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Abstract 16 

  17 

The errors and uncertainties associated with gap-filling algorithms of water, carbon and energy fluxes 18 

data, have always been one of the main challenges of the global network of microclimatological tower 19 

sites that use eddy covariance (EC) technique. To address these concerns, and find more efficient gap-20 

filling algorithms, we reviewed eight algorithms to estimate missing values of environmental drivers, 21 

and separately, nine algorithms for the three major fluxes typically found in EC time series. We then 22 

examined the algorithms' performance for different gap-filling scenarios utilising the data from five 23 

EC towers during 2013. This research's objectives were a) to evaluate the impact of the gap lengths on 24 

the performance of each algorithm; and b) to compare the performance of traditional and new gap-25 

filling techniques for the EC data, for fluxes and separately for their corresponding meteorological 26 

drivers. The algorithms' performance was evaluated by generating nine gap windows with different 27 

lengths, ranging from a day to 365 days. In each scenario, a gap period was chosen randomly, and the 28 

data were removed from the dataset, accordingly. After running each scenario, a variety of statistical 29 

metrics were used to evaluate the algorithms' performance. The algorithms showed different levels of 30 

sensitivity to the gap lengths; The Prophet Forecast Model (FBP) revealed the most sensitivity, whilst 31 

the performance of artificial neural networks (ANNs), for instance, did not vary as much by changing 32 

the gap length. The algorithms' performance generally decreased with increasing the gap length, yet 33 

the differences were not significant for the windows smaller than 30 days. No significant difference 34 

between the algorithms were recognised for the meteorological and environmental drivers. However, 35 

the linear algorithms showed slight superiority over those of machine learning (ML), except the 36 

random forest algorithm (RF) estimating the ground heat flux (RMSEs of 28.91 and 33.92 for RF and 37 
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classic linear regression (CLR) respectively). However, for the major fluxes, ML algorithms and the 38 

MDS showed superiority over the other algorithms. Even though ANNs, random forest (RF) and 39 

extreme gradient boost (XGB) showed comparable performance in gap-filling of the major fluxes, RF 40 

provided more consistent results with slightly less bias, as against the other ML algorithms. The results 41 

indicated no single algorithm that outperforms in all situations, but the RF is a potential alternative 42 

for the MDS and ANNs as regards flux gap-filling. 43 

  44 

1. Introduction 45 

To address the global challenges of climatological and ecological changes, environmental 46 

scientists and policymakers are demanding data that are continuous in time and space.  In addition, 47 

there is a need for quantifying and reducing uncertainties in such data, including observations of 48 

carbon, water and energy exchanges that are crucial components in national/international flux 49 

networks and global earth observing systems.  Satellites partially fill this gap as they provide excellent 50 

spatial coverage but have limited temporal resolution, and not measured at a point scale. As such, 51 

high-quality long-term site observations of ecosystem process and fluxes are needed that are 52 

continuous in time and space. The global eddy covariance (EC) flux tower network (FLUXNET), 53 

consists of its regional counterparts (i.e. AmeriFlux, EUROFLUX, OzFlux, etc.) and was established in 54 

the late 1990s to address the global demand for such information (Aubinet et al., 1999; Baldocchi et al., 55 

2001; Beringer et al., 2016a; Hollinger et al., 1999; Menzer et al., 2013; Tenhunen et al., 1998). Despite 56 

EC data being frequently used to validate process modelling analyses, field surveys, and remote 57 

sensing assessments (Hagen et al., 2006), there are some serious concerns regarding the technique's 58 

challenges, e.g. data gaps and uncertainties. Hence, filling data gaps and reducing uncertainties 59 

through better gap-filling techniques are highly needed. 60 

Even though the EC is a common technique to measure fluxes of carbon, water and energy, 61 

there are some challenges in providing robust, high-quality continuous observations. One of the 62 

challenges regarding the technique, and therefore, the flux networks, is addressing data gaps and the 63 

uncertainties associated with the gap-filling process, mainly when the gap windows are long (longer 64 

than 12 consecutive days, as described by Moffat et al., (2007). These gaps happen quite often for a 65 

variety of reasons, such as values out of range, spike detection or manual exclusion of date and time 66 

ranges, instrument or power failure, herbivores, fire, eagles nests, lightning, researchers on leave, etc. 67 

(Beringer et al., 2016b). Since the EC flux towers are often located in harsh climates, their data are more 68 

susceptible to adverse weather (i.e. rain conditions), and they sometimes prevent quick access to sites 69 

for repair and maintenance. As a result, this issue can, in turn, produce gaps which might be relatively 70 

long (Isaac et al., 2017), and thus, problematic as follows. Firstly, loss of data is considered a threat to 71 

scientific studies depending on the missing data quantity, pattern, mechanism and nature (Altman 72 

and Bland, 2007; Molenberghs et al., 2014; Tannenbaum, 2010). That is because using an incomplete 73 

dataset might lead to biased, invalid and unreliable results (Allison, 2000; Kang, 2013; Little, 2002). 74 

Second, continuous gap-filled data are required to calculate the annual or monthly budgets of carbon 75 

or water balance components (Hutley et al., 2005).  76 
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Other than the challenges caused by missing data, there are several sources of errors and 77 

uncertainties in the EC technique. Firstly, random error is associated with the stochastic nature of 78 

turbulence, associated sampling errors (incomplete sampling of large eddies, uncertainty in the 79 

calculated covariance between the vertical wind velocity and the scalar of interest), instrument errors, 80 

and footprint variability (Aubinet et al., 2012). For instance, Dragoni et al. (2007) analysed EC-based 81 

data of Morgan-Monroe State Forest for eight years (1999-2006) and assessed that instrument 82 

uncertainty was equal to 3% of the total annual NEE. Another primary source of uncertainty in EC 83 

measurements is systematic errors caused by methodological challenges and instrument calibration 84 

problems (e.g. sonic anemometer errors, spikes, gas analyser errors, etc.). Finally, one of the sources 85 

of uncertainties is data processing, especially data gap-filling (Isaac et al., 2017; Moffat et al., 2007; 86 

Richardson et al., 2012; Richardson and Hollinger, 2007). 87 

 88 

There are several uncertainties pertaining to gap-filling of missing values, including 89 

measurement uncertainty (Richardson and Hollinger, 2007), lengths and timing of the gaps (Falge et 90 

al., 2001; Richardson and Hollinger, 2007) and the particular gap-filling algorithm that is used (Falge 91 

et al., 2001; Moffat et al., 2007).  However, there are two dominant issues of long data gaps and the 92 

choice of a particular gap-filling algorithm (Aubinet et al., 2012). Firstly, long gaps can significantly 93 

increase the total amount of uncertainty as the ecosystem behaviour might change because of different 94 

agricultural periods or phenological phases (e.g. growing season, harvest period, bushfire, etc.). And 95 

thereby show different responses under similar meteorological conditions (Aubinet et al., 2012; Isaac 96 

et al., 2017; Richardson and Hollinger, 2007). Consequently, the period in which a long gap happens 97 

is important. For example, research undertaken by Richardson & Hollinger (2007) on data from a 98 

range of FLUXNET sites revealed that a week data gap during spring green-up in a forest led to a 99 

higher uncertainty over a three-week gap period during winter. Second, each gap-filling algorithm 100 

has its strengths and weaknesses; for instance, Moffat et al. (2007) compared 15 different commonly-101 

used gap-filling algorithms. They found no significant difference between the performance of the 102 

algorithms with “good” reliability based on analysis of variance of RMSE.  Besides, the overall gap-103 

filling uncertainty was within ±25 g C m-2 yr-1 for most of the proper algorithms, whereas, the other 104 

algorithms generated higher uncertainties of up to ±75 g C m-2 yr-1, showing that the uncertainty 105 

provided by reliable methods can be considerably smaller. This result is similar to the findings of 106 

