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Abstract 16 

  17 

The errors and uncertainties associated with gap-filling algorithms of water, carbon and energy fluxes 18 

data, have always been one of the main challenges of the global network of microclimatological tower 19 

sites that use eddy covariance (EC) technique. To address these concerns, and find more efficient gap-20 

filling algorithms, we reviewed eight algorithms to estimate missing values of environmental drivers, 21 

and separately, nine algorithms for the three major fluxes in EC time series. We then examined the 22 

algorithms' performance for different gap-filling scenarios utilising the data from five EC towers during 23 

2013. This research's objectives were a) to evaluate the impact of the gap lengths on the performance of 24 

each algorithm; b) to compare the performance of traditional and new gap-filling techniques for the 25 

EC data, for fluxes and separately for their corresponding meteorological drivers. The algorithms' 26 

performance was evaluated by generating nine gap windows with different lengths, ranging from a day 27 

to 365 days. In each scenario, a gap period was chosen randomly, and the data were removed from the 28 

dataset, accordingly. After running each scenario, a variety of statistical metrics were used to evaluate 29 

the algorithms' performance. The algorithms showed different levels of sensitivity to the gap lengths; The 30 

Prophet Forecast Model (FBP) revealed the most sensitivity, whilst the performance of artificial neural 31 

networks (ANNs), for instance, did not vary as much by changing the gap length. The algorithms' 32 

performance generally decreased with increasing the gap length, yet the differences were not significant 33 

for the windows smaller than 30 days. No significant difference between the algorithms was recognised for 34 

the meteorological and environmental drivers. However, the linear algorithms showed slight superiority 35 

over those of machine learning (ML), except the random forest algorithm estimating the ground heat 36 

flux (RMSEs of 28.91 and 33.92 for RF and CLR respectively). However, for the major fluxes, ML 37 
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algorithms and the MDS showed superiority over the other algorithms. Even though ANNs, random 38 

forest (RF) and extreme gradient boost (XGB) showed comparable performance in gap-filling of the 39 

major fluxes, RF provided more consistent results with slightly less bias, as against the other ML 40 

algorithms. The results indicated that there is no single algorithm which outperforms in all situations, 41 

but the RF is a potential alternative for the ANNs as regards flux gap-filling. 42 

  43 

1. Introduction 44 

To address the global challenges of climatological and ecological changes, environmental 45 

scientists and policymakers are demanding data that are continuous in time and space.  Besides, there 46 

is a need for quantifying and reducing uncertainties in such data, including observations of carbon, 47 

water and energy exchanges that are crucial components in national/international flux networks and 48 

global earth observing systems.  Satellites partially fill this gap as they provide excellent spatial 49 

coverage but at a limited temporal resolution, and not measured at a point scale. As such, high-quality 50 

long-term site observations of ecosystem process and fluxes are needed that are continuous in time 51 

and space. The global eddy covariance (EC) flux tower networks (FLUXNET), consisted of its regional 52 

counterparts (i.e. AmeriFlux, EUROFLUX, OzFlux, etc.), was established in the late 1990s to address 53 

the global demand for such information (Aubinet et al., 1999; Baldocchi et al., 2001; Beringer et al., 54 

2016a; Hollinger et al., 1999; Menzer et al., 2013; Tenhunen et al., 1998). Despite EC data being 55 

frequently used to validate process modelling analyses, field surveys and remote sensing assessments 56 

(Hagen et al., 2006), there are some serious concerns regarding the challenges associated with the 57 

technique, e.g. data gaps and uncertainties. Hence, filling data gaps and reducing uncertainties 58 

through better gap-filling techniques are highly needed. 59 

Even though the EC is a common technique to measure fluxes of carbon, water and energy, 60 

there are some challenges in providing robust, high-quality continuous observations. One of the 61 

challenges regarding the technique, and therefore, the flux networks, is addressing data gaps and the 62 

uncertainties associated with the gap-filling process, mainly when the gap windows are long (longer 63 

than 12 consecutive days, as described by (Moffat et al., 2007)). These gaps happen very often due to 64 

a variety of reasons, such as values out of range, spike detection or manual exclusion of date and time 65 

ranges, instrument or power failure, herbivores, fire, eagles nests, cows, lightning, researchers on 66 

leave, etc. (Beringer et al., 2016b). Since EC flux towers are often located in harsh climates, their data 67 

are more susceptible to adverse weather (i.e. rain conditions), and they sometimes prevent quick 68 

access to sites for repair and maintenance. As a result, this issue can, in turn, produce gaps which 69 

might be relatively long (Isaac et al., 2017), and thus, problematic as follows. Firstly, loss of data is 70 

considered a threat to scientific studies depending on the missing data quantity, pattern, mechanism 71 

and nature (Altman and Bland, 2007; Molenberghs et al., 2014; Tannenbaum, 2010). That is because 72 

using an incomplete dataset might lead to biased, invalid and unreliable results (Allison, 2000; Kang, 73 

2013; Little, 2002). Second, continuous gap-filled data are required to calculate the annual or monthly 74 

budgets of carbon or water balance components (Hutley et al., 2005).  75 
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Other than the challenges caused by missing data, there are several sources of errors and 76 

uncertainties in the EC technique. Firstly, random error is associated with the stochastic nature of 77 

turbulence, associated sampling errors (incomplete sampling of large eddies, uncertainty in the 78 

calculated covariance between the vertical wind velocity and the scalar of interest), instrument errors, 79 

and footprint variability (Aubinet et al., 2012a). For instance, Dragoni et al. (2007) analysed an EC-80 

based data of Morgan-Monroe State Forest for eight years (1999-2006) and assessed that instrument 81 

uncertainty was equal to 3 % of the total annual NEE. Another primary source of uncertainty in EC 82 

measurements is systematic errors that are usually caused by methodological challenges and 83 

instrument calibration problems (e.g. sonic anemometer errors, spikes, gas analyser errors, etc.). 84 

Finally, one of the sources of uncertainties is data processing, especially data gap-filling (Isaac et al., 85 

2017; Moffat et al., 2007; Richardson et al., 2012; Richardson and Hollinger, 2007). 86 

 87 

There are several uncertainties pertaining to gap-filling of missing values, including 88 

measurement uncertainty (Richardson and Hollinger, 2007), lengths and timing the gaps (Falge et al., 89 

2001; Richardson and Hollinger, 2007) and the particular gap-filling algorithm that is used (Falge et 90 

al., 2001; Moffat et al., 2007).  However, there are two dominant issues of long data gaps and the choice 91 

of a particular gap-filling algorithm (Aubinet et al., 2012a). Firstly, long gaps can significantly increase 92 

the total amount of uncertainty as the ecosystem behaviour might change because of different 93 

agricultural periods or phenological phases (e.g. growing season, harvest period, bushfire, etc.). And 94 

thereby show different responses under similar meteorological conditions (Aubinet et al., 2012a; Isaac 95 

et al., 2017; Richardson and Hollinger, 2007). Consequently, the period in which a long gap happens 96 

is essential. For example, research undertook by Richardson & Hollinger (2007) on data from a range 97 

of FLUXNET sites revealed that a week data gap during spring green-up in a forest led to a higher 98 

uncertainty over a three-week gap period during winter. Second, each gap-filling algorithm has its 99 

strengths and weaknesses; for instance, Moffat et al. (2007) compared 15 different commonly-used 100 

gap-filling algorithms. They found that there was not a significant difference between the 101 

performances of the algorithms with “good” reliability based on analysis of variance of RMSE.  102 

Besides, the overall gap-filling uncertainty was within ±25 g C m-2 yr-1 for most of the proper 103 

algorithms, whereas, the other algorithms generated higher uncertainties of up to ±75 g C m-2 yr-1, 104 

showing that the uncertainty provided by reliable methods can be considerably smaller. This result is 105 

similar to the findings of Richardson & Hollinger (2007)  who found as for the datasets used in the 106 

study, uncertainties of up to ±30 g C m-2 yr-1 for long gaps by appropriate algorithms. Considering that 107 

the data provided by EC tower networks are of use for research, government and policymakers, robust 108 

gap-filling is a need to quantify and reduce uncertainties in flux estimations.  109 

