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Abstract 16 

 The errors and uncertainties associated with gap-filling algorithms of water, carbon and 17 

energy fluxes data, have always been one of the prominent challenges of the global network of 18 

microclimatological tower sites that use eddy covariance (EC) technique. To address this concern, and 19 

find more efficient gap-filling algorithms, we reviewed eight algorithms to estimate missing values of 20 

environmental drivers, and separately three major fluxes in EC time series. We then examined the 21 

performance of mentioned algorithms for different gap-filling scenarios utilising data from five 22 

OzFlux Network towers during 2013.  The objectives of this research were a) to evaluate the impact 23 

of training and testing window lengths on the performance of each algorithm; b) to compare the 24 

performance of traditional and new gap-filling techniques for the EC data, for fluxes and their 25 

corresponding meteorological drivers. The performance of algorithms was evaluated by generating 26 

nine different training-testing window lengths, ranging from a day to 365 days. In each scenario, the 27 

gaps covered the data for the entirety of 2013 by consecutively repeating them, where, in each step, 28 

values were modelled by using earlier window data. After running each scenario, a variety of 29 

statistical metrics was used to evaluate the performance of the algorithms. The algorithms showed 30 

different levels of sensitivity to training-testing windows; The Prophet Forecast Model (FBP) revealed 31 

the most sensitivity, whilst the performance of artificial neural networks (ANNs), for instance, did not 32 

vary considerably by changing the window length. The performance of the algorithms generally 33 

decreased with increasing training-testing window length, yet the differences were not considerable 34 

for the windows smaller than 60 days. Gap-filling of the environmental drivers showed there was not 35 

a significant difference amongst the algorithms, the linear algorithms showed slight superiority over 36 
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those of machine learning (ML), except the random forest algorithm estimating the ground heat flux 37 

(RMSEs of 30.17 and 34.93 for RF and CLR respectively). For the major fluxes, though, ML algorithms 38 

showed superiority (9 % less RMSE on average), except the Support Vector Regression (SVR), which 39 

provided significant bias in its estimations. Even though ANNs, random forest (RF) and extreme 40 

gradient boost (XGB) showed close performance in gap-filling of the major fluxes, RF provided more 41 

consistent results with less bias, relatively. The results indicated that there is no single algorithm 42 

which outperforms in all situations and therefore, but RF is a potential alternative for the ANNs as 43 

regards flux gap-filling.  44 

 45 

1. Introduction 46 

To address the global challenges of climatological and ecological changes, environmental 47 

scientists and policymakers are demanding data that are continuous in time and space.  Besides, there 48 

is a need for quantifying and reducing uncertainties in such data, including observations of carbon, 49 

water and energy exchanges that are crucial components in national/international flux networks and 50 

global earth observing systems.  Satellites partially fill this gap as they provide excellent spatial 51 

coverage but at a limited temporal resolution, and not measured at the point. As such, high-quality 52 

long-term site observations of ecosystem process and fluxes are needed that are continuous in time 53 

and space. The global eddy covariance (EC) flux tower networks (FLUXNET), consisted of its regional 54 

counterparts (i.e. AmeriFlux, EUROFLUX, OzFlux, etc.), was established in the late 1990s to address 55 

the global demand for such information (Beringer et al., 2016a; Hollinger et al., 1999; Tenhunen et al., 56 

1998). Despite the capability of EC to frequently validate process modelling analyses, field surveys 57 

and remote sensing assessments (Hagen et al., 2006), there are some serious concerns regarding the 58 

challenges associated with the technique, e.g. data gaps and uncertainties. Hence, filling data gaps 59 

and reducing uncertainties through better gap-filling techniques are highly needed. 60 