Richardson & Hollinger (2007)  who found that for the datasets used in their study that uncertainties 107 

of up to ±30 g C m-2 yr-1 were from long gaps by appropriate algorithms. Considering that the data 108 

provided by EC tower networks are of use for research, government and policymakers, robust gap-109 

filling is a need to quantify and reduce uncertainties in flux estimations.  110 

 111 

Several methods have been typically used to fill data gaps in both fluxes and their 112 

meteorological drivers to manage the missing data problem. Due to computational constraints of 113 

complex algorithms, early works to impute EC data gaps used interpolation methods based mostly 114 

on linear regression or temporal autocorrelation (Falge et al., 2001; Lee et al., 1999). These approaches 115 
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were replaced quickly by more sophisticated methods such as non-linear regressions (Barr et al., 2004; 116 

Falge et al., 2001; Moffat et al., 2007; Richardson et al., 2006); look-up tables (Falge et al., 2001; Law et 117 

al., 2002; Zhao and Huang, 2015); artificial neural networks (ANNs) (Aubinet et al., 1999; Beringer et 118 

al., 2016a; Cleverly et al., 2013; Hagen et al., 2006; Isaac et al., 2017; Kunwor et al., 2017; Moffat et al., 119 

2007; Papale and Valentini, 2003; Pilegaard et al., 2001; Staebler, 1999); mean diurnal variation (Falge 120 

et al., 2001; Moffat et al., 2007; Zhao and Huang, 2015), multiple imputations (Hui et al., 2004; Moffat 121 

et al., 2007), etc. Each of these methods has its pros and cons as follows: a) Interpolation methods such 122 

as the Mean Diurnal Variation (MDV), do not need any drivers, yet, their accuracy is lower than other 123 

approaches (Aubinet et al., 2012). Moreover, this method may provide biased results on extremely 124 

clear or cloudy days (Falge et al., 2001). MDV is not recommended when a gap is longer than two 125 

weeks, for it cannot consider the non-linear relations between the drivers and the flux, leading to a 126 

high level of uncertainty (Falge et al., 2001). And b) The look-up table, especially its modified version, 127 

Marginal Distribution Sampling (MDS), has provided performance close to ANNs, and are more 128 

reliable and consistent than the other algorithms so far. Hence, MDS was chosen as one of the standard 129 

gap-filling methods in EUROFLUX (Aubinet et al., 2012). Nevertheless, the performance of MDS in 130 

gap-filling of extra long gaps is not well known (Kim et al., 2020). c) ANNs have commonly been used 131 

to gap-fill EC fluxes since 2000 and because of their robust and consistent results are considered as a 132 

standard gap-filling algorithm in several networks, e.g. ICOS, FLUXNET, OzFlux, etc. (Aubinet et al., 133 

2012; Beringer et al., 2017; Isaac et al., 2017). Despite their reliable performance, ANNs –and generally 134 

all other ML algorithms- face some challenges. Over-fitting, for instance, is a big concern and can 135 

happen when the number of degrees of freedom is high, while the training window is not long enough 136 

respectively, or the quality of the training dataset is low. This challenge becomes acute when the gaps 137 

happen while the ecosystem behaviour changes and shows different responses under similar 138 

meteorological conditions. Furthermore, there is a desire to have the training windows short so that 139 

the algorithm can track the ecosystem behaviour shift. Yet, this increases the risk of over-fitting 140 

depending on the algorithm. In other words, the training window length should be neither too short 141 

to cause over-fitting, nor too long to lead algorithms to ignore ecological condition changes. Besides, 142 

long gaps are considered as one of the primary uncertainty sources of CO2 flux in the FLUXNET 143 

(Aubinet et al., 2012). As a result, studying the effects of the gap lengths, as well as the window length 144 

whereby an algorithm is trained are both critical challenges associated with the environmental data 145 

gap-filling.  146 

 147 

Apart from the limitations and disadvantages of the mentioned algorithms, gap-filling of fluxes 148 

(e.g. NEE) experiences some other challenges that make it necessary to find or develop new gap-filling 149 

algorithms. That is because the current methods are not flexible enough to perform well in special 150 

occasions or extreme values (Kunwor et al., 2017), and there is almost no room to optimise them to 151 

improve their outcome (Moffat et al., 2007). Moreover, even using the best available algorithm, such 152 

as ANNs, the model (gap-filling) uncertainty still accounts for a sizable proportion of the total 153 

uncertainties, especially when the gaps are relatively long. Since the 2000s when MDS and ANNs were 154 

chosen as the most reliable gap-filling methods for EC flux observations, many new ML and 155 
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optimisation algorithms have been developed and used in various scientific fields. Some of which 156 

have shown superiority over ANNs, either individually or as a part of a hybrid or ensemble model, 157 

e.g. (Gani et al., 2016). As a result, comparing the cutting-edge algorithms with the current standard 158 

ones can show whether there is any room to improve the gap-filling process within the field. 159 

According to the concerns mentioned above, this paper had two objectives. a) To find out the impact 160 

of different gap lengths on the performance of each algorithm. And b) to compare the performance of 161 

traditional with new gap-filling techniques, separately for fluxes and their meteorological drivers, 162 

particularly soil moisture, for this has always been a challenging variable to gap-fill due to biology 163 

and heterogeneity of soil parameters. To address these objectives, we utilised nine different algorithms 164 

(Extreme Gradient Boost (XGB), Random Forest Algorithm (RF), Artificial Neural Networks (ANNs), 165 

Marginal Distribution Sampling (MDS), Classic Linear Regression (CLR), Support Vector Regression 166 

(SVR), Elastic net regularisation (ELN), Panel Data (PD) and Prophet Forecast Model (FBP)) to fill the 167 

gaps of the major fluxes, and eight of them (excluding MDS) to fill the gaps of the environmental 168 

drivers. We then assessed their relative performance to evaluate potentially better ways to fill EC flux 169 

data. To test the approaches, we used five flux towers from the OzFlux network. To evaluate the 170 

performance of these algorithms, nine scenarios for gaps were planned – from a day to a whole year - 171 

and applied to the datasets, and different common performance metrics (e.g. RMSE, MBE, etc.), as 172 

well as visual graphs were used. 173 

 174 

2. Materials and methods 175 

 176 

In order to address the first objective of this research, nine different gap lengths were  177 

superimposed to the datasets, i.e. 1, 5, 10, 20, 30, 60, 90, 180 and 365 days. To address the second 178 

objective, we chose nine different algorithms to fill the gaps, including a wide variety of different 179 

approaches, e.g. from a simple algorithm like CLR to the cutting-edge ML algorithms, such as XGB 180 

(MDS was not used to gap-fill the environmental drivers). The data used in this paper came from five 181 

EC towers of the OzFlux Network, i.e. Alice Springs Mulga, Calperum, Gingin, Howard Springs and 182 

Tumbarumba from 2012 to 2013, with a time resolution of 30 minutes, except for Tumbarumba (60 183 

minutes). Additionally, data coming from three additional sources outside of the network were also 184 

used as ancillary data to help the algorithms fill environmental drivers' gaps.   185 

2.1. Data 186 

The data used for this research came from the OzFlux, which is the regional Australian and New 187 

Zealand flux tower network that aims to provide a continental-scale national research facility to 188 

monitor and assess Australia’s terrestrial biosphere and climate (Beringer et al., 2016a). As described 189 

in Isaac et al. (2017), all OzFlux towers continuously measure and record meteorological and flux 190 

variables at resolutions up to 10 Hz, and use a 30 min averaging period, with a few exceptions (data 191 

are available from (http://data.ozflux.org.au/portal). The network acquires additional data from the 192 

Australian Bureau of Meteorology (BoM), the European Centre for Medium-Range Weather 193 

Forecasting (ECMWF), and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the 194 

TERRA and AQUA satellites for alternative data for gap-filling flux tower datasets (Isaac et al., 2017). 195 

As explained by Isaac et al. (2017), OzFlux uses the BoM automated weather station (AWS) datasets 196 

to gap-fill the meteorological data, the BoM weather forecasting model (ACCESS-R) for radiation and 197 

http://data.ozflux.org.au/portal
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soil data from 2011 onward, and MODIS MOD13Q1 for Normalised Difference Vegetation Index 198 

(NDVI) and Enhanced Vegetation Index (EVI). Moreover, the data provided by BIOS2, a physically-199 

based model-data integration environment for tracking Australian carbon and water (Haverd et al., 200 