 110 

To manage the missing data problem, several methods have been typically used to fill data 111 

gaps in both fluxes and their meteorological drivers. Due to computational constraints of complex 112 

algorithms, early works to impute EC data gaps used interpolation methods based mostly on linear 113 

regression or temporal autocorrelation (Falge et al., 2001; Lee et al., 1999). These approaches were 114 
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replaced quickly by more sophisticated methods such as non-linear regressions (Barr et al., 2004; Falge 115 

et al., 2001; Moffat et al., 2007; Richardson et al., 2006); lookup tables (Falge et al., 2001; Law et al., 116 

2002; Zhao and Huang, 2015); artificial neural networks (ANNs) (Aubinet et al., 1999; Beringer et al., 117 

2016a; Cleverly et al., 2013; Hagen et al., 2006; Isaac et al., 2017; Kunwor et al., 2017; Moffat et al., 2007; 118 

Papale and Valentini, 2003; Pilegaard et al., 2001; Staebler, 1999); mean diurnal variation (Falge et al., 119 

2001; Moffat et al., 2007; Zhao and Huang, 2015), multiple imputations (Hui et al., 2004; Moffat et al., 120 

2007), etc. Each of these methods has its pros and cons as follows: a) Interpolation methods such as 121 

the Mean Diurnal Variation (MDV), do not need any drivers, yet, their accuracy is lower than other 122 

approaches (Aubinet et al., 2012a). Moreover, this method may provide biased results on extremely 123 

clear or cloudy days (Falge et al., 2001). MDV is not recommended when a gap is longer than two 124 

weeks, for it cannot consider the non-linear relations between the drivers and the flux, and thus leads 125 

to a high level of uncertainty (Falge et al., 2001). And b) The Lookup table, especially its modified 126 

version, Marginal Distribution Sampling (MDS), has provided performance close to ANNs, and are 127 

more reliable and consistent than the other algorithms so far. Hence, MDS was chosen as one of the 128 

standard gap-filling methods in EUROFLUX (Aubinet et al., 2012a). Nevertheless, one of the concerns 129 

regarding this algorithm is that the independent variables, here meteorological drivers, might be auto-130 

correlated. c) ANNs have commonly been used to gap-fill EC fluxes since 2000 and because of their 131 

robust and consistent results are considered as a standard gap-filling algorithm in several networks, 132 

e.g. ICOS, FLUXNET, OzFlux, etc. (Aubinet et al., 2012a; Beringer et al., 2017; Isaac et al., 2017). Despite 133 

their reliable performance, ANNs –and generally all other ML algorithms- face some challenges. Over-134 

fitting, for instance, is a big concern and can happen when the number of degrees of freedom is high, 135 

while the training window is not long enough respectively, or the quality of the training dataset is 136 

low. This challenge becomes acute when the gaps happen within a period when the ecosystem 137 

behaviour is changing and thereby showing different response under similar meteorological 138 

conditions. Furthermore, there is a desire to have the training windows short so that the algorithm 139 

can track the ecosystem behaviour shift. Yet, this increases the risk of over-fitting depending on the 140 

algorithm. In other words, the training window length should be neither too short to cause over-141 

fitting, and nor too long to lead algorithms to ignore ecological condition changes. Besides, long gaps 142 

are considered as one of the primary uncertainty sources of CO2 flux in the FLUXNET (Aubinet et al., 143 

2012a). As a result, studying the effects of the gap lengths, as well as the window length whereby an 144 

algorithm is trained are both critical challenges associated with the environmental data gap-filling.  145 

 146 

Apart from the limitations and disadvantages of the mentioned algorithms, gap-filling of fluxes (i.e. 147 

NEE) experiences some other challenges that make it necessary to find or develop new gap-filling 148 

algorithms. That is because the current methods are not flexible enough to perform well in special 149 

occasions or extreme values (Kunwor et al., 2017), and there is almost no room to optimise them to 150 

improve their outcome (Moffat et al., 2007). Moreover, even using the best available algorithm, such 151 

as ANNs, the model (gap-filling) uncertainty still accounts for a sizable proportion of the total 152 

uncertainties, especially when the gaps are relatively long. Since the 2000s when MDS and ANNs were 153 

chosen as the most reliable gap-filling methods for EC flux observations, many new ML and 154 
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optimisation algorithms have been developed and used in varieties of scientific fields. Some of which 155 

have shown superiority over ANNs, either individually or as a part of a hybrid or ensemble model, 156 

e.g. (Gani et al., 2016). As a result, comparing the cutting-edge algorithms with the current standard 157 

ones can show whether there is any room to improve the gap-filling process within the field. 158 

According to the concerns mentioned above, this paper had two objectives. a) To find out the impact 159 

of different window lengths on the performance of each algorithm. And b) to evaluate the 160 

performance of traditional and new gap-filling techniques, separately for fluxes and their 161 

meteorological drivers, particularly soil moisture, for this has always been a challenging variable to 162 

gap-fill for a couple of reasons, such as of the biology and heterogeneity of soil parameters. To address 163 

these objectives, we utilised nine different algorithms (Extreme Gradient Boost (XGB), Random Forest 164 

Algorithm (RF), Artificial Neural Networks (ANNs), Marginal Distribution Sampling (MDS), Classic 165 

Linear Regression (CLR), Support Vector Regression (SVR), Elastic net regularisation (ELN), Panel 166 

Data (PD) and Prophet Forecast Model (FBP)) to fill the gaps of the major fluxes, and eight of them 167 

(excluding MDS) to fill the gaps of the environmental drivers. We then assessed their relative 168 

performance to evaluate potentially better ways to fill EC flux data. To test the approaches, we used 169 

five flux towers from the OzFlux network. To evaluate the performance of these algorithms, nine 170 

scenarios for gaps were planned – from a day to a whole year - and applied to the datasets, and 171 

different common performance metrics (e.g. RMSE, MBE, etc.), as well as visual graphs were used. 172 

 173 

2. Materials and methods 174 

 175 

To address the first objective of this research, nine different gap lengths were  superimposed to 176 

the datasets, i.e. 1, 5, 10, 20, 30, 60, 90, 180 and 365 days. To address the second objective, we chose 177 

nine different algorithms to fill the gaps, including a wide variety of different approaches, e.g. from a 178 

simple algorithm like CLR to cutting-edge ML algorithms, such as XGB (MDS was not used for the 179 

environmental drivers). The data used in this paper came from five EC towers of the OzFlux Network, 180 

i.e. Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba from 2012 to 2013, 181 

with a time resolution of 30 minutes, except for Tumbarumba (60 minutes). Additionally, data coming 182 

from three additional sources outside of the network were also used as ancillary data to help the 183 

algorithms fill the gaps of environmental drivers.   184 

2.1. Data 185 

The data used for this research came from OzFlux, which is the regional Australian and New 186 

Zealand flux tower network that aims to provide a continental-scale national research facility to 187 

monitor and assess Australia’s terrestrial biosphere and climate (Beringer et al., 2016a). As described 188 

in (Isaac et al., 2017), all OzFlux towers continuously measure and record 28 environmental features 189 

at resolutions up to 10 Hz, and use a 30 min averaging period, with a few exceptions (data are available 190 

from (http://data.ozflux.org.au/portal). Besides, the network acquires additional data from the 191 

Australian Bureau of Meteorology (BoM), the European Centre for Medium-Range Weather 192 

Forecasting (ECMWF), and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the 193 

TERRA and AQUA satellites (Isaac et al., 2017). These additional data, also known as ancillary data, 194 

provide alternative data for gap-filling flux tower datasets (Isaac et al., 2017). As explained in (Isaac 195 

et al., 2017), OzFlux uses the BoM automated weather station (AWS) datasets to gap-fill the 196 

http://data.ozflux.org.au/portal
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meteorological data, the BoM weather forecasting model (ACCESS-R) for radiation and soil data from 197 

2011 onward, and MODIS MOD13Q1 for Normalised Difference Vegetation Index (NDVI) and 198 

