRo =
tr
(
w†HPH†w

)

tr(2w† (HgC) ◦ 〈v〉w + w†〈v ◦v〉w) +σ2
n tr(w†w)

=
tr(P)

σ2
n tr(w†w)

, (43)

since the filter fulfills the distortionless constraint w†H = I and truncates the non-parameterized parts of the field, i.e. w†〈v〉=

0. The ratio of the output and the input signal-noise-ratio is the so-called array gain (Van Trees, 2002)215

SNRo
SNRi

=
1

tr(w†w)
tr(P)

σ2
n tr(HPH†)

tr
(
2(HgC) ◦ 〈v〉+ 〈v ◦v〉+σ2

nI
)
∼ 1

tr(w†w)
, (44)

which is controlled by tr
(
w†w

)
.

The input signal-noise-ratio is given by the data and the underlying model and therefore, SNRi = const. in Eq. (44). In

contrast to the input signal-noise-ratio, the output signal-noise-ratio depends on the filtering. When tr
(
w†w

)
is large, the220

output signal-noise-ratio can decrease (SNRo→ 0), resulting in signal elimination and thus, the performance of Capon’s

estimator degrades. To prevent the signal elimination and to improve the robustness of Capon’s estimator it is desirable to

restrict tr
(
w†w

)
with an upper boundary T0 = const. (Van Trees, 2002), which can be expressed by the additional quadratic

constraint

tr
(
w†w

)
= T0. (45)225

For reasons of mathematical aesthetics, the constant T0 is expressed as the trace of a matrix T. For example, one can choose

T =
T0

G
I ∈ RG×G, (46)

where G again indicates the number of wanted expansion coefficients and I ∈ RG×G is the identity matrix, so that

tr(T) =
T0

G
tr(I) = T0 (47)

holds. Thus, Eq. (45) can be rewritten as230

tr
(
w†w−T

)
= 0. (48)

It should be noted that the matrix T can be chosen arbitrarily as long as it is independent of w and w†.

Conferring to the previous section and considering the additional quadratic constraint, the filter matrix can be calculated by

solving235

minimize tr
[
w†Mw +σ2

d

(
w†w−T

)
+ Λ

(
I−H†w

)
+
(
I−w†H

)
Γ
]

(49)

with respect to w, where σ2
d is the related additional Lagrange multiplier. Carrying out the same procedure as described in

section 3, the constrained minimizer is given by

w =
(
M +σ2

dI
)−1

H
[
H†
(
M +σ2

dI
)−1

H
]−1

. (50)
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The comparison of Eq. (40) with Eq. (50) shows that the quadratic constraint results in the addition of the constant value σ2
d to240

the diagonal of the data covariance matrix M, which is known as diagonal loading (Van Trees, 2002). Consequently, the filter

matrix is designed for a higher Gaussian background noise than is actually present (Van Trees, 2002).

In Figure 1 tr
(
w†w

)
is displayed with respect to σ =

√
σ2
d +σ2

n. For σd→ 0, tr
(
w†w

)
is large resulting in a small output

signal-noise ratio, which can cause signal elimination. For increasing values of σd, tr
(
w†w

)
decreases and for σd→∞245

Capon’s filter converges to the least square fit filter

w† σd→∞−→
[
H†H

]−1
H† (51)

or equivalently

w†w σd→∞−→
[
H†H

]−1
, (52)

that treats all data equally.250

tr

w†w




σ

T0 tr




H†H



−1

Figure 1. Sketch of the trace of the filter matrix with respect to σ =
√
σ2

d +σ2
n. For increasing values of the diagonal loading parameter σd

the output signal-noise ratio increases and Capon’s filter converges to the least square fit filter, if the diagonal loading parameter is large.

Since tr
(
w†w

)
is a monotonically decreasing function, σd→∞might be the best choice for the diagonal loading parameter.

To check this expectation we have to take a look at the output power Pd for the synthetic increased noise, which can be estimated

by replacing M→M +σ2
dI in Eq. (39), resulting in (Pajovic, 2019; Richmond et al., 2005)

Pd = tr
[
w†
(
M +σ2

dI
)

w
]