2015), were also used as another ancillary source for varieties of environmental features. Current 201 

ACCESS-R and MODIS data are available from the BoM OPeNDAP (http://www.opendap.org/) 202 

server and TERN-AusCover data (http://www.auscover.org.au/), respectively.  203 

 204 

The datasets used in this research came from five towers from the OzFlux Network between 205 

2012 and 2013, each representative of a different climate and land cover of Australian ecological 206 

conditions; i.e. Alice Springs Mulga: Tropical and Subtropical Desert, Calperum: steppe, Gingin: 207 

Mediterranean, Howard Springs: Tropical Savanna, Tumbarumba: Oceanic (Table 1) (Beringer et al., 208 

2016a). The datasets included 15 meteorological drivers as well as three major fluxes recorded (Table 209 

2) based upon EC technique at a 30-minute temporal resolution, except for Tumbarumba, which was 210 

hourly. Additionally, relevant ancillary datasets for the mentioned towers were used to follow the 211 

OzFlux Network gap-filling protocol (Table 3). Each dataset was quality checked at three levels based 212 

on the OzFlux Network protocol described in (Isaac et al., 2017) and applied using PyFluxPro ver. 213 

0.9.2. To address the underestimation of canopy respiration by EC measurements at night, we used 214 

the CPD method (Barr et al., 2013) to reject nightly records when the friction velocity fell below each 215 

site's threshold value. After dismissing the inappropriate measurements, overall coverage of 72-88 % 216 

and 21-48 % were achieved for diurnal and nocturnal records during 2013 (the year to which the 217 

artificial gaps were superimposed), respectively.  218 

 219 
Table 1. The information of the five towers that their data were used, including their name, location, dominant species and 220 
climate. 221 

Site Location Species Climate Latitude, 

Longitude 

(degree) 

Alice Springs Mulga 

[AU-ASM] 

Pine Hill cattle 

station, near Alice 

Springs, Northern 

Territory 

Semi-arid mulga 

(Acacia aneura) 

ecosystem 

Tropical and 

Subtropical Desert 

Climate (Bwh) 

-22.2828° N, 

133.2493° E 

Calperum [AU-Cpr] Calperum Station, 

25 km NW of 

Renmark, South 

Australia 

Recovering Mallee 

woodland 

Steppe Climate 

(Bsk) 

-34.0027° N, 

140.5877° E 

Gingin [AU-Gin] Swan Coastal Plain 

70 km north of 

Perth, Western 

Australia 

Coastal heath Banksia 

woodland 

Mediterranean 

Climate (Csa) 

-31.3764° N, 

115.7139° E 

Howard Springs 

[AU-How] 

E of Darwin, NT Tropical savanna 

(wet) 

Tropical Savanna 

Climate (Aw) 

-12.4943° N, 

131.1523° E 

Tumbarumba [AU-

Tum] 

Near 

Tumbarumba, 

NSW 

Wet temperate 

sclerophyll eucalypt 

Oceanic climate 

(Cfb) 

-35.6566° N, 

148.1517° E 

 222 

 223 
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Table 2. List of variables and their units used in this research, including the three main fluxes and their environmental drivers. 224 

List of variables Units 

    Drivers:  
Ah Absolute Humidity (g m-3) 

Fa Available energy (W m-2) 

Fg Ground heat flux (W m-2) 

Fld Downwelling long-wave radiation (W m-2) 

Flu Upwelling long-wave radiation (W m-2) 

Fn Net radiation (W m-2) 

Fsd Downwelling short-wave radiation (W m-2) 

Fsu Upwelling short-wave radiation (W m-2) 

ps Surface pressure (kPa) 

Sws Soil water content (m m-1) 

Ta Air temperature (C) 

Ts Soil temperature (C) 

Ws Wind speed (m s-1) 

Wd Wind direction (deg) 

Precip 

q 

Precipitation (mm) 

Specific Humidity (kg kg-1) 

    Fluxes:  
Fc (also NEE) CO2 flux (µmol m-2 s-1) 

Fh (also H) Sensible heat flux (W m-2) 

Fe (also LE) Latent heat flux (W m-2) 

 225 

The datasets whereby each environmental variable was gap-filled are shown in Table 3. For each of 226 

these variables, the same variable of the ancillary source was used to fill the gaps. For instance, to gap-227 

fill Ah, the Ah records of AWS, ACCESS-R and BIOS2 were used. To gap-fill the missing values of 228 

fluxes, i.e. Fc (NEE), Fh (H) and Fe (LE), eight drivers were used as follows: Ta, Ws, Sws, Fg, vapour 229 

pressure deficit  (VPD) , Fn, q and Ts based on a combination of Random Forest (RF) feature selection 230 

and testing out a series of feature combinations. Different Python Programming Language libraries 231 

(ver. 3.6.4) were utilised for training and testing the algorithms, i.e. xgboost for XGB, fbprophet for 232 

FBP statsmodels for PD and sklearn for the rest of algorithms.  Each algorithm was tuned individually 233 

using grid search, and the number of nodes, layers, irritations, etc. were chosen accordingly.  234 

 235 

 236 
Table 3. The ancillary sources used to gap fill each environmental driver. 237 

List of variables (y) Ancillary Source 

    Drivers:  
Ah AWS, ACCESS-R, BIOS2 

Fa ACCESS-R, BIOS2 

Fg ACCESS-R, BIOS2 

Fld ACCESS-R, BIOS2 

Flu ACCESS-R, BIOS2 

Fn ACCESS-R, BIOS2 

Fsd ACCESS-R, BIOS2 

Fsu ACCESS-R, BIOS2 

ps AWS, ACCESS-R 

Sws ACCESS-R, BIOS2 
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Ta AWS, ACCESS-R, BIOS2 

Ts ACCESS-R, BIOS2 

Ws AWS, ACCESS-R 

Wd AWS, ACCESS-R 

Precip AWS, ACCESS-R, BIOS2 

 238 

 239 

2.2. Gap-filling algorithms 240 

 241 

Eight imputation algorithms for estimating 15 environmental drivers and 9 algorithms for the 3 242 

major fluxes were chosen to make the comparison. These algorithms were selected in such a way that 243 

a variety of approaches were tested, from the standard methods like ANNs and MDS, to the newer 244 

algorithms, which have rarely or never been used in the field, such as Extreme Gradient Boosting and 245 

panel data (Table 4).  246 

Table 4. The name and the abbreviation of the gap-filling algorithms. 247 

Algorithm abbreviation Full name 

XGB Extreme Gradient Boost 

RF Random Forest Algorithm 

ANNs Artificial Neural Networks 

MDS Marginal Distribution Sampling 

SVR Support Vector Regression 

CLR Classical Linear Regression 

PD Panel data 

ELN Elastic net regularisation 

FBP The Prophet Forecasting Model (Facebook Prophet) 

 248 

Marginal Distribution Sampling (MDS) 249 

 Reichstein Reichstein et al. (2005) introduced the MDS is an enhanced look-up table method, 250 

which considers both the covariation of fluxes with meteorological variables and the temporal auto-251 

correlation of the fluxes (Aubinet et al., 2012). Alongside the ANNs, the MDS is considered one of the 252 

standard gap-filling methods for flux data amongst the FLUXNET, and is selected in this study to help 253 

the community have a clear idea of the performance of other algorithms. Unlike the other algorithms 254 

used in this research, we used Fsd, Ta and VPD as the input features for the MDS to be consistent with 255 

standard application of the MDS, and for using more than three or four drivers is not generally 256 

recommended (Aubinet et al., 2012). The PyFluxPro ver. 0.9.2 was used to apply the algorithm 257 

(modified code used for the gaps longer than 10 days). 258 

 259 

Artificial Neural Networks (ANNs) 260 

Rooted in the 1950s, artificial neural networks are ML methods inspired by biological neural 261 

networks and are classified as supervised learning methods (Dreyfus, 1990; Farley and Clark, 1954). 262 