Enhanced Vegetation Index (EVI). Moreover, the data provided by BIOS2, a physically-based model-199 

data integration environment for tracking Australian carbon and water (Haverd et al., 2015), were also 200 

used as another ancillary source for varieties of environmental features. Current ACCESS-R and 201 

MODIS data are available from the BoM OPeNDAP (http://www.opendap.org/) server and TERN-202 

AusCover data (http://www.auscover.org.au/), respectively.  203 

 204 

The datasets were used in this research came from five towers amongst the OzFlux Network 205 

between 2012 and 2013, each representative of a different climate and land cover of Australian 206 

ecological conditions; i.e. Alice Springs Mulga: Tropical and Subtropical Desert, Calperum: steppe, 207 

Gingin: Mediterranean, Howard Springs: Tropical Savanna, Tumbarumba: Oceanic (Table 1) 208 

(Beringer et al. 2016). The datasets included 15 meteorological drivers as well as three major fluxes 209 

recorded (Table 2) based upon EC technique at a 30-minute temporal resolution, except for 210 

Tumbarumba, which was hourly. Additionally, relevant ancillary datasets for the mentioned towers 211 

were used to follow the OzFlux Network gap-filling protocol. Each dataset was quality checked at 212 

three levels based on the OzFlux Network protocol described in (Isaac et al., 2017) and applied using 213 

PyFluxPro ver. 0.9.2. To address the underestimation of canopy respiration by EC measurements at 214 

night, we used the CPD method of (Barr et al., 2013) to reject nightly records when the friction velocity 215 

fell below the threshold value of each site. After dismissing the inappropriate measurements, overall 216 

coverage of 72-88 % and 21-48 % were achieved for diurnal and nocturnal records during 2013 (the 217 

year to which the artificial gaps were superimposed), respectively.  218 

 219 
Table 1. The information of the five towers that their data were used, including their name, location, dominant species and 220 
climate. 221 

Site Location Species Climate Latitude, 

Longitude 

(degree) 

Alice Springs Mulga 

[AU-ASM] 

Pine Hill cattle 

station, near Alice 

Springs, Northern 

Territory 

Semi-arid mulga 

(Acacia aneura) 

ecosystem 

Tropical and 

Subtropical Desert 

Climate (Bwh) 

-22.2828° N, 

133.2493° E 

Calperum [AU-Cpr] Calperum Station, 

25 km NW of 

Renmark, South 

Australia 

Recovering Mallee 

woodland 

Steppe Climate 

(Bsk) 

-34.0027° N, 

140.5877° E 

Gingin [AU-Gin] Swan Coastal Plain 

70 km north of 

Perth, Western 

Australia 

Coastal heath Banksia 

woodland 

Mediterranean 

Climate (Csa) 

-31.3764° N, 

115.7139° E 

Howard Springs 

[AU-How] 

E of Darwin, NT Tropical savanna 

(wet) 

Tropical Savanna 

Climate (Aw) 

-12.4943° N, 

131.1523° E 

Tumbarumba [AU-

Tum] 

Near 

Tumbarumba, 

NSW 

Wet temperate 

sclerophyll eucalypt 

Oceanic climate 

(Cfb) 

-35.6566° N, 

148.1517° E 

 222 
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Table 2. List of variables and their units used in this research, including the three main fluxes and their environmental drivers. 223 

List of variables Units 

    Drivers:  
Ah Absolute Humidity (g m-3) 

Fa Available energy (W m-2) 

Fg Ground heat flux (W m-2) 

Fld Downwelling long-wave radiation (W m-2) 

Flu Upwelling long-wave radiation (W m-2) 

Fn Net radiation (W m-2) 

Fsd Downwelling short-wave radiation (W m-2) 

Fsu Upwelling short-wave radiation (W m-2) 

ps Surface pressure (kPa) 

Sws Soil water content (m m-1) 

Ta Air temperature (C) 

Ts Soil temperature (C) 

Ws Wind speed (m s-1) 

Wd Wind direction (deg) 

Precip 

q 

Precipitation (mm) 

Specific Humidity (kg kg-1) 

    Fluxes:  
Fc (also NEE) CO2 flux (µmol m-2 s-1) 

Fh (also H) Sensible heat flux (W m-2) 

Fe (also LE) Latent heat flux (W m-2) 

  

 224 

The datasets whereby each environmental variable was gap-filled are shown in Table 3. For each of 225 

these variables, the same variable of the ancillary source was used to fill the gaps. For instance, to gap-226 

fill Ah, the Ah records of AWS, ACCESS-R and BIOS2 were used. To gap-fill the missing values of 227 

fluxes, i.e. Fc (NEE), Fh (H) and Fe (LE), eight drivers were used as follows: Ta, Ws, Sws, Fg, VPD, Fn, 228 

q and Ts based on a combination of RF feature selection and testing out a series of feature 229 

combinations. Different libraries of Python Programming Language (ver. 3.6.4) were utilised for 230 

training and testing the algorithms, i.e. xgboost for XGB, fbprophet for FBP, statsmodels for PD and 231 

sklearn for the rest of algorithms.  Each algorithm was tuned up individually using grid search, and 232 

the number of nodes, layers, irritations, etc. were chosen therefor.  233 

 234 

 235 
Table 3. The ancillary sources whereby each environmental driver was gap-filled. 236 

List of variables (y) Ancillary Source 

    Drivers:  
Ah AWS, ACCESS-R, BIOS2 

Fa ACCESS-R, BIOS2 

Fg ACCESS-R, BIOS2 

Fld ACCESS-R, BIOS2 

Flu ACCESS-R, BIOS2 

Fn ACCESS-R, BIOS2 

Fsd ACCESS-R, BIOS2 

Fsu ACCESS-R, BIOS2 

ps AWS, ACCESS-R 
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Sws ACCESS-R, BIOS2 

Ta AWS, ACCESS-R, BIOS2 

Ts ACCESS-R, BIOS2 

Ws AWS, ACCESS-R 

Wd AWS, ACCESS-R 

Precip AWS, ACCESS-R, BIOS2 

  

 237 

 238 

2.2. Gap-filling algorithms 239 

 240 

Eight imputation algorithms for estimating 15 environmental drivers and 9 algorithms for the 3 241 

major fluxes were picked out to make the comparison. These algorithms were used in a way that a 242 

variety of approaches were tested, from the standard methods like ANNs and MDS, to the newer 243 

algorithms which rarely or never been used in the field, such as Extreme Gradient Boosting and panel 244 

data.  245 

 246 

Marginal Distribution Sampling (MDS) 247 

 As introduced by Reichstein (Reichstein et al., 2005), the MDS is an enhanced Look-up Tables 248 

method, which considers both the covariation of fluxes with meteorological variables and the 249 

temporal auto-correlation of the fluxes (Aubinet et al., 2012b). Alongside the ANNs, the MDS is 250 

considered as one of the standard gap-filling methods for flux data amongst the FLUXNET, and is 251 

selected in this study to help the community to have a clear idea of the performance of other 252 

algorithms. Unlike the other algorithms used in this research, we used Fsd, Ta and VPD as the input 253 

features for the MDS. The PyFluxPro ver. 0.9.2 was used to apply the algorithm (modified code used 254 

for the gaps longer than 10 days). 255 

 256 

Artificial Neural Networks (ANN) 257 

Rooted in the 1950s, artificial neural networks are ML methods inspired by biological neural 258 

networks and are classified as supervised learning methods (Dreyfus, 1990; Farley and Clark, 1954). 259 

ANN work based on several connected units called nodes, which are used to mimic the functionality 260 

of a neuron in an animal brain by sending and receiving signals to other nodes. The ANN technique 261 

used in this paper was Multi-layer Perceptron regressor, which optimises the squared-loss using 262 

stochastic gradient descent.  Sklearn.neural_network.MLPRegressor was used to apply this method 263 

in Python, and its hyperparameters were 800 and 500 for “hidden_layer_sizes” and “max_iter”, 264 

respectively based on grid search. ANN are one of the current standard approaches for gap-filling in 265 

FLUXNET and in this research were picked out as a performance reference for other algorithms. 266 