Even though the EC is a common technique to measure fluxes of carbon, water and energy, 61 

there are some challenges in providing robust, high-quality continuous observations. One of the 62 

challenges regarding the technique, and therefore, the flux networks, is addressing data gaps and the 63 

uncertainties associated with the gap-filling process, mainly when the gap windows are long (longer 64 

than 12 consecutive days, as described by (Moffat et al., 2007)). These gaps happen very often due to 65 

a variety of reasons, such as values out of range, spike detection or manual exclusion of date and time 66 

ranges, instrument or power failure, herbivores, fire, eagles nests, cows, lightning, researchers on 67 

leave, etc. (Beringer et al., 2016b). Since EC flux towers are often located in harsh climates, their data 68 

are more susceptible to adverse weather (i.e. rain conditions), and they sometimes prevent quick 69 

access to sites for repair and maintenance. As a result, this issue can, in turn, produce gaps which 70 

might be relatively long (Isaac et al., 2017), and thus, problematic as follows. Firstly, loss of data is 71 

considered a threat to scientific studies depending on the missing data quantity, pattern, mechanism 72 

and nature (Altman and Bland, 2007; Molenberghs et al., 2014; Tannenbaum, 2010). That is because 73 

using an incomplete dataset might lead to biased, invalid and unreliable results (Allison, 2000; Kang, 74 
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2013; Little, 2002). Second, continuous gap-filled data are required to calculate the annual or monthly 75 

budgets of carbon or water balance components (Hutley et al., 2005).  76 

Other than the challenges caused by missing data, there are several sources of errors and 77 

uncertainties in the EC technique. Firstly, random error is associated with the stochastic nature of 78 

turbulence, associated sampling errors (incomplete sampling of large eddies, uncertainty in the 79 

calculated covariance between the vertical wind velocity and the scalar of interest), instrument errors, 80 

and footprint variability (Aubinet et al., 2012). For instance, Dragoni et al. (2007) analysed an EC-based 81 

data of Morgan-Monroe State Forest for eight years (1999-2006) and assessed that instrument 82 

uncertainty was equal to 3 % of the total annual NEE. Another primary source of uncertainty in EC 83 

measurements is systematic errors that are usually caused by methodological challenges and 84 

instrument calibration problems (e.g. sonic anemometer errors, spikes, gas analyser errors, etc.). 85 

Finally, one of the sources of uncertainties is data processing, especially data gap-filling (Isaac et al., 86 

2017; Moffat et al., 2007; Richardson et al., 2012; Richardson and Hollinger, 2007). 87 

 88 

There are several uncertainties pertaining to gap-filling of missing values, including 89 

measurement uncertainty (Richardson and Hollinger, 2007), lengths and timing the gaps (Falge et al., 90 

2001; Richardson and Hollinger, 2007) and the particular gap-filling algorithm that is used (Falge et 91 

al., 2001; Moffat et al., 2007).  However, there are two dominant issues of long data gaps and the choice 92 

of a particular gap-filling algorithm (Aubinet et al., 2012). Firstly, long gaps can significantly increase 93 

the total amount of uncertainty as the ecosystem behaviour might change because of different 94 

agricultural periods or phenological phases (e.g. growing season, harvest period, bushfire, etc.). And 95 

thereby show different responses under similar meteorological conditions (Aubinet et al., 2012; Isaac 96 

et al., 2017; Richardson and Hollinger, 2007). Consequently, the period in which a long gap happens 97 

is essential. For example, research undertook by Richardson & Hollinger (2007) on data from a range 98 

of FLUXNET sites revealed that a week data gap during spring green-up in a forest led to a higher 99 

uncertainty over a three-week gap period during winter. Second, each gap-filling algorithm has its 100 

strengths and weaknesses; for instance, Moffat et al. (2007) compared a couple of different commonly-101 

used gap-filling algorithms. They found that there was not a significant difference between the 102 

performances of the algorithms with “good” reliability based on analysis of variance of RMSE.  103 

Besides, the overall gap-filling uncertainty was within ±25 g C m-2 yr-1 for most of the proper 104 

algorithms, whereas, the other algorithms generated higher uncertainties of up to ±75 g C m-2 yr-1. This 105 

result is similar to the findings of Richardson & Hollinger (2007)  who found uncertainties of up to 106 