ANNs work based on several connected units called nodes, which are used to mimic a neuron's 263 

functionality in an animal brain by sending and receiving signals to other nodes. The ANNs technique 264 

used in this paper was the Multi-layer Perceptron regressor, which optimises the squared-loss using 265 

stochastic gradient descent.  Sklearn.neural_network.MLPRegressor was used to apply this method 266 
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in Python, and its hyperparameters were 800 and 500 for “hidden_layer_sizes” and “max_iter”, 267 

respectively based on grid search. ANNs are one of the current standard approaches for gap-filling in 268 

FLUXNET and in this research were picked out as a performance reference for other algorithms. 269 

 270 

Classical Linear Regression (CLR) 271 

A classical linear regression is an equation developed to estimate the value of the dependent 272 

variable (y) based on independent values (xi). In contrast, each xi has its specific coefficient and an 273 

overall intercept value. In this method, these coefficients are determined by minimising the squared 274 

residuals (errors) of estimated vs observed values, called least squares. A CLR algorithm can be 275 

formulated as follows (Freedman, 2009): 276 

 y = α + β1X1 + β2X2 + β3X3 + … + βiXi+ ɛ (1) 

where y is the dependent variable, α is the interception, Xis are independent variables, and βi is 277 

coefficient of Xi, and ɛ is the error term. We chose this algorithm as a baseline to find out how better 278 

more complicated algorithms can estimate dependent variables comparatively.  279 

Random Forests (RF) 280 

Random forest, a supervised ML algorithm, used for both classification and regression, 281 

consists of multiple trees constructed systematically by pseudorandomly selecting subsets of 282 

components of the feature vector, that is, trees constructed in randomly chosen subspaces (Ho, 1998). 283 

The RF algorithm has been developed to overcome the over-fitting problem, a commonplace 284 

limitation of its preceding decision tree-based methods (Ho, 1995, 1998). 285 

Sklearn.ensemble.RandomForestRegressor was used to apply this method in Python, and the 286 

hyperparameters used were 5 and 1000 for “max_depth” and “n_estimators”, respectively based on 287 

grid search. 288 

 289 

Support Vector Regression (SVR)  290 

As a non-linear method, support vector regression was developed based on Vanpik’s concept 291 

of support vectors theory (Drucker et al., 1997). An SVR algorithm is trained by trying to solve the 292 

following problem: 293 

 294 

minimise 
1

2
 ‖𝑤‖2 295 

subject to (
𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜀,
⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀,

) 296 

where xi and yi are training sample and target value in a row. The inner product plus intercept 297 

⟨𝑤, 𝑥𝑖⟩ + 𝑏 is the prediction for that sample, and ε is a free parameter that serves as a threshold. 298 



10 

 

sklearn.svm.SVR was used to apply this method in Python, and the hyperparameters that used were 299 

1 and 0.001 for “C” and “gamma”, respectively based on grid search. 300 

Elastic net regularisation (ELN) 301 

The elastic net is a linear regularised regression method that exerts small amounts of bias by 302 

adding two penalty components to the regressed line to decline the coefficients of independent 303 

variables and thus, provides better long-term predictions. Given that these two penalty components 304 

come from ridge regression and LASSO, the elastic net is considered as a hybrid model consists of 305 

ridge and LASSO regressions, overcoming the limitations of both. The estimates from the ELN method 306 

can be formulated as below (Zou and Hastie, 2005): 307 

 �̂�(𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡) =
(|�̂�(𝑂𝐿𝑆)| −

λ1
2⁄ )

1 + λ2
𝑠𝑔𝑛{�̂�(𝑂𝐿𝑆)} (2) 

 308 

where �̂� is the coefficient of each ELN independent variable, λ1 and λ2 are penalty coefficients of 309 

LASSO and ridge regression respectively, �̂�(𝑂𝐿𝑆)  is the coefficient of an independent variable 310 

calculated based on ordinary least squares, and sgn stands for the sign function: 311 

 𝑠𝑔𝑛(𝑥) = {
1        𝑥 > 0
0        𝑥 = 0
 −1     𝑥 < 0

 (3) 

 312 

The ELN regression is good at addressing situations when the training datasets have small samples 313 

or when there are correlations between parameters. sklearn.linear_model.ElasticNet was used to 314 

apply this method in Python, and the hyperparameters used were as follows: {'alpha': 0.01, 315 

'fit_intercept': True, 'max_iter': 5000, 'normalize': False} based on grid search. 316 

 317 

Panel data (PD) 318 

Panel data is a multidimensional statistical method, mainly used in econometrics to analyse 319 

datasets, which involve time series of observations amongst individual cross-sections (Baltagi, 1995) 320 

usually based on ordinary least squares (OLS) or generalised least squares (GLS). A two-way panel 321 

data model consists of two extra components beyond a CLR as follows (Baltagi, 1995; Hsiao et al., 322 

2002; Wooldridge, 2008): 323 

   (4) 

 𝑦𝑖𝑡 = 𝛼 + 𝛽𝑋𝑖𝑡 + 𝜇𝑖 + λ𝑡 (5) 

where i and t denote the cross-section and time series dimension in a row, y is a dependent-variable 324 

vector, X is an independent variable matrix, α is a scalar, β is the coefficient of the independent-325 

variable matrix, µi is the unobservable individual-specific effect, and λt is the unobservable time-326 

1,2,..., ; 1,2,...,it it ity X u i N t T     
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specific effect. Panel data abilities to provide a holistic analysis of different individuals, as well as 327 

determining the specific impact of every single time caused its superiority over CLR.  Since PD 328 

requires cross-sections to be applied, we used a cross-section tower for each of the main five tower as 329 

follows: Ti Tree East for Alice Springs Mulga, Whroo for Calperum, Great Western Woodlands for 330 

Gingin, Daly River for Howard Springs, and Cumberland Plain for Tumbarumba. The cross-section 331 

towers were chosen based on their distances (the closest ones with common years of data).  332 

Extreme Gradient Boost (XGB) 333 

Extreme gradient boost is a reinforced method of Gradient Boost introduced in 1999 that 334 

works based on parallel boosted decision trees and similar to RF can be used for a variety of data 335 

processing purposes including classification and regression (Friedman, 2002; Jerome H. Friedman, 336 

2001; Ye et al., 2009). XGB method is resistive to over-fitting and provides a robust, portable and 337 

scalable algorithm for large-scale boosting decision-trees-based techniques. 338 

sklearn.ensemble.GradientBoostingRegressor was used to apply this method in Python, and its 339 

hyperparameters were chosen based on grid search as follows: {'learning_rate': 0.001, 'max_depth': 8, 340 

'reg_alpha': 0.1, 'subsample': 0.5}. 341 

 342 

The Prophet Forecasting Model (FBP) 343 

The Prophet Forecasting Model, also known as “prophet”, is a time series forecasting model 344 

developed by Facebook to manage the common features of business time series and designed to have 345 

intuitive parameters that can be adjusted without knowing the details of underlying model (Taylor 346 

and Letham, 2017). A decomposable time series model was used (Harvey and Peters, 1990) to develop 347 

this model, with three main components: trend, seasonality, and holidays as the equation below 348 

(Taylor and Letham, 2018): 349 

 y(t) = g(t) + s(t) + h(t) (6) 

 350 

where g(t) is the trend function, which models non-periodic changes, s(t) is a function to represent 351 

periodic changes, e.g. seasonality, and h(t) assesses the effects of potential anomalies which occur over 352 

one or more days, e.g. holidays. 353 

 354 

2.3. The gap scenarios 355 

In order to find out the effect of gap size on the performance of our gap-filling algorithms, the 356 

data was removed randomly from nine different gap windows (i.e. 1, 5, 10, 20, 30, 60, 90, 180 and 365 357 

consecutive days) during 2013. Afterwards, the data from 2012 to 2013 were used to train the 358 

algorithms (excluding the superimposed gaps). Finally, the trained algorithms were used to fill the 359 

artificial gaps superimposed to the datasets. The entire process permutated five times in each scenario 360 

to ensure the performance was not sensitive to the gap position (i.e seasonally). As such, 15 variables, 361 

http://www.ozflux.org.au/monitoringsites/cumberlandplain/index.html
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9 window lengths, 8 gap-filling methods (MDS excluded), and 5 permutations across 5 towers resulted 362 

in 27,000 computations for the meteorological features. Similarly, 3 fluxes, 9 window lengths, 9 gap-363 

filling methods, and 5 permutations across 5 towers resulted in 6,075 computations for the major 364 

fluxes, overall.  365 

2.4. Statistical performance measures 366 

Different statistical metrics were used to evaluate algorithms' performance and enable 367 

comparison between measured values from the flux towers with each gap-filling algorithm prediction. 368 