 267 

Classical Linear Regression (CLR) 268 



9 

 

A classical linear regression is an equation developed to estimate the value of the dependent 269 

variable (y) based on independent values (xi). In contrast, each xi has its specific coefficient and an 270 

overall intercept value. In this method, these coefficients are determined by minimising the squared 271 

residuals (errors) of estimated vs observed values, called least squares. A CLR algorithm can be 272 

formulated as follows (Freedman, 2009): 273 

 y = α + β1X1 + β2X2 + β3X3 + … + βiXi+ ɛ (1) 

where y is the dependent variable, α is the interception, Xs are independent variables, and βi is 274 

coefficient of Xi, and ɛ is the error term. We chose this algorithm as a baseline to find out how better 275 

more complicated algorithms can estimate dependent variables comparatively.  276 

Random Forests (RF) 277 

Random forest, a supervised ML algorithm, used for both classification and regression, 278 

consists of multiple trees constructed systematically by pseudorandomly selecting subsets of 279 

components of the feature vector, that is, trees constructed in randomly chosen subspaces (Ho, 1998). 280 

RF algorithm has been developed to control the overcome over-fitting problem, a commonplace 281 

limitation of its preceding decision tree-based methods (Ho, 1995, 1998). 282 

Sklearn.ensemble.RandomForestRegressor was used to apply this method in Python, and the 283 

hyperparameters used were 5 and 1000 for “max_depth” and “n_estimators”, respectively based on 284 

grid search. 285 

 286 

Support Vector Regression (SVR)  287 

As a non-linear method, support vector regression was developed based on Vanpik’s concept 288 

of support vectors theory (Drucker et al., 1997). An SVR algorithm is trained by trying to solve the 289 

following problem: 290 

 291 

minimise 
1

2
 ‖𝑤‖2 292 

subject to (
𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜀,
⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀,

) 293 

where xi and yi are training sample and target value in a row. The inner product plus intercept 294 

⟨𝑤, 𝑥𝑖⟩ + 𝑏 is the prediction for that sample, and ε is a free parameter that serves as a threshold. 295 

sklearn.svm.SVR was used to apply this method in Python, and the hyperparameters that used were 296 

1 and 0.001 for “C” and “gamma”, respectively based on grid search. 297 

Elastic net regularisation (ELN) 298 

The elastic net is a linear regularised regression method that exerts small amounts of bias by 299 

adding two penalty components to the regressed line to decline the coefficients of independent 300 

variables and thus, provides better long-term predictions. Given that these two penalty components 301 
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come from ridge regression and LASSO, the elastic net is considered as a hybrid model consists of 302 

ridge and LASSO regressions, overcoming the limitations of both. The estimates from the ELN method 303 

can be formulated as below (Zou and Hastie, 2005): 304 

 𝛽̂(𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡) =
(|𝛽̂(𝑂𝐿𝑆)| −

λ1
2⁄ )

1 + λ2
𝑠𝑔𝑛{𝛽̂(𝑂𝐿𝑆)} (2) 

 305 

where 𝛽̂ is the coefficient of each ELN independent variable, λ1 and λ2 are penalty coefficients of 306 

LASSO and ridge regression respectively, 𝛽̂(𝑂𝐿𝑆)  is the coefficient of an independent variable 307 

calculated based on ordinary least squares, and sgn stands for the sign function: 308 

 𝑠𝑔𝑛(𝑥) = {
1        𝑥 > 0
0        𝑥 = 0
 −1     𝑥 < 0

 (3) 

 309 

The ELN regression is good at addressing situations when the training datasets have small samples 310 

or when there are correlations between parameters. sklearn.linear_model.ElasticNet was used to 311 

apply this method in Python, and the hyperparameters used were as follows: {'alpha': 0.01, 312 

'fit_intercept': True, 'max_iter': 5000, 'normalize': False} based on grid search. 313 

 314 

Panel data (PD) 315 

Panel data is a multidimensional statistical method, mainly used in econometrics to analyse 316 

datasets, which involve time series of observations amongst individual cross-sections (Baltagi, 1995) 317 

usually based on ordinary least squares (OLS) or generalised least squares (GLS). A two-way panel 318 

data model consists of two extra components above a CLR as follows (Baltagi, 1995; Hsiao et al., 2002; 319 

Wooldridge, 2008): 320 

   (4) 

 𝑦𝑖𝑡 = 𝛼 + 𝛽𝑋𝑖𝑡 + 𝜇𝑖 + λ𝑡 (5) 

where i and t denote the cross-section and time series dimension in a row, y is a dependent-variable 321 

vector, X is an independent variable matrix, α is a scalar, β is the coefficient of the independent-322 

variable matrix, µi is the unobservable individual-specific effect, and λt is the unobservable time-323 

specific effect. Panel data abilities to provide a holistic analysis of different individuals, as well as 324 

determining the specific impact of every single time caused its superiority over CLR. Since PD requires 325 

cross-sections to be applied, we used a cross-section tower for each of the main five tower as follows: 326 

Ti Tree East for Alice Springs Mulga, Whroo for Calperum, Great Western Woodlands for Gingin, 327 

Daly River for Howard Springs, and Cumberland Plain for Tumbarumba. The cross-section towers 328 

were chosen based on their distances (the closest ones with common years of data).  329 

1,2,..., ; 1,2,...,it it ity X u i N t T     

http://www.ozflux.org.au/monitoringsites/cumberlandplain/index.html
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Extreme Gradient Boost (XGB) 330 

Extreme gradient boost is a reinforced method of Gradient Boost introduced in 1999 that 331 

works based on parallel boosted decision trees and similar to RF can be used for a variety of data 332 

processing purposes including classification and regression (Friedman, 2002; Jerome H. Friedman, 333 

2001; Ye et al., 2009). XGB method is resistive to over-fitting and provides a robust, portable and 334 

scalable algorithm for large-scale boosting decision-trees-based techniques. 335 

sklearn.ensemble.GradientBoostingRegressor was used to apply this method in Python, and its 336 

hyperparameters were chosen based on grid search as follows: {'learning_rate': 0.001, 'max_depth': 8, 337 

'reg_alpha': 0.1, 'subsample': 0.5}. 338 

 339 

The Prophet Forecasting Model (FBP) 340 

The Prophet Forecasting Model, also known as “prophet”, is a time series forecasting model 341 

developed by Facebook to manage the common features of business time series and designed to have 342 

intuitive parameters that can be adjusted without knowing the details of underlying model (Taylor 343 

and Letham, 2017). A decomposable time series model was used (Harvey and Peters, 1990) to develop 344 

this model, with three main components: trend, seasonality, and holidays as the equation below 345 

(Taylor and Letham, 2018): 346 

 y(t) = g(t) + s(t) + h(t) (6) 

 347 

where g(t) is the trend function, which models non-periodic changes, s(t) is a function to represent 348 

periodic changes, e.g. seasonality, and h(t) assesses the effects of potential anomalies which occur over 349 

one or more days, e.g. holidays. 350 

 351 

2.3. The gap scenarios 352 

In order to find out the effect of gap size on the performance of our gap-filling algorithms, the 353 

data of nine different gap windows (i.e. 1, 5, 10, 20, 30, 60, 90, 180 and 365 consecutive days) were 354 

removed randomly from the datasets during 2013. Afterwards, the data from 2012 to 2013 were used 355 

to train the algorithms. Finally, the trained algorithms were used to fill the artificial gaps 356 

superimposed to the datasets. The entire process permutated five times in each scenario to ensure the 357 

performance was not sensitive to the gap period. As such, 15 variables, 9 window lengths, 8 gap-filling 358 

methods (MDS excluded), and 5 permutations across 5 towers resulted in 27000 computations for the 359 

meteorological features. Similarly, 3 fluxes, 9 window lengths, 9 gap-filling methods, and 5 360 

permutations across 5 towers resulted in 6075 computations for the major fluxes, overall. 361 
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2.4. Statistical performance measures 362 

Different statistical metrics were used to evaluate the performance of algorithms and enable 363 

comparison between measured values from the flux towers with each gap-filling algorithm prediction. 364 