= tr
[
H†
(
M +σ2

dI
)−1

H
]−1 σd→∞−→ σ2

d tr
[
H†H

]−1
. (53)255
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Thus, Pd is an increasing function of σd. Since the output power has to be minimized one would expect that σd = 0 is the best

choice, which is in contradiction to the argumentation above. Therefore, the maximization of the array gain is not equivalent

to the minimization of the output power (Van Trees, 2002). Since σd cannot be directly calculated within the minimization

procedure (Eq. 49), it is not clear how to choose the optimal diagonal loading parameter σopt., that lies somewhere between

those extrema.260

In the literature there exist several methods for determining the optimal diagonal loading parameter (Pajovic, 2019). In con-

trast to the analysis of waves, we favor measurements that are stationary up to the Gaussian noise for the analysis of planetary

magnetic fields. Comparing the measurement times with planetary geology time scales this assumption is surely valid for the

internal magnetic field. For the external parts of the field this can be realized by choosing data sets of preferred situations,265

e.g. calm solar wind conditions. By virtue of the stationarity, the data covariance matrix M = 〈B〉 ◦ 〈B〉+σ2
n I contains only

one non-trivial eigenvalue λ1 =
∣∣〈B〉

∣∣2 +σ2
n and λi = σ2

n, for i= 2, . . . ,3N elsewhere. Therefore, estimators for the diagonal

loading parameter, that are related to eigenvalues corresponding to interference and noise (Carlson, 1988) or estimators taking

into account the standard deviation of the diagonal elements of the data covariance matrix (Ma and Goh, 2003) cannot be ap-

plied. When simulated data are analyzed the deviation between Capon’s estimator and the true coefficient vector, implemented270

in the simulation, is a useful metric for estimating the optimal diagonal loading parameter (Pajovic, 2019; Toepfer et al., 2020).

But when the method is applied to real spacecraft data no true coefficient vector is available and therefore, another estimation

method for the diagonal loading parameter, that solely depends on the data and the underlying model is required.

The additional quadratic constraint (Eq. 45), resulting in diagonal loading, bounds the trace of the filter matrix, that is the275

solution of the minimization procedure (Eq. 49). To prevent signal elimination, tr
(
w†w

)
and Pd have to be minimized simul-

tanously. Since tr
(
w†w

)
is decreasing for higher values of σd (cf. Figure 1), Pd is an increasing function and thus, they act as

competitors. At the optimal value σopt. the two competitors compromise. Therefore, the diagonal loading of the data covariance

matrix is equivalent to the Tikhonov regularization for ill-posed problems and the optimal diagonal loading parameter can be

estimated analogously by the method of the L-curve (Hiemstra et al. (2002)). The L-curve arises by plotting lg
[
tr
(
w†w

)]
280

versus lg
[
tr
(
w†
(
M +σ2

dI
)
w
)]

for different values of σd and is displayed in Figure 2. The optimal value σopt. is located in

the vicinity of the L-curve’s knee, which is defined by the maximum curvature of the L-curve (Hiemstra et al., 2002).
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lg

tr


w†w






σd small

lg

tr


w† (

M + σ2dI
)

w





σd large

Figure 2. Sketch of the L-curve for estimating the optimal diagonal loading parameter σd. The optimal value is located in the vicinity of

the L-curves knee (dashed circle).
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5 Practical application of Capon’s method

When Capon’s method is applied to the reconstruction of Mercury’s internal magnetic field (Toepfer et al., 2020), several285

computationally burdensome matrix inversions are necessary to calculate the estimator

gC =
[
H†M−1 H

]−1
H†M−1〈B〉. (54)

Thus, for the practical application of Capon’s method it is useful to rewrite the method in terms of the least square fit method.

Capon’s estimator inherits the matrix operation structure of the least square fit estimator, which is given by (Haykin, 2014)290

gL =
[
H†H

]−1
H†〈B〉. (55)

Substituting H→M−1/2 H and 〈B〉 →M−1/2〈B〉 in Eq. (55), the least square fit estimator may be converted into Capon’s

estimator.

The least square fit method minimizes the deviaton between the disturbed measurements B and the underlying model Hg,295

measured in the Euclidian norm ||.||2, so that

gL = argmin
g

∣∣∣∣Hg−B
∣∣∣∣2

2
. (56)

Conferring to the above mentioned substitutions, Capon’s method can be interpreted as measuring the deviation in Eq. (56)

in a different norm

∣∣∣∣Hg−B
∣∣∣∣2

M−1 =
∣∣∣∣M−1/2 (Hg−B)

∣∣∣∣2
2

, (57)300

so that Capon’s estimator is given by

gC = argmin
g

∣∣∣∣Hg−B
∣∣∣∣2

M−1 . (58)

Thus, Capon’s method can be regarded as a special case of the least square fit method or more precisely of the weighted

least square fit method, where the data and the model are measured and weighted with the inverse data covariance matrix.