These metrics included the coefficient of determination (R-squared) to measure the square of the 369 

coefficient of multiple correlations (Devore, 1991), the variance of measured and modelled values (S2) 370 

to indicate how well algorithms could follow the variations of the recorded data, the root mean square 371 

error (RMSE), the mean bias error (MBE) to capture distribution and bias of residuals, variance ratio 372 

(VR) to compare the variance of estimated values with those of measured, and the Index of Agreement 373 

(IoAd) to compare the sum of the squared error to the potential error (Bennett et al., 2013). 374 

Abbreviations and formulas of these metrics are illustrated as follows (Bennett et al., 2013):  375 

 𝑅2 =
[∑(𝑝𝑖 − �̅�)(𝑜𝑖 − �̅�)]2

∑(𝑝𝑖 − �̅�)2 ∑(𝑜𝑖 − �̅�)2
 (7) 

 376 

 
S2 =

∑(𝑥𝑖 − �̅�)2

N − 1
 

(8) 

 377 

 
𝑅𝑀𝑆𝐸 = √

∑(𝑝𝑖 − 𝑜𝑖)2

N − 1
 

(9) 

 378 

 379 

 MBE =
∑ 𝑜𝑖 − 𝑝𝑖

N − 1
 (10) 

 380 

 VR=
𝜎𝑝

2

𝜎𝑜
2 (11) 

 381 

 𝐼𝑜𝐴𝑑 = 1 −
∑ (𝑜𝑖 − 𝑝𝑖)

2𝑛
𝑖=1

∑ (|𝑝𝑖 − �̅�| + |𝑜𝑖 − �̅�|)
2𝑛

𝑖=1

 (12) 

 382 

where oi and pi are individual measured and predicted values respectively, �̅� and 𝑝 are the means of 383 

o and p, and σ2 is the variance.  S2 is calculated separately for the observed and predicted values with 384 

the respective values defined as x representing every observed or predicted value. All of these metrics 385 

were calculated for each of the gap scenarios, and then the results of five permutations were 386 
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concatenated. Afterwards, the metrics were calculated to avoid Simpson’s paradox or any relevant 387 

averaging issue as described by Kock and Gaskins (2016).  388 

3. Results 389 

 390 

3.1. Fluxes 391 

3.1.1 CO2 flux (Fc) 392 

 Even though factors such as ground heat flux (Fg) and net radiation (Fn) are fluxes, we dealt 393 

with them as environmental drivers since they drive the three major turbulent fluxes. The metrics 394 

used to evaluate the algorithms' performance (RMSE, R2, MBE, IoAd and VR) (Table 5) illustrated that 395 

overall, the performance of these algorithms, particularly the ML ones, was similar, closely followed 396 

by the MDS. The XGB provided the lowest values of RMSE and one of the highest R2, while the FBP 397 

and ELN had the lowest and highest values of R2 and RMSE, respectively. The algorithms, however, 398 

showed different levels of sensitivity to the gap lengths, e.g. the CLR and PD showed smaller 399 

sensitivity, while the FBP showed the most sensitivity (Figure 1).  400 

Table 5. The average amounts of performance metrics for each gap-filling algorithm regarding Fc, which includes all window 401 
lengths and sites, ranked by RMSE using the Tukey’s HSD test at the level of 5 per cent. 402 

Algorithm Mean RMSE Mean R2 Mean MBE Mean IoAd Mean VR 

XGB 3.07 a 0.59 -0.43 0.90 0.66 

RF 3.12 a 0.58 -0.37 0.91 0.71 

ANNs 3.13 a 0.56 -0.33 0.90 0.69 

SVR 3.34 b 0.47 -0.32 0.86 0.75 

MDS 3.35 b 0.51 -0.41 0.85 0.70 

PD 3.41 b,c 0.48 -0.35 0.81 0.54 

CLR 3.44 b,c 0.49 -0.36 0.81 0.55 

ELN 4.52 c 0.43 -0.37 0.73 0.39 

FBP 4.15 d 0.47 -0.06 0.77 0.68 

 403 

These outcomes were expected for the XGB as it uses a more regularised model formalisation to 404 

control over-fitting (Chen and Guestrin, 2016) which, on paper, leads to better performance as against 405 

its ML rivals. The relatively poor performance of FBP was also foreseen for unlike other algorithms, 406 

FBP did not use any feature to estimate flux values, other than the previous time series of flux values. 407 

However, the weaker performance of the ELN compared to CLR was unforeseen as by adding two 408 

penalty components to the regression line, the ELN is supposed to improve the long-term prediction 409 

compared to the traditional linear regression methods. Tukey’s HSD (honestly significant difference) 410 

test at the level of five per cent was applied to the results to determine whether the difference amongst 411 

the algorithms was significant (Table 5). Where the null hypothesis was there is no significant 412 

difference between the mean values of the RMSE. According to the results, there were significant 413 

differences between certain algorithms, and the XGB, RF and ANNs were different from the rest, 414 

showing that these three performed considerably better. Tukey’s HSD test, however, did not reject the 415 

second error probability between RF, XGB and ANNs meaning that the three algorithms were not 416 

significantly different from each other. This result agrees with the results of Falge et al. (2001) and 417 
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Moffat et al. (2007) in the sense that ANNs are one of the best available gap-filling algorithms, and 418 

there is no significant difference amongst the appropriate algorithms. However, the test showed that 419 

the performance of the MDS was significantly different from the ANNs. It seems that the difference 420 

has occurred because of the longer gaps (> 10 days) that had been absent from the previous studies. 421 

Finally, it is worth mentioning that Tukey’s HSD is well known as a conservative test. That being said, 422 

despite no meaningful difference based on Tukey’s HSD, XGB and RF might have performed better 423 

than ANNs, as the superiority of RF in gap-filling of methane flux over the ANNs, SVR, and MDS has 424 

recently been claimed by Kim et al. (2020).  425 

 426 

Figure 1. A heat map of mean RMSE values of Fc across all sites based on 9 algorithms and 9 window lengths in 2013. 427 



15 

 

  428 

To address this paper's first objective, which was to find out the sensitivity of the gap-filling 429 

algorithms to the gap window length, we used the averaged RMSE, R2 and MBE for each gap size 430 

using the output of all algorithms for all sites (Table 6). The outcome illustrates that the longer the 431 

window length got, the larger the RMSE became.  Yet, no such pattern was recognisable for the R2 and 432 

MBE. As a result, generally, any consecutive gaps longer than 30 days seem to decline the algorithms' 433 

performance noticeably. A reason for this may be that longer windows do not let the algorithms 434 

accommodate seasonal changes and, therefore, different canopy physiological behaviour. 435 

Table 6. The average RMSE, R2, and MBE for Fc gap-filling based on the window length including the outcome of all sites; the 436 
differences of RMSE values were tested using the Tukey’s HSD test at the level of 5 per cent. 437 