These metrics included the coefficient of determination (R-squared) to measure the square of the 365 

coefficient of multiple correlations (Devore, 1991), the variance of measured and modelled values (S2) 366 

to indicate how well algorithms could follow the variations of the recorded data, the root mean square 367 

error (RMSE), the mean bias error (MBE) to capture distribution and bias of residuals, variance ratio 368 

(VR) to compare the variance of estimated values with those of measured, and the Index of Agreement 369 

to compare the sum of the squared error to the potential error (Bennett et al., 2013). Abbreviations and 370 

formulas of these metrics are illustrated as follows (Bennett et al., 2013):  371 

 𝑅2 =
[∑(𝑝𝑖 − 𝑝̅)(𝑜𝑖 − 𝑜̅)]2

∑(𝑝𝑖 − 𝑝̅)2 ∑(𝑜𝑖 − 𝑜̅)2
 (7) 

 372 

 S2 =
∑(𝑥𝑖 − 𝑥̅)

N − 1
 (8) 

 373 

 
𝑅𝑀𝑆𝐸 = √

∑(𝑝𝑖 − 𝑜𝑖)2

N − 1
 

(9) 

 374 

 375 

 MBE =
∑ 𝑜𝑖 − 𝑝𝑖

N − 1
 (10) 

 376 

 VR=
𝜎𝑝

2

𝜎𝑜
2 (11) 

 377 

 𝐼𝑜𝐴𝑑 = 1 −
∑ (𝑜𝑖 − 𝑝𝑖)

2𝑛
𝑖=1

∑ (|𝑝𝑖 − 𝑜̅| + |𝑜𝑖 − 𝑜̅|)2𝑛
𝑖=1

 (12) 

 378 

where oi and pi are individual measured and predicted values respectively, 𝑜̅ and 𝑝 are the means of 379 

o and p, and σ2 is the variance.  S2 is calculated separately for the observed and predicted values with 380 

the respective values defined as x that represents every observed or predicted value. All of these 381 

metrics were calculated for each of the gap scenarios, and then the results of different windows were 382 

concatenated. Afterwards, the yearly metrics were calculated to avoid Simpson’s paradox or any 383 

relevant averaging issue as described by (Kock and Gaskins, 2016). Moreover, the average of daily 384 

and seasonal differences between the estimated and measured values, as well as the associated 385 

variance were calculated and plotted.  386 
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3. Results 387 

 388 

3.1. Fluxes 389 

3.1.1 Fc 390 

 Even though factors such as Fg and Fn are fluxes, we dealt with them as environmental drivers 391 

since they drive the three major fluxes. The metrics used to evaluate the performance of the algorithms 392 

(RMSE, R2, MBE, IoAd and VR) (Table 4) illustrated that overall, the performance of these algorithms, 393 

particularly the ML ones, was similar, closely followed by the MDS. The XGB provided the lowest 394 

values of RMSE and one of the highest R2, while the FBP and ELN had the lowest and highest values 395 

of RMSE and R2, respectively. The algorithms, however, showed different levels of sensitivity to the 396 

gap lengths, e.g. the CLR and PD showed smaller sensitivity, while the FBP showed the most 397 

sensitivity (Figure 1).  398 

Table 4. The average amounts of performance metrics for each gap-filling algorithm regarding Fc, which includes all window 399 
lengths and sites, ranked by RMSE using the Tukey’s HSD test at the level of 5 per cent. 400 

Algorithm Mean RMSE Mean R2 Mean MBE Mean IoAd Mean VR 

XGB 3.07 a 0.59 -0.43 0.90 0.66 

RF 3.12 a 0.58 -0.37 0.91 0.71 

ANNs 3.13 a 0.56 -0.33 0.90 0.69 

SVR 3.34 b 0.47 -0.32 0.86 0.75 

MDS 3.35 b 0.51 -0.41 0.85 0.70 

PD 3.41 b,c 0.48 -0.35 0.81 0.54 

CLR 3.44 b,c 0.49 -0.36 0.81 0.55 

ELN 4.52 c 0.43 -0.37 0.73 0.39 

FBP 4.15 d 0.47 -0.06 0.77 0.68 

 401 

These outcomes were expected for the XGB as it uses a more regularised model formalisation to 402 

control over-fitting (Chen and Guestrin, 2016) which, on paper, leads to better performance as against 403 

its ML rivals. The relatively poor performance of FBP was also foreseen for unlike other algorithms, 404 

FBP did not use any feature to estimate flux values, other than the previous time series of flux values. 405 

However, the weaker performance of the ELN compared to CLR was unforeseen due to by adding 406 

two penalty components to the regressed line, and the ELN is supposed to improve the long term 407 

prediction compared to the traditional linear regression methods. Tukey’s HSD (honestly significant 408 

difference) test at the level of five per cent was applied to the results to find out whether the difference 409 

amongst the algorithms was significant (Table 4). Where the null hypothesis was there is no significant 410 

difference between the mean values of the RMSE. According to the results, there were significant 411 

differences between certain algorithms, and the XGB, RF and ANNs were different from the rest, 412 

showing that these three performed considerably better. Tukey’s HSD test, however, did not reject the 413 

second error probability between RF, XGB and ANNs meaning that the three algorithms were not 414 

significantly different from each other. This result agrees with the results of (Falge et al., 2001) and 415 

(Moffat et al., 2007) in the sense that ANNs are one of the best available gap-filling algorithms, and 416 

there is no significant difference amongst the appropriate algorithms. However, the test showed that 417 

the performance of the MDS had a significant difference from the ANNs. Finally, it is worth 418 
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mentioning that Tukey’s HSD is well known as a conservative test. That being said, despite no 419 

meaningful difference based on Tukey’s HSD, XGB and RF might have performed better than ANNs, 420 

as the superiority of RF in gap-filling of methane flux over the ANNs, SVR, and MDS has recently 421 

been claimed by (Kim et al., 2020).  422 

 423 

Figure 1. A heat map of mean RMSE values of Fc across all sites based on 9 algorithms and 9 window lengths in 2013. 424 

  425 

To address the first objective of this paper, finding out the sensitivity of the gap-filing 426 

algorithms to the gap window length, we used the averaged RMSE, R2 and MBE for each gap size, 427 

using the output of all algorithms for all sites (Table 5). The outcome illustrates that the longer the 428 
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window length got, the bigger the amounts of RMSE became.  Yet, no such pattern was recognisable 429 

for the R2 and MBE. As a result, generally, any consecutive gaps longer than 30 days seem to decline 430 

the performance of the algorithms noticeably. The phenomenon can be justified by the idea that longer 431 

windows do not let the algorithms to accommodate seasonal changes and therefore, different 432 

physiological behaviour of the canopy. 433 

Table 5. The average amounts of RMSE, R2, and MBE for Fc gap-filling based on the window length including the outcome of all 434 
sites; the differences of RMSE values were tested using the Tukey’s HSD test at the level of 5 per cent. 435 

Window length Mean RMSE Mean R2 Mean MBE 

1-day 3.23 a 0.53 -0.27 

5-days 3.25 a 0.52 -0.31 

10-days 3.26 a 0.51 -0.29 

20-days 3.27 a 0.51 -0.31 

30-days 3.29 a 0.51 -0.31 

60-days 3.32 a 0.49 -0.35 

90-days 3.37 a 0.51 -0.38 

180-days 3.43 a 0.50 -0.41 

365-days 3.49 a 0.49 -0.37 

 436 

According to the MBE values (Table 4), mainly, all algorithms had negative amounts of MBE, showing 437 

overestimation of the Fc values. This bias varied from tower to tower and depended on the window 438 

lengths. For instance, absolute amounts of the MBE were bigger in Gingin and Tumbarumba, while 439 

considerably smaller (closer to zero) at AliceSprings Mulga and Calperum (Supplementary). The 440 

lower leaf area index of the two later sites, and thus their smaller amounts of photosynthesis is likely 441 

to be the reason that justifies the outcome. FBP, nonetheless, provided substantially lower mean bias 442 

(-0.06) compared to the other algorithms, which varied between -0.32 and -0.43.  443 