±30 g C m-2 yr-1 for long gaps by appropriate algorithms. Considering that the data provided by EC 107 

tower networks are of use for research, government and policymakers, robust gap-filling is a need to 108 

quantify and reduce uncertainties in flux estimations.  109 

 110 

To manage the missing data problem, several methods have been typically used to fill data 111 

gaps in both fluxes and their meteorological drivers. Due to computational constraints of complex 112 
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algorithms, early works to impute EC data gaps used interpolation methods based mostly on linear 113 

regression or temporal autocorrelation (Falge et al., 2001; Lee et al., 1999). These approaches were 114 

replaced quickly by more sophisticated methods such as non-linear regressions (Barr et al., 2004; Falge 115 

et al., 2001; Moffat et al., 2007; Richardson et al., 2006); lookup tables (Falge et al., 2001; Law et al., 116 

2002; Zhao and Huang, 2015); artificial neural networks (ANNs) (Aubinet et al., 1999; Beringer et al., 117 

2016a; Cleverly et al., 2013; Hagen et al., 2006; Isaac et al., 2017; Kunwor et al., 2017; Moffat et al., 2007; 118 

Papale and Valentini, 2003; Pilegaard et al., 2001; Staebler, 1999); mean diurnal variation (Falge et al., 119 

2001; Moffat et al., 2007; Zhao and Huang, 2015), multiple imputations (Hui et al., 2004; Moffat et al., 120 

2007), etc. Each of these methods has its pros and cons as follows: a) Interpolation methods such as 121 

the Mean Diurnal Variation (MDV), do not need any drivers, yet, their accuracy is lower than other 122 

approaches (Aubinet et al., 2012). Moreover, this method may provide biased results on extremely 123 

clear or cloudy days (Falge et al., 2001). MDV is not recommended when a gap is longer than two 124 

weeks, for it cannot consider the non-linear relations between the drivers and the flux, and thus leads 125 

to a high level of uncertainty (Falge et al., 2001). And b) The Lookup table, especially its modified 126 

version, Marginal Distribution Sampling (MDS), has provided performance close to ANNs, and are 127 

more reliable and consistent than the other algorithms so far. Hence, MDS was chosen as one of the 128 

standard gap-filling methods in EUROFLUX (Aubinet et al., 2012). Nevertheless, one of the concerns 129 

regarding this algorithm is that the independent variables, here meteorological drivers, might be auto-130 

correlated. c) ANNs have commonly been used to gap-fill EC fluxes since 2000 and because of their 131 

robust and consistent results are considered as a standard gap-filling algorithm in several networks, 132 

e.g. ICOS, FLUXNET, OzFlux, etc. (Aubinet et al., 2012; Beringer et al., 2017; Isaac et al., 2017). Despite 133 

their reliable performance, ANNs –and generally all other ML algorithms- face some challenges. Over-134 

fitting, for instance, is a big concern and can happen when the number of degrees of freedom is high, 135 

while the training window is not long enough respectively, or the quality of the training dataset is 136 

low. This challenge becomes acute when the gaps happen within a period when the ecosystem 137 

behaviour is changing and thereby showing different response under similar meteorological 138 

conditions. Furthermore, there is a desire to have the training windows short so that the algorithm 139 

can track the ecosystem behaviour shift. Yet, this increases the risk of over-fitting depending on the 140 

algorithm. In other words, the training window length should be neither too short to cause over-141 

fitting, and nor too long to lead algorithms to ignore ecological condition changes. Besides, long gaps 142 

are considered as one of the primary uncertainty sources of CO2 flux in the FLUXNET (Aubinet et al., 143 

2012). As a result, studying the effects of the gap lengths, as well as the window length whereby an 144 

algorithm is trained are both critical challenges associated with the environmental data gap-filling.  145 

 146 

Apart from the limitations and disadvantages of the mentioned algorithms, gap-filling of fluxes 147 