Window length Mean RMSE Mean R2 Mean MBE 

1-day 3.23 a 0.53 -0.27 

5-days 3.25 a 0.52 -0.31 

10-days 3.26 a 0.51 -0.29 

20-days 3.27 a 0.51 -0.31 

30-days 3.29 a 0.51 -0.31 

60-days 3.32 a 0.49 -0.35 

90-days 3.37 a 0.51 -0.38 

180-days 3.43 a 0.50 -0.41 

365-days 3.49 a 0.49 -0.37 

 438 

According to the MBE values (Table 5), mainly, all algorithms had negative MBE indicating an 439 

overestimation of the Fc values. This bias varied from tower to tower and depended on the window 440 

lengths. For instance, the MBE's absolute values were larger in Gingin and Tumbarumba, while 441 

considerably smaller (closer to zero) at Alice Springs Mulga and Calperum (Supplementary). The 442 

lower leaf area index of the two later sites, and thus their smaller amounts of photosynthesis are likely 443 

to be the reason for this. FBP, nonetheless, provided substantially lower mean bias (-0.06) compared 444 

to the other algorithms, which varied between -0.32 and -0.43.  445 

Observations from the EC technique often include extremely low or high values after QC, 446 

especially at night, when some of the theoretical assumptions might be violated. One of the practical 447 

challenges associated with the EC technique is that it is often difficult to distinguish between the good 448 

data and the noise (Aubinet et al., 2012; Burba and Anderson, 2010). This problem seems to affect the 449 

outcomes of the gap-filling algorithms in this research, as none of them performed ideally in capturing 450 

the observed variance (Table 5Error! Reference source not found.). Even though RMSE, R2 and IoAd 451 

showed the superiority of the XGB, RF and ANNs, the variance ratio between the estimated and 452 

measured values revealed different information (Table 5), which is recognisable in Figure 2. The 453 

variance ratios (VR) showed that SVR captured the extreme values of Fc better than the other 454 

algorithms, 0.75 on average. The other ML algorithms –plus the MDS- though, performed closely with 455 



16 

 

regard to capturing the extremes that matches both the expectations, and the performance metrics 456 

(Table 5).   457 

 458 

Figure 2. Measured vs estimated values of Fc for Calperum based on a 10-day gap window (March 22 - March 31, 2013): (a) the 459 
ML algorithm plus the MDS, and (b) the linear models plus FBP. 460 

The linear algorithms, CLR, PD, and ELN, performed worse concerning the VR compared to the ML 461 

algorithms with the VR of Fc for Calperum (Figure 2Error! Reference source not found.) confirming 462 

this. Based on the figure, as expected, the ELN performed the worst in capturing the fluctuations in 463 

Fc (VR = 0.39), while the performance of the other algorithms, apart from the top five, was not 464 

significantly better the exception of FBP. It is noteworthy that CLR, PD, and ELN frequently predicted 465 

nocturnal photosynthesis. Overall, the results showed a significant difference between the top five 466 

algorithms (XGB, RF, ANNs, SVR, and MDS) and remaining algorithms, particularly in capturing the 467 
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fluctuations and the min-max range of Fc. However, a comprehensive comparison shows a slight 468 

superiority of the XGB and RF.  469 

3.1.2 Latent heat flux (Fe) 470 

 The performance of algorithms for Fe was similar to that for Fc with respect to RMSE, MBE 471 

and R2, as shown in Table 7. This similarity was not surprising since these processes are partially 472 

coupled via stomatal conductance (Scanlon and Kustas, 2010; Scanlon and Sahu, 2008). Again, the top 473 

three ML algorithms performed better, with XGB and RF being statistically significant   as shown by 474 

the Tukey’s HSD (Table 7). The null hypothesis was not rejected while comparing FBP and SVR, 475 

whereas the better performance of the other algorithms was confirmed.  As a result, the FBP and SVR 476 

provided the most unsatisfactory results in estimating Fe, according to the average values of the 477 

RMSE. No significant improvement in RMSE occurred when the gap lengths became shorter than 60 478 

days, meaning that the algorithms' performance did not vary considerably from a 30-day to a one-day 479 

window, especially for the top algorithms (XGB, RF, and ANNs). CLR and PD results were very 480 

similar to those for Fc, showed lower RMSE and higher R2 values as against ELN, but the ELN led to 481 

a slightly lower MBE. The MBE values also showed moderately high values for the SVR, meaning that 482 

there was an absolute bias in its outcome, which might be related to overfitting. The source of the bias 483 

shown by the SVR algorithm (Figure 3), was because it could not capture the minimum values 484 

appropriately, resulting in a considerable overestimation. A common issue in estimating Fe values, 485 

which had affected all algorithms other than the FBP, was the inability to capture the negative  values. 486 

In contrast to Fc results, the ANNs did not perform as well as the XGB and RF, which could be due to 487 

not capturing the maximum values compared to its rivals.  488 

Table 7. The average metrics for Fe gap-filling based on the algorithms, ranked by RMSE using the Tukey’s HSD test at the level 489 
of 5 per cent. 490 

Algorithm (Fe) Mean RMSE Mean R2 Mean MBE 

XGB  34.95 a 0.74 -3.48 

RF  35.63 a 0.74 -3.33 

ANNs 37.77 a,b 0.67 -3.94 

MDS 41.74 b,c 0.64 -3.27 

PD  43.28 b,c 0.64 -6.35 

CLR  43.51 c 0.64 -6.66 

Eln  44.34 c 0.59 -5.13 

SVR  46.63 c,d 0.59 -20.45 

FBP  50.53 d 0.52 3.01 

 491 

    492 
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 493 

Figure 3. Measured vs estimated values of Fe for Calperum based on a 10-day gap window (March 22 - March 31 2013). 494 

3.1.3 Sensible heat flux (Fh) 495 

As with the other flux results, the metrics of RMSE, R2 and MBE showed slight superiority for 496 

XGB and RF, as well as the inferiority of the SVR and FBP over the other algorithms (Table 8). 497 

Likewise, the SVR provided relatively large negative values of MBE, showing considerable 498 

overestimation. The Tukey’s HSD test of the average RMSE values confirmed that the performance of 499 

the FBP was significantly different from the rest at the level of 5 per cent, making FBP the weakest 500 

performer for Fh. On the other hand, although there was no significant difference amongst the XGB,  501 

RF and ANNs, the first two were considerably superior over the other algorithms as regards the 502 

Tukey’s HSD test. Similarly to Fe, estimated values of Fh using SVR had a negative bias (Figure 4) 503 

because it was not able to provide appropriate estimations of Fh minimum values. In contrast, the 504 

ANNs performed the best in capturing the minimum values, while the other top algorithms 505 

performed almost equally well. Despite the close performance in capturing the minimum values, 506 

ANNs and MDS did not perform as well as XGB and RF in capturing the overall values, resulting in 507 

an higher RMSE. Finally, like the other fluxes, the PD performed slightly better than the CLR and 508 

ELN.  509 

Table 8. The average metrics for Fh gap-filling based on the algorithms, ranked by RMSE using the Tukey’s HSD test at the level 510 
of 5 per cent. 511 

Algorithm (Fh) Mean RMSE Mean R2 Mean MBE 

XGB 37.23 a 0.92 -0.21 

RF 37.55 a 0.91 -0.09 

ANNs 40.13 a,b 0.90 -0.08 

MDS 43.30 b,c 0.88 -9.51 

SVR 43.80 b,c 0.88 0.35 

PD 44.96 c  0.88 1.36 

CLR 45.03 c  0.88 1.64 

Eln 45.19 c  0.87 2.16 

FBP 72.91 d 0.73 1.07 
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 512 

Figure 4. Measured vs estimated values of Fh for Calperum based on a 10-day gap window (March 22 - March 31 2013). 513 

    514 

3.2. Meteorological and Environmental Drivers 515 

 Since meteorological and environmental drivers are needed to fill the gaps of the three 516 

turbulent fluxes (Fc, Fe and Fh), the eight algorithms (excluding the MDS) were used to fill these 517 

drivers' gaps. The metrics of R2, RMSE, and MBE were calculated for all five towers and nine window 518 

lengths (16 meteorological and environmental drivers). Overall, for most meteorological drivers, the 519 

linear algorithms, especially the CLR and PD, performed slightly better than the ML algorithms such 520 

as the XGB, RF, ANNs and SVR, except for Ah, Fg and Fn. This unexpected superiority can be 521 

explained based on the two following reasons. Firstly, unlike the fluxes, the input and output features 522 

were the same here, e.g. Ta for Ta, which led to solid correlations (e.g. up to 0.99 for atmospheric 523 

pressure - ps) as well as strong linear relationships between the independent and dependent features. 524 

These strong correlations helped the linear algorithms perform well and reduced ML algorithms' 525 

ability to capture non-linear behaviour of complicated problems. Second, ML algorithms' slight 526 

inferiority could be due to data noise where simple linear algorithms such as the CLR are usually 527 

relatively less sensitive to the noise. Therefore, over-fitting is not an issue for them when the number 528 

of observations is big enough (i.e. at least 10 to 20 observations per parameter (Harrell, 2014)). The 529 

exceptions were Ah, Fn and Fg, for which values were estimated more accurately by the XGB, ANNs 530 

and RF, especially Fg  where the RMSE of RF and CLR for Fg was 28.91 versus 33.92  respectively). 531 