Observations from the EC technique often include extremely low or high values, especially at 444 

night, when some of the theoretical assumptions might be violated. The nature of the EC technique 445 

associated with its practical challenges, often makes it difficult to distinguish between the good data 446 

and the noise (Aubinet et al., 2012a; Burba and Anderson, 2010). This problem seems to affect the 447 

outcomes of the gap-filling algorithms in this research, as none of them performed ideally in capturing 448 

the observed variance (). Even though RMSE, R2 and IoAd showed the superiority of the XGB, RF and 449 

ANNs, the variance ratio between the estimated and measured values revealed different information 450 

(Table 4), which is slightly recognisable in Figure 2. The variance ratios (VR) showed that SVR captured 451 

the extreme values of Fc better than the other algorithms, 0.75 on average. The other ML algorithms –452 
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plus the MDS- though, performed closely with regard to capturing the extremes that matches both the 453 

expectations, and the performance metrics Table 4.   454 

 455 

Figure 2. Measured vs estimated values of Fc for Calperum based on a 10-day gap window (March 22 - March 31, 2013). 456 

The linear algorithms, CLR, PD, and ELN, performed worse with respect to the VR compared to the 457 

ML algorithms. The estimated versus measured values of Fc for Calperum () confirms the information 458 

achieved by the VR. Based on the figure, the ELN, as expected, performed the worst in capturing the 459 

fluctuations of Fc (VR = 0.39), while the performance of the other algorithms –apart from the top five- 460 

was not considerably better, with the exception of FBP. It is noteworthy that CLR, PD, and ELN 461 

frequently predicted nocturnal photosynthesis. Overall, the results showed a significant difference 462 

between the top five algorithms (XGB, RF, ANNs, SVR, and MDS) and the others, particularly in 463 

capturing the fluctuations and the min-max values of Fc. However, a comprehensive comparision 464 

shows a slight superiority of the XGB and RF.  465 
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3.1.2 Fe 466 

 The performance of algorithms for Fe was similar to that for Fc regarding RMSE, MBE and R2, 467 

as shown in Table 6. This similarity was not surprising since these processes are partially coupled via 468 

stomatal conductance (Scanlon and Kustas, 2010; Scanlon and Sahu, 2008). Again, the top three ML 469 

algorithms performed better, with a significant superiority of the XGB and RF, as shown by the 470 

Tukey’s HSD (Table 6), followed by the ANNs and MDS. Besides, the null hypothesis was not rejected 471 

while comparing FBP and SVR, whereas the better performance of the other algorithms was 472 

confirmed.  As a result, the FBP and SVR provided the most unsatisfactory results in estimating Fe, 473 

according to the average values of the RMSE. No significant improvement in RMSE occurred when 474 

the gap lengths became shorter than 60 days, meaning that the performance of the algorithms did not 475 

vary considerably from a 30-day to a one-day window, especially for the top algorithms (XGB, RF, 476 

and ANNs). The results of CLR and PD were very similar to those for Fc, showed lower RMSE and 477 

higher R2 values as against ELN, but the ELN led to slight lower MBE. The MBE values also showed 478 

moderately high values for the SVR, meaning that there was an absolute bias in its outcome, which 479 

might be related to overfitting. The source of the bias shown by the SVR algorithm (Figure 3), was 480 

because it could not capture the minimum values appropriately, resulting in a considerable 481 

overestimation. A common issue in estimating Fe values, which had affected all algorithms other than 482 

the FBP, was not assessing the negative values. In contrast to Fc results, the ANNs did not perform as 483 

solid as the XGB and RF, which could be due to not being able to capture the maximum values as 484 

satisfying as its rivals were.  485 

Table 6. The average of metrics for Fe gap-filling based on the algorithms, ranked by RMSE using the Tukey’s HSD test at the 486 
level of 5 per cent. 487 

Algorithm (Fe) Mean RMSE Mean R2 Mean MBE 

XGB  34.95 a 0.74 -3.48 

RF  35.63 a 0.74 -3.33 

ANNs 37.77 a,b 0.67 -3.94 

MDS 41.74 b,c 0.64 -3.27 

PD  43.28 b,c 0.64 -6.35 

CLR  43.51 c 0.64 -6.66 

Eln  44.34 c 0.59 -5.13 

SVR  46.63 c,d 0.59 -20.45 

FBP  50.53 d 0.52 3.01 

 488 

    489 
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 490 

Figure 3. Measured vs estimated values of Fe for Calperum based on a 10-day gap window (March 22 - March 31 2013). 491 

 492 

3.1.3 Fh 493 

As with the other flux results, the metrics (RMSE, R2 and MBE) showed slight superiority of 494 

XGB and RF, as well as the inferiority of the SVR and FBP over the other algorithms (Table 7). 495 

Likewise, the SVR provided relatively large negative values of MBE, showing considerable 496 

overestimation. The Tukey’s HSD test of the average RMSE values confirmed that the performance of 497 

the FBP was significantly different from the rest at the level of 5 per cent, making FBP the weakest 498 

performer for Fh. On the other hand, although there was no significant difference amongst the XGB,  499 

RF and ANNs, the first two were considerably superior over the other algorithms as regards the 500 

Tukey’s HSD test. Like Fe, estimated values of Fh using SVR had a negative bias (Figure 4) because it 501 

was not able to provide appropriate estimations of Fh minimum values. In contrast, the ANNs 502 

performed the best in capturing the minimum values, while the other top algorithms performed 503 

almost equally well. Despite the close performance in capturing the minimum values, ANNs and MDS 504 

did not carry out as solid as XGB and RF concerning the overall values, resulted in higher RMSE. 505 

Finally, similar to the other fluxes, the PD performed slightly better than the CLR and ELN.  506 

Table 7. The average metrics for Fh gap-filling based on the algorithms, ranked by RMSE using the Tukey’s HSD test at the level 507 
of 5 per cent. 508 

Algorithm (Fh) Mean RMSE Mean R2 Mean MBE 

XGB 37.23 a 0.92 -0.21 

RF 37.55 a 0.91 -0.09 

ANNs 40.13 a,b 0.90 -0.08 

MDS 43.30 b,c 0.88 -9.51 

SVR 43.80 b,c 0.88 0.35 

PD 44.96 c  0.88 1.36 

CLR 45.03 c  0.88 1.64 

Eln 45.19 c  0.87 2.16 

FBP 72.91 d 0.73 1.07 
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 509 

Figure 4. Measured vs estimated values of Fh for Calperum based on a 10-day gap window (March 22 - March 31 2013). 510 

    511 

3.2. Meteorological and Environmental Drivers 512 

 Since meteorological and environmental drivers are needed to fill the gaps of the three 513 

substantial fluxes, Fc, Fe and Fh, the eight algorithms (excluding the MDS) were used to fill the gaps 514 

of these drivers. The metrics of R2, RMSE, and MBE were calculated for all five towers and nine 515 

window lengths (16 meteorological and environmental drivers and three fluxes). Overall, for most 516 

meteorological drivers, the linear algorithms, especially the CLR and PD, performed slightly better 517 

than the ML algorithms such as the XGB, RF, ANNs and SVR, except for Ah, Fg and Fn. This 518 

unexpected superiority can be explained based on the two following reasons. Firstly, unlike the fluxes, 519 

the input and output features were the same here, e.g. Ta for Ta, which led to strong correlations (e.g. 520 

up to 0.99 for atmospheric pressure - ps) as well as strong linear relationships between the 521 

independent and dependent features. These strong correlations helped the linear algorithms to 522 

perform well, while nullified the ability of the ML algorithms to capture non-linear behaviour of 523 

complicated problems. Second, the slight inferiority of ML algorithms could be due to data noise 524 

where simple linear algorithms such as the CLR are usually less sensitive to the noise relatively. 525 

Therefore, over-fitting is not an issue for them when the number of observations is big enough (i.e. at 526 

least 10 to 20 observations per parameter (Harrell, 2014)). The exceptions were Ah, Fn and Fg, for 527 

which values were estimated more accurately by the XGB, ANNs and RF, especially the latest one (the 528 