(i.e. NEE) experiences some other challenges that make it necessary to find or develop new gap-filling 148 

algorithms. That is because the current methods are not flexible enough to perform well in special 149 

occasions or extreme values (Kunwor et al., 2017), and there is almost no room to optimise them to 150 

improve their outcome (Moffat et al., 2007). Moreover, even using the best available algorithm, such 151 
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as ANNs, the model (gap-filling) uncertainty still accounts for a sizable proportion of the total 152 

uncertainties, especially when the gaps are relatively long. Since the 2000s when MDS and ANNs were 153 

chosen as the most reliable gap-filling methods for EC flux observations, many new ML and 154 

optimisation algorithms have been developed and used in varieties of scientific fields. Some of which 155 

have shown superiority over ANNs, either individually or as a part of a hybrid or ensemble model, 156 

e.g. (Gani et al., 2016). As a result, comparing the cutting-edge algorithms with the current standard 157 

ones can show whether there is any room to improve the gap-filling process within the field. 158 

According to the concerns mentioned above, this paper had two objectives. a) To find out the impact 159 

of different window lengths on the performance of each algorithm. And b) evaluate the performance 160 

of traditional and new gap-filling techniques for the OzFlux Network, separately for fluxes and their 161 

meteorological drivers, particularly soil moisture, for this has always been a challenging variable to 162 

gap-fill for a couple of reasons, such as of the biology and heterogeneity of soil parameters. To address 163 

these objectives, we utilised eight different algorithms (Extreme Gradient Boost (XGB), Random Forest 164 

Algorithm (RF), Artificial Neural Networks (ANNs), Classic Linear Regression (CLR), Support Vector 165 

Regression (SVR), Elastic net regularisation (ELN), Panel Data (PD) and Prophet Forecast Model 166 

(FBP)) to fill the gaps of environmental drivers and the major fluxes. We then assessed their relative 167 

performance to evaluate potentially better ways to fill EC flux data. To test the approaches, we used 168 

five flux towers from the OzFlux network. To evaluate the performance of these algorithms, nine 169 

scenarios for gaps were planned – from a day to a whole year - and applied to the datasets, and 170 

different common performance metrics (e.g. RMSE, MBE, etc.), as well as visual graphs were used. 171 

 172 

2. Materials and methods 173 

 174 

To address the first objective of this research, data of nine different window lengths were 175 

considered to train and test the algorithms, i.e. 1, 5, 10, 20, 30, 60, 90, 180 and 365 days. To address the 176 

second objective, we chose eight different algorithms to fill the gaps, including a wide variety of 177 

different approaches, e.g. from a simple algorithm like CLR to cutting-edge ML algorithms, such as 178 

XGB. The data used in this paper came from five EC towers of the OzFlux Network, i.e. Alice Springs 179 

Mulga, Calperum, Gingin, Howard Springs and Tumbarumba form 2011 to 2013, with a time 180 

resolution of 30 minutes. Additionally, data coming from three additional sources outside of the 181 

network were also used as ancillary data to help the algorithms fill the gaps of environmental drivers.   182 

2.1. Data 183 

The data used for this research came from OzFlux, which is the regional Australian and New 184 

Zealand flux tower network that aims to provide a continental-scale national research facility to 185 

monitor and assess Australia’s terrestrial biosphere and climate (Beringer et al., 2016a). As described 186 

in (Isaac et al., 2017), all OzFlux towers continuously measure and record 28 environmental features 187 

at resolutions up to 10 Hz, and use a 30 min averaging period, with a few exceptions (data are available 188 

from (http://data.ozflux.org.au/portal). Besides, the network acquires additional data from the 189 

Australian Bureau of Meteorology (BoM), the European Centre for Medium-Range Weather 190 
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Forecasting (ECMWF), and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the 191 