Tukey’s HSD test for the mean RMSE values of Fg confirmed that the XGB, ANNs and RF significantly 532 

better results , while, like all other fluxes and drivers, the FBP was the worst algorithm (Table 9). Yet, 533 

according to the same test for the other drivers, there was no significant difference between the 534 

algorithms, other than the FBP, which provided the most significant mean values of the RMSE (results 535 

not shown). Importantly, though, none of the algorithms offered adequate estimations for soil 536 

moisture (Sws), particularly in drier regions. This weak performance happened because Sws changes 537 

dramatically during rainfall in a pulsed manner often from zero to saturation in short space of time, 538 
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whereas, the algorithms had been trained based on the datasets mostly reflecting non-rainy periods. 539 

These datasets, consequently, could not fit the algorithms in a way that they could estimate Sws 540 

accurately when precipitation occurs and the soil moisture increases dramatically. For instance, in a 541 

wet region like Tumbarumba, where the soil faces rainy days frequently, the time series are much less 542 

spikey. Thus, the overall performance was better in these regions than the drier ones (e.g. R2 of 0.45 543 

and 0.26 on average for Tumbarumba and Calperum, respectively). In addition, the dataset used to 544 

gap-fill the soil moisture was a model derivation from gridded data or regional reanalysis and 545 

therefore, may not close to reality. Another challenge of estimating soil moisture comes from the low 546 

spatial coherence of soil moisture is that it can be extremely different just a couple of hundred metres 547 

away, due to storms, topography, soil structure heterogeneity, etc. (Reichle et al., 2004; Sahoo et al., 548 

2008). 549 

 550 

Table 9. The average amounts of RMSE for Fg gap-filling based on the algorithms, using the Tukey’s HSD test at the level of 5 551 
per cent. 552 

Algorithm 

(Fg) 

Mean 

RMSE 

RF a 28.91 

XGB a, b 29.19 

ANNs b, c 29.58 

SVR c 31.46 

CLR d 33.92 

PD d 33.93 

ELN d 34.09 

FBP e 39.10 

  553 

4. Discussion 554 

 555 

 556 

Nine gap-filling algorithms were used in this study: Extreme Gradient Boost as XGB, Random 557 

Forest Algorithm as RF, Artificial Neural Networks as ANNs, Marginal Distribution Sampling as 558 

MDS, Support Vector Regression as SVR, Classical Linear Regression as CLR, panel data as PD, Elastic 559 

net regularisation as ELN, and The Prophet Forecasting Model as FBP. All algorithms performed 560 

similarly in estimating the meteorological and environmental drivers (turbulent fluxes included) 561 

across all stations, except the FBP, which performed poorly for it did not use any ancillary data. The 562 

best results were achieved for the 30-day gaps and shorter, while the worst results obtained for the 563 

most extended windows, 180 and 365 days. Although most of the algorithms performed almost 564 

equally well in estimating meteorological and environmental drivers, the linear algorithms (CLR, ELN 565 

and PD) performed slightly better, though not significantly using Tukey’s HSD test. The only apparent 566 

exception was Fg, for which the RF provided more accurate and robust estimations. The ML 567 

algorithms and MDS, on the other hand, showed their superiority over the linear algorithms while 568 

estimating the main fluxes, Fc, Fe and Fh. For Fc, the XGB, RF and ANNs performed significantly 569 
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better than the FBP and all linear algorithms ( i.e. the CLR, PD and ELN, yet, followed closely by the 570 

SVR and MDS). The superiority of the ML algorithms and their intimate performance agreed with the 571 

results of previous researchers (Falge et al., 2001; Moffat et al., 2007), who showed the superiority of 572 

non-linear algorithms and no significant difference amongst the top algorithms in estimating Fc. 573 

Besides, the slight superiorities of XGB and RF over ANNs, our results confirm that RF performs better 574 

for EC flux gap-filling, as noted by Kim et al. (2020) for methane. 575 

The XGB was the most novel ML algorithm used in this research and based on the most 576 

performance metrics provided comparatively robust results in estimating the fluxes. In estimating the 577 

meteorological drivers though, the XGB did not show any superiority over the other algorithms, 578 

especially the linear ones. Moreover, the XGB needed four to six times longer time to be trained and 579 

tuned, making it a less feasible algorithm when time or the processing power are important factors or 580 

several years of data are needed to be gap-filled. Hence, we do not recommend the XGB as an 581 

alternative to the current standard algorithms. Nevertheless, because of its local superiorities, this 582 

algorithm might be suitable to use in an ensemble model alongside the algorithms with different 583 

weaknesses.   584 

The RF was the best all-around algorithm amongst the nine algorithms used in this study, 585 

providing the best consistent and robust estimates of the fluxes (similar to XGB) but also being less 586 

complicated and performing faster than the XGB. The RF also provided the best results for Fg, where 587 

the linear algorithms did not perform well. This superiority of RF over ANNs, MDS, and SVR has 588 

been shown previously by Kim et al. (2020) for gap-filling of methane, showing that it is worth testing 589 

the RF for other towers, and fluxes across the FLUXNET.  590 

The ANNs estimated the fluxes better than the linear algorithms, notably for Fc, yet not as 591 

robust as the XGB and RF in general. For Fc and Fh, the ANNs provided bias, mainly due to 592 

overestimating minimum values when the window lengths were longer than 30 days. However, since 593 

the superiority of the XGB and RF was not considerable, it is difficult at this point to suggest using 594 

XGB or RF as better alternatives. That is because the utility of ANNs have been validated for a long 595 

time in different locations and considered as one of the most reliable algorithms in the field for more 596 

than a decade (Aubinet et al., 2012; Hagen et al., 2006; Kunwor et al., 2017; Moffat et al., 2007). In other 597 

words, the superiority of RF, should be assessed in several future studies to convince the network to 598 

suggest RF instead of ANNs, or identify it as another standard gap-filling method.  Furthermore, there 599 

are a wide variety of different ANNs algorithms used in the field (Beringer et al., 2016b; Hagen et al., 600 

2006; Isaac et al., 2017; Kunwor et al., 2017; Moffat et al., 2007), and the minor superiority of RF and 601 

XGB cannot be generalised without additional case studies. As such, we suggest other researchers to 602 

use the RF, especially for Fh and Fc alongside the ANNs to find out which one performs better in the 603 

challenging scenarios (e.g. when the gaps are long). Another option is to develop ensemble models to 604 

improve the results over a single algorithm (Moffat et al., 2007). Ideally, a model with a higher level 605 

of flexibility is required in the field (Hagen et al., 2006; Kunwor et al., 2017; Richardson and Hollinger, 606 

2007). Finally, the ANNs, like the other ML algorithms, did not show a consistent superiority over the 607 

linear algorithms regarding the environmental drivers. Therefore, we do not recommend using ML 608 

algorithms in such scenarios, except for Fg, for which RF seems to be a better option.  609 



22 

 

The MDS performed close to, yet not as well as the XGB, RF, and ANNS in gap-filling the fluxes. 610 

Its performance was close to the SVR, but was more reliable for Fe and Fh. It is worth mentioning that 611 

this performance was achieved despite the MDS using fewer input features. Its performance, however, 612 

was comparable with the ML algorithms, particularly when the gap lengths were relatively shorter 613 

(equal to or smaller than 10 days). As such, we recommend using the MDS when the gaps are not long 614 

or the available input features are limited, especially considering that the MDS performs significantly 615 

faster than the ML algorithms, and is easier to use.   616 

The SVR showed consistent inferiority over the other ML algorithms and did not fulfill our 617 

expectations, neither for the meteorological drivers nor for the major fluxes. The only strength of the 618 

SVR  was that it captured the extreme values better than any other algorithm. However, because of 619 

the larger RMSE the mentioned advantage seems to be achieved suspiciously and might have 620 

occurred due to over-fitting. This dubious performance shows the SVR is perhaps more vulnerable to 621 

the over-fitting issues regarding these data types. Hence, we suggest the SVR not to be used in 622 

environmental modelling related to the reviewed drivers and fluxes, whatsoever. 623 