RMSE of 28.91 versus 33.92 provided by the RF and CLR for Fg, respectively). Tukey’s HSD test for 529 

the mean RMSE values of Fg confirmed that The XGB, ANNs and RF provided better results at the 530 

level of 5 per cent, while, like all other fluxes and drivers, the FBP confirmed to be the worst algorithm 531 

(Table 8). Yet, according to the same test for the other drivers, there was not any significant difference 532 

between the algorithms, other than the FBP, which provided the most significant mean values of the 533 

RMSE (results not shown). Importantly, though, none of the algorithms offered adequate estimations 534 

for soil moisture (Sws), particularly in drier regions. This weak performance happened because Sws 535 
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changes dramatically during rainfall in a pulsed manner often from zero to saturation in short space 536 

of time, whereas, the algorithms had been trained based on the datasets mostly reflecting non-rainy 537 

periods. These datasets, consequently, could not fit the algorithms in a way that they could estimate 538 

Sws accurately when precipitation occurs and the soil moisture increases dramatically. For instance, 539 

in a  wet region like Tumbarumba, where the soil faces rainy days frequently, the time series are much 540 

less spikey. Thus, the overall performance was better in these regions compared with the drier ones, 541 

e.g. R2 of 0.45 and 0.26 on average for Tumbarumba and Calperum, respectively. Besides, the dataset 542 

used to gap-fill the soil moisture was a model derivation from gridded data or regional reanalysis and 543 

therefore, can be not close to reality. Another challenge of estimating soil moisture comes from the 544 

low spatial coherence of soil moisture is that it can be extremely different just a couple of hundred 545 

metres away, due to storms, topography, soil structure heterogeneity, etc. (Reichle et al., 2004; Sahoo 546 

et al., 2008). 547 

 548 

Table 8. The average amounts of RMSE for Fg gap-filling based on the algorithms, using the Tukey’s HSD test at the level of 5 549 
per cent. 550 

Algorithm 

(Fg) 

Mean 

RMSE 

RF a 28.91 

XGB a, b 29.19 

ANNs b, c 29.58 

SVR c 31.46 

CLR d 33.92 

PD d 33.93 

ELN d 34.09 

FBP e 39.10 

  551 

4. Discussion 552 

 553 

Table 9. The name and the abbreviation of the gap-filling algorithms. 554 

Algorithm abbrevation Full name 

XGB Extreme Gradient Boost 

RF Random Forest Algorithm 

ANNs Artificial Neural Networks 

MDS Marginal Distribution Sampling 

SVR Support Vector Regressi 

CLR Classical Linear Regression 

PD Panel data 

ELN Elastic net regularisation 

FBP The Prophet Forecasting Model (Facebook Prophet) 

 555 

All algorithms (Table 9) performed similarly in estimating the meteorological and 556 

environmental drivers (turbulent fluxes included) across all stations, except the FBP, which performed 557 

poorly for it did not use any ancillary data. The best results were achieved for the 30-day gaps and 558 

shorter, while the worst results obtained for the most extended windows, 180 and 365 days. Although 559 
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most of the algorithms performed almost equally well in estimating meteorological and 560 

environmental drivers, the linear algorithms, the CLR, ELN and PD, performed slightly better (not 561 

significant using a Tukey’s HSD test, though). The only clear exception was Fg, for which the RF 562 

provided more accurate and robust estimations. The ML algorithms and MDS, on the other hand, 563 

showed their superiority over the linear algorithms while estimating the main fluxes, Fc, Fe and Fh. 564 

For Fc, the XGB, RF and ANNs performed significantly better than the FBP and all linear algorithms, 565 

i.e. the CLR, PD and ELN, yet, followed closely by the SVR and MDS. The superiority of the ML 566 

algorithms, as well as their close performance,  agreed with the results of previous researches, e.g. 567 

(Falge et al., 2001; Moffat et al., 2007), that showed the superiority of non-linear algorithms and no 568 

significant difference amongst the top algorithms in estimating Fc. Besides, the slight superiorities of 569 

XGB and RF over ANNs, mainly unnoticeable by a conservative test like Tukey’s HSD, confirms RF 570 

performs better regarding the EC flux gap-filling (Kim et al., 2020). 571 

The XGB was the most novel ML algorithm used in this research and based on the most 572 

performance metrics provided comparatively robust results in estimating the fluxes. In estimating the 573 

meteorological drivers though, the XGB did not show any superiority over the other algorithms, 574 

especially the linear ones. Moreover, the XGB needed four to six times longer time to be trained and 575 

tunned, making it a less feasible algorithm when time or the processing power are important factors 576 

or several years of data are needed to be gap-filled. Hence, we do not recommend the XGB as an 577 

alternative to the current alternative algorithms. Nevertheless, because of its local superiorities, this 578 

algorithm might be suitable to use in an ensemble model alongside the algorithms with different 579 

weakness points.   580 

The RF was the best all-around algorithm amongst the nine algorithms used in this study, 581 

providing the best consistant and robust estimates of the fluxes (similar to XGB) but also being less 582 

complicated and performing faster than the XGB. The RF also provided the best results for Fg, where 583 

the linear algorithms did not perform well. This superiority of this algorithm over ANNs, MDS, and 584 

SVR has been proved by (Kim et al., 2020) for gap-filling of methane, showing that it is worth testing 585 

the RF for other towers, and fluxes across the FLUXNET.  586 

The ANNs estimated the fluxes better than the linear algorithms, notably for Fc, yet not as 587 

robust as the XGB and RF in general. For Fc and Fh, the ANNs provided bias, mainly due to 588 

overestimation of minimum values when the window lengths were longer than 30 days. However, 589 

since the superiority of the XGB and RF was not considerable, it is difficult at this point to suggest 590 

using XGB or RF as better alternatives. That is because ANNs have been checking out for a long time 591 

in different locations and considered as one of the most reliable algorithms in the field for more than 592 

a decade (Aubinet et al., 2012a; Hagen et al., 2006; Kunwor et al., 2017; Moffat et al., 2007). In other 593 

words, the superiority of RF, needs to happen in several future studies to convince the network to 594 

suggest RF instead of ANNs, or identify it as another standard method.  Furthermore, there are a wide 595 

variety of different ANNs algorithms used in the field (Beringer et al., 2016b; Hagen et al., 2006; Isaac 596 

et al., 2017; Kunwor et al., 2017; Moffat et al., 2007), and this minor superiority of RF and XGB cannot 597 

be generalised without enough additional proves. As such, we suggest other researches to use the RF, 598 

especially regarding Fh and Fc alongside the ANNs to find out which one performs better in the 599 
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challenging scenarios, e.g. when the gaps are long. Another option is to develop ensemble models 600 

using since, according to the literature, there is no room to improve the results substantially based on 601 

a single algorithm (Moffat et al., 2007). Besides, a model with a higher level of flexibility is required in 602 

the field (Hagen et al., 2006; Kunwor et al., 2017; Richardson and Hollinger, 2007). Finally, according 603 

to the environmental drivers, The ANNs, like the other ML algorithms, could not show a consistent 604 

superiority over the linear algorithms. Therefore, we do not recommend using ML algorithms in such 605 

scenarios, except for Fg, for which RF seems to be a better option.  606 

The MDS performed close to, yet not as well as the XGB, RF, and ANNS in gap-filling the fluxes. 607 

Its performance was close to the SVR, but was more reliable regarding Fe and Fh. It is worth 608 

mentioning that this performance was achieved despite the fact that the MDS was using fewer input 609 

features. Its performance, however, was comparable with the ML algorithms, particularly when the 610 

gap lengths were relatively shorter (smaller than 10 days). As such, we recommend using the MDS 611 

when the gaps are not long and/or the available input features are limited, especially considering that 612 

the MDS performs significantly faster than the ML algorithms, and is easier to use.   613 

The SVR showed consistent inferiority over the other ML algorithms and did not fulfilled our 614 

expectations, neither for the meteorological drivers nor for the major fluxes. The only strength of the 615 