This property is useful for the practical application of Capon’s method. In contrast to the computationally burdensome matrix305

inversions in Eq. (41), the usage of minimization algorithms, such as gradient descent or conjugate gradient method, for solving

Eq. (58) is more stable and computationally inexpensive.
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To illustrate the above presented mathematical foundations, Capon’s method is applied to simulated magnetic field data in

order to reconstruct Mercury’s internal magnetic field. As a proof of concept, the underlying model is restricted to the internal

dipole and quadrupole contributions to the magnetic field as discussed in section 2.310

For the reconstruction of Mercury’s internal dipole and quadrupole field the internal Gauss coefficients g0
1 =−190nT and

g0
2 =−78nT (Anderson et al., 2012; Wardinski et al., 2019), defining the non-vanishing components of the true coefficient

vector g are implemented in the hybrid code AIKEF (Müller et al., 2011) and the magnetic field data resulting from the

plasma interaction of Mercury with the solar wind are simulated. The data are evaluated along selected parts of the prospective315

trajectories of the BepiColombo mission on the night side of Mercury within a distance of 0.2RM up to 0.4RM from Mercury’s

surface. Since simulated data are analyzed, the deviation between the true coefficient vector g and Capon’s estimator gC can

be used as a metric to verify the estimation of the optimal diagonal loading parameter by making use of the L-curve technique.

The optimal diagonal loading parameter results in σopt. ≈ 800nT which corresponds with the vicinity of the L-curve’s knee.

The reconstructed Gauss coefficients for the internal dipole and quadrupole field are presented in Table 1.320

Table 1. Implemented and reconstructed Gauss coefficients for the internal dipole and quadrupole field.

Gauss coefficient input in nT output Capon in nT

g0
1 -190.0 -189.2

g1
1 0.0 1.9

h1
1 0.0 0.2

g0
2 -78.0 -68.4

g1
2 0.0 26.1

h1
2 0.0 11.4

g2
2 0.0 -2.4

h2
2 0.0 0.0

The deviation
∣∣gC −g

∣∣ between Capon’s estimator and the true coefficient vector results in 30.2 nT or 14.7%, respectively,

for the optimal diagonal loading parameter. When the magnetic field data are evaluated at an ensemble of data points with a

distance of 0.2RM from Mercury’s surface this deviation is of the same order (Toepfer et al., 2020). Extending the underly-

ing model by a parameterization of the external parts of the magnetic field improves Capon’s estimator especially when the

magnetic field data are evaluated in some distance above Mercury’s surface.325
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6 Conclusions

Capon’s method is a robust and useful tool for various kinds of ill-posed inverse problems, such as Mercury’s planetary

magnetic field analysis. The derivation of the method can be regarded from different mathematical perspectives. Here we revis-

ited the linear-algebraic matrix formulation of the method and extended the derivation for Mercury’s magnetic field analysis.

Capon’s method becomes even more robust by incorporating the diagonal loading technique. Thereby, the construction of a330

filter matrix is vital to the derivation of Capon’s estimator.

Especially the trace of the filter matrix determines the array gain, which is defined as the ratio of the output and the input

signal-noise-ratio. If the trace is large, the output signal-noise-ratio can decrease resulting in signal elimination and thus, the

performance of Capon’s estimator degrades. Bounding the trace of the filter matrix results in diagonal loading of the data335

covariance matrix, which improves the robustness of the method. The main problem of the diagonal loading technique is that

in general it is not clear how to choose the optimal diagonal loading parameter. Since for the analysis of planetary magnetic

fields we prefer measurements that are stationary up to the Gaussian noise, estimators for the diagonal loading parameter, that

are related to eigenvalues of the data covariance matrix corresponding to interference and noise cannot be applied. Making use

of the L-curve’s technique enables a robust procedure for estimating the optimal diagonal loading parameter.340

For the calculation of Capon’s estimator several computationally burdensome matrix inversions are necessary. Interpretation

of Capon’s method as a special case of the least square fit method enables the usage of numerically more stable and less burden

minimization algorithms, e.g. gradient descent or conjugate gradient method, for calculating Capon’s estimator.

345

It should be noted that the parameterization of Mercury’s internal magnetic field via the Gauss representation, as mentioned

in section 2, is only one of several possibilities for modeling the magnetic field in the vicinity of Mercury. The underlying

model can be extended by other parameterizations, for example the Mie representation (toroidal-poloidal decomposition) or

magnetospheric models and Capon’s method can be applied to estimate the related model coefficients. Besides the analysis

of Mercury’s internal magnetic field, the extention of the model also enables the reconstruction of current systems flowing in350

the magnetosphere. Concerning the BepiColombo mission this work establishes a mathematical basis for the application of

Capon’s method to analyze Mercury’s internal magnetic field in a robust and manageable way.
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