The CLR, the simplest algorithm used in this research, provided a comparatively acceptable 624 

performance in estimating the meteorological drivers, except for Fg. This algorithm, however, did not 625 

perform well in assessing the fluxes, especially Fc, mainly because of its inability to capture the 626 

extreme values caused by the non-linear nature of Fc to its drivers. Overall, considering the CLR 627 

simplicity, resource-saving and robust performance for drivers, this algorithm seems to be the most 628 

suitable way to fill the gaps of meteorological parameters in similar scenarios, where the same 629 

ancillary dataset are available.  630 

The PD performed slightly better than the CLR, yet it did not show a significant superiority over 631 

the other linear algorithms used in the research. This unforeseen weak performance can be explained 632 

due to a couple of reasons. First, one of the assumptions of using the PD is that the cross-sections' 633 

behaviour (here towers) is similarly under the similar conditions (the independent variables), and the 634 

only thing leads to the difference is the specific characteristics of each individual cross-section. 635 

Contrariwise, it seems that the five towers selected in this research violated this assumption due to 636 

them being in widely different ecosystems. Based on the previous studies in which the PD performed 637 

well (Izady et al., 2013, 2016; Mahabbati et al., 2017), it appears that a decent level of homogeneity is 638 

vital for the PD to perform satisfactorily. As in all previous cases, the cross-sections ecosystem had 639 

significant similarities, and the distance between them was smaller. Therefore, the characteristics of 640 

cross-sections, such as radiation, climate, rainfall, etc. had considerably more remarkable similarity 641 

and homogeneity compared with the towers used in this research. Finally, it is worth mentioning that 642 

PD has been commonly used to analyse the time series with a time resolution of weekly or longer, 643 

with some exceptions using daily time steps. In this research, the data resolution was half-hourly 644 

instead, which dramatically increased the computational demands of the algorithm, led to days of 645 

processing for a single run. This demand happened because the algorithm creates a dummy variable 646 

for each time step and the relevant matrix of variables becomes too large to compute by a regular PC. 647 

Considering the computational expense of this algorithm, we recommend other researches not to use 648 

PD when the time resolution is shorter than daily. Despite the limitation, we still encourage further 649 
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use of PD whenever there is a decent homogeneity level amongst the cross-sections and the time 650 

resolution is daily or longer.  651 

 As a hybrid linear model, the ELN did not show any superiority over the CLR, despite its 652 

modifications to provide more accurate estimations. Even though ELN performed well in estimating 653 

the drivers with slight supremacy on some occasions (e.g. Fld, the CLR is a more proper algorithm to 654 

choose for gap-filling the drivers due to its simplicity and less calculation requirement).  655 

The FBP was a unique algorithm used in this research, as it did not use any independent 656 

variables to estimate the values of drivers and fluxes.  The FBP performance was the least satisfactory 657 

of all the algorithms. Therefore, FBP cannot be considered as a reliable alternative for current 658 

algorithms to fill the gaps, especially longer ones.     659 

Given that some of the environmental drivers that affect Fc are different during the day versus 660 

night, separating the diurnal and nocturnal datasets to train the algorithms could improve the 661 

outcome. Mainly because of the u* threshold filtering and other problems associated with the 662 

nocturnal period, the portion of diurnal data is generally, by far, outweighs the nocturnal data portion, 663 

which potentially leads to a bias in the algorithm. The same challenge is associated with soil moisture 664 

estimation, as the behaviour of the system's behaviour on sunny days is utterly different from during 665 

the rainy periods. Moreover, the system memory and the antecedent condition are undeniable features 666 

associated with soil moisture (Ogle et al., 2015). Therefore, using models that can address these 667 

considerations are more likely to improve the estimations. 668 

Finally, it is noteworthy that some of the flux drivers used in this study as input features for 669 

the gap-filling algorithms are not commonly used or might not globally be available. However, 670 

considering that similar relative performance has been achieved in other researches for which 671 

different sets of input features had been used (Kim et al., 2020), the relative performance of the 672 

algorithms reviewed in this research should generally provide similar relative performance while 673 

using different input features.   674 

5. Conclusions 675 

 Eight different gap-filling algorithms for estimating 16 meteorological drivers as well as nine 676 

algorithms for the three key ecosystem turbulent fluxes (sensible heat flux (Fh), latent heat flux (Fe), 677 

and net carbon flux (Fc)) were investigated, and their performance evaluated based on the datasets of 678 

five towers in Australia. Overall, three ML algorithms, XGB, RF and ANNs, performed nearly equally 679 

well and significantly better than their linear rivals (the CLR, PD, and ELN) in estimating the flux 680 

values. However, the linear algorithms performed almost equally well as the ML algorithms in 681 

assessing the meteorological drivers. Amongst these nine algorithms, the RF and XGB showed the 682 

highest level of robustness and reliability in estimating the Fc, Fe, and Fh. The PD was expected to 683 

perform better than the linear methods, and it was hoped to compete with the ML algorithms in 684 

estimating the fluxes, but it failed to do so. The SVR was the only ML algorithm that did not perform 685 

at the same level as the rest ML algorithms that we suspect were due to over-fitting issues, while the 686 

MDS performed somewhere in between. Considering the outcomes of previous research undertaken 687 

in the OzFlux Network (e.g. (Cleverly et al., 2013; Isaac et al., 2017)), none of the ML algorithms used 688 



24 

 

in this research was proven to provide substantially better flux estimations compared with the 689 

standard method (ANNs). Nonetheless, amongst the algorithms tested in this research, the RF showed 690 

potential capabilities as an alternative due to its more consistent performance regarding the long gaps. 691 

Finally, we recommend suggestions below to improve the results for similar prospective researchers, 692 

as well as the QC and gap-filling procedure for flux networks: 693 

1) Since the RF was more consistent than its competitors, including the ANNs, we suggest it is a good 694 

idea to use RF alongside the commonly used algorithms in challenging scenarios, such as long gaps, 695 

to figure out whether this superiority can be generalised. 696 

2) It appears that even after three levels of quality control process done by the flux processing software 697 

(e.g. PyFluxPro), the data is still quite noisy. These noisy data are an essential source of both 698 

uncertainty and inaccuracy of the outcome, regardless of the algorithm used to gap-fill the data. As a 699 

result, another level of quality control methods, such as Wavelets or Matrix Factorisation, in addition 700 

to the current classical ones used by the PyFluxPro and other similar platforms, can probably improve 701 

the data quality and thereby improve the final imputation results. 702 

3) For future researchers, using recurrent neural networks (RNNs) instead of feedforward neural 703 

networks (FFNN) could improve the estimations. That is likely because RNNs help the model to 704 

consider temporal dynamic behaviour of time series, as unlike FFNN, wherein the activations flow 705 

only from the input layer to the output layer, RNNs also have neuron connections pointing backwards 706 

(Géron, 2019). There is a demand for an algorithm capable of considering time has been mentioned in 707 

previous research as one of the reasons why testing the new algorithms is needed (Richardson and 708 

Hollinger, 2007). 709 

4) Developing ensemble models using algorithms with different weaknesses and strengths may also 710 

enhance the results where a single algorithm shows performance deficiency.  711 

 712 

6. Data availability 713 

The data were used in this research are available through the following sources: The L3 and L4 714 

data are accessible from the OzFlux data portal (http://data.ozflux.org.au/portal). Current ACCESS-R 715 

and data are available from the BoM OPeNDAP server (https://www.opendap.org/). Likewise, the 716 

data coming from the BoM AWS are accessible from (http://www.bom.gov.au/climate/data). Lastly, 717 

the BIOS2 data are accessible from the ECMWF datasets portal 718 

(https://www.ecmwf.int/en/forecasts/datasets). All data used in this research are available in this 719 

repository address: (https://research-repository.uwa.edu.au/en/datasets/a-comparison-of-gap-filling-720 

algorithms-for-eddy-covariance-fluxes); DOI: 10.26182/5f292ee80a0c0. 721 
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