SVR  was that it captured the extreme values better than any other algorithm. However, according to 616 

its larger RMSE amounts, the mentioned advantage seems to be achieved suspiciously and might have 617 

occurred due to over-fitting. This dubious performance shows the SVR is more vulnerable to the over-618 

fitting issues regarding these types of data. Hence, we suggest the SVR not to be used in any kind of 619 

environmental modelling related to the reviewed drivers and fluxes, whatsoever. 620 

The CLR, the simplest algorithm used in this research, provided a comparatively acceptable 621 

performance in estimating the meteorological drivers, except for Fg. This algorithm, however, could 622 

not perform well in assessing the fluxes, especially Fc, mainly because of its inability to capture the 623 

extreme values caused by the non-linear nature of Fc. Overall, considering the CLR simplicity, 624 

resource-saving and robust performance for drivers, this algorithm seems to be the most suitable way 625 

to fill the gaps of meteorological parameters in similar scenarios, where the same ancillary dataset are 626 

available.  627 

The PD performed slightly better than the CLR, yet it could not fulfil the expectations to show 628 

a significant superiority over the other linear algorithms used in the research. This unforeseen weak 629 

performance can be explained due to a couple of reasons. First, one of the assumptions of using the 630 

PD is that the behaviour of the cross-sections, here towers, is similarly under the similar conditions 631 

(the independent variables), and the only thing leads to the difference is the specific characteristics of 632 

each individual cross-section. Contrariwise, it seems that the five towers selected in this research 633 

violated this assumption due to their absolute different ecosystems. Based on the previous studies in 634 

which the PD performed satisfying (Izady et al., 2013, 2016; Mahabbati et al., 2017), (Izady et al., 2016) 635 

and (Mahabbati et al., 2017), it appears that a decent level of homogeneity is vital for the PD to perform 636 

satisfactorily. As in all previous cases, the ecosystem of the cross-sections had significant similarities, 637 

and the distance between them were tens to hundreds of kilometres, not thousands. Therefore, the 638 

characteristics of cross-sections, such as radiation, climate, rainfall, etc. had considerable more 639 
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similarity and homogeneity compared with the towers used in this research. Finally, it is worth 640 

mentioning that PD has been commonly used to analyse the time series with a time resolution of 641 

weekly or longer, with some exceptional daily-scale cases. In this research, the resolution of data was 642 

half-hourly instead, which dramatically increased the computational demands of the algorithm, led 643 

to days of processing for a single run. This demand happened because the algorithm creates a dummy 644 

variable for each time step and the relevant matrix of variables becomes too large to compute by a 645 

regular PC. Considering the expenses of this algorithm, we recommend other researches not to use 646 

PD when the time resolution is shorter than daily. Despite the limitation, we still encourage further 647 

using of PD whenever there is a decent level of homogeneity amongst the cross-sections and the time 648 

resolution is daily or longer (ideally weekly or monthly).  649 

 The ELN, as a hybrid linear model, did not show any superiority over the CLR, despite its 650 

modifications to provide more accurate estimations. Even though ELN performed well in estimating 651 

the drivers with slight supremacy in some occasions, e.g. Fld, the CLR is a more proper algorithm to 652 

choose for gap-filling the drivers due to its simplicity and less calculation requirement.  653 

The FBP was a unique algorithm used in this research, as it did not use any independent 654 

variables to estimate the values of drivers and fluxes.  The FBP performance was significantly more 655 

unsatisfactory than the other algorithms. Therefore FBP cannot be considered as a reliable alternative 656 

for current algorithms to fill the gaps, especially the long ones.     657 

Given that some of the environmental drivers affect the Fc differently during the day versus 658 

night, separating the diurnal and nocturnal datasets to train the algorithms possibly entails an 659 

improvement in the outcome. Mainly because of the u* threshold filtering and other problems 660 

associated with the nocturnal period, the portion of diurnal data is generally, by far, outweighs the 661 

nocturnal data portion, which potentially leads to a bias in the algorithm. The same challenge has 662 

associated with soil moisture estimation, as the behaviour of the system on sunny days is utterly 663 

different from its conduct during the rainy periods. Moreover, the system memory and the antecedent 664 

condition are undeniable features associated with soil moisture (Ogle et al., 2015). Therefore, using 665 

the models that are capable of addressing these considerations are more likely to improve the 666 

estimations. 667 

5. Conclusions 668 

 Eight different gap-filling algorithms for estimating 16 meteorological drivers as well as Nine 669 

algorithms for the three key ecosystem turbulent fluxes (sensible heat flux (Fh), latent heat flux (Fe), 670 

and net carbon flux (Fc)) were investigated and their performance evaluated based on the datasets of 671 

five towers in Australia. Overall, three ML algorithms, XGB, RF and ANNs, performed nearly equally 672 

well and significantly better than their linear rivals (the CLR, PD, and ELN) in estimating the flux 673 

values. However, the linear algorithms performed almost as equally well as the ML algorithms in 674 

assessing the meteorological drivers. Amongst these nine algorithms, the RF and XGB showed the 675 

highest level of robustness and reliability in estimating the Fc, Fe, and Fh. The PD was expected to 676 

perform better than the linear methods and hoped to compete with the ML algorithms in estimating 677 

the fluxes, but it failed to do so. The SVR was the only ML algorithm that did not perform at the same 678 
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level as the rest ML algorithms and was suspected of enduring over-fitting issues, while the MDS 679 

performed somewhere in between. Considering the outcomes of the other researches undertaken in 680 

the OzFlux Network, e.g. (Cleverly et al., 2013; Isaac et al., 2017), none of the ML algorithms used in 681 

this research was proven to provide substantially better flux estimations compared with the standard 682 

method (ANNs). Nonetheless, amongst the algorithms tested in this research, the RF showed some 683 

potential capabilities as an alternative due to its more consistent performance regarding the long gaps. 684 

Eventually, we recommend suggestions below to improve the results for similar prospective 685 

researches, as well as the QC and gap-filling procedure of OzFlux Network: 686 

1) Since the RF remained more consistent compared to its competitors -including the ANNs-, It is a 687 

good idea to use RF alongside the commonly used algorithms in the challenging scenarios, such as 688 

long gaps, to figure out whether this superiority can be generalised. 689 

2) It appears that, even after three levels of quality control process done by the PyFluxPro platform, 690 

the data are still noisy. This noisy data are an essential source of both uncertainty and inaccuracy of 691 

the outcome, regardless of the algorithm used to gap-fill the data. As a result, another level of quality 692 

control methods, such as Wavelets or Matrix Factorialisation, in addition to the current classical ones 693 

used by the PyFluxPro and other similar platforms, can probably improve the data quality and thereby 694 

improve the final imputation results. 695 

3) For future researches, using recurrent neural networks (RNNs) instead of feedforward neural 696 

networks (FFNN) could improve the predictions. That is likely because RNNs help the model to 697 

consider temporal dynamic behaviour of time series, as unlike FFNN, wherein the activations flow 698 

only from the input layer to the output layer, RNNs also have neuron connections pointing backwards 699 

(Géron, 2019). This demand to an algorithm capable of considering time has been mentioned in 700 

previous researches as one of the reasons why testing the new algorithms is needed (Richardson and 701 

Hollinger, 2007). 702 

3) Developing ensemble models using algorithms with different weaknesses and strengths may also 703 

enhance the results where a single algorithm shows performance deficiency.  704 

 705 

6. Data availability 706 

The data were used in this research are available through the following sources: The L3 and L4 707 

data are accessible from the OzFlux data portal (http://data.ozflux.org.au/portal). Current ACCESS-R 708 

and data are available from the BoM OPeNDAP server (https://www.opendap.org/). Likewise, the 709 

data coming from the BoM AWS are accessible from (http://www.bom.gov.au/climate/data). Lastly, 710 

the BIOS2 data are accessible from the ECMWF datasets portal 711 

(https://www.ecmwf.int/en/forecasts/datasets). All data used in this research are available in this 712 

repository address: (https://research-repository.uwa.edu.au/en/datasets/a-comparison-of-gap-filling-713 

algorithms-for-eddy-covariance-fluxes); DOI: 10.26182/5f292ee80a0c0. 714 
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