TERRA and AQUA satellites (Isaac et al., 2017). These additional data, also known as ancillary data, 192 

provide alternative data for gap-filling flux tower datasets (Isaac et al., 2017). As explained in (Isaac 193 

et al., 2017), OzFlux uses the BoM automated weather station (AWS) datasets to gap-fill the 194 

meteorological data, the BoM weather forecasting model (ACCESS-R) for radiation and soil data from 195 

2011 onward, and MODIS MOD13Q1 for Normalised Difference Vegetation Index (NDVI) and 196 

Enhanced Vegetation Index (EVI). Moreover, the data provided by BIOS2, a physically-based model-197 

data integration environment for tracking Australian carbon and water (Haverd et al., 2015), were also 198 

used as another ancillary source for varieties of environmental features. Current ACCESS-R and 199 

MODIS data are available from the BoM OPeNDAP (http://www.opendap.org/) server and TERN-200 

AusCover data (http://www.auscover.org.au/), respectively.  201 

 202 

The datasets were used in this research came from five towers amongst the OzFlux Network 203 

between 2011 and 2013, each representative of a different climate and land cover of Australian 204 

ecological conditions; i.e. Alice Springs Mulga: Tropical and Subtropical Desert, Calperum: steppe, 205 

Gingin: Mediterranean, Howard Springs: Tropical Savanna, Tumbarumba: Oceanic (Table 1) 206 

(Beringer et al. 2016). The datasets included 15 meteorological drivers as well as three major fluxes 207 

recorded (Table 2) based upon EC technique at a 30-minute temporal resolution, except for 208 

Tumbarumba, which was hourly. Additionally, relevant ancillary datasets for the mentioned towers 209 

were used to follow the OzFlux Network gap-filling protocol. Each dataset was quality checked at 210 

three levels based on the OzFlux Network protocol described in (Isaac et al., 2017) and applied using 211 

PyFluxPro ver. 0.9.2. To address the underestimation of canopy respiration by EC measurements at 212 

night, we used the CPD method of (Barr et al., 2013) to reject nightly records when the friction velocity 213 

fell below the threshold value of each site. After dismissing the inappropriate measurements, overall 214 

coverage of 72-88 % and 21-48 % were achieved for diurnal and nocturnal records, respectively.  215 

 216 
Table 1. The information of the five towers that their data were used, including their name, location, dominant species and 217 
climate. 218 

Site Location Species Climate Latitude, 

Longitude 

(degree) 

Alice Springs Mulga 

[AU-ASM] 

Pine Hill cattle 

station, near Alice 

Springs, Northern 

Territory 

Semi-arid mulga 

(Acacia aneura) 

ecosystem 

Tropical and 

Subtropical Desert 

Climate (Bwh) 

-22.2828° N, 

133.2493° E 

Calperum [AU-Cpr] Calperum Station, 

25 km NW of 

Renmark, South 

Australia 

Recovering Mallee 

woodland 

Steppe Climate 

(Bsk) 

-34.0027° N, 

140.5877° E 

Gingin [AU-Gin] Swan Coastal Plain 

70 km north of 

Perth, Western 

Australia 

Coastal heath Banksia 

woodland 

Mediterranean 

Climate (Csa) 

-31.3764° N, 

115.7139° E 

Howard Springs 

[AU-How] 

E of Darwin, NT Tropical savanna 

(wet) 

Tropical Savanna 

Climate (Aw) 

-12.4943° N, 

131.1523° E 

Tumbarumba [AU-

Tum] 

Near 

Tumbarumba, 

NSW 

Wet temperate 

sclerophyll eucalypt 

Oceanic climate 

(Cfb) 

-35.6566° N, 

148.1517° E 
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 219 
Table 2. List of variables and their units used in this research, including the three main fluxes and their environmental drivers. 220 

List of variables Units 

    Drivers:  
Ah Absolute Humidity (g m-3) 

Fa Available energy (W m-2) 

Fg Ground heat flux (W m-2) 

Fld Downwelling long-wave radiation (W m-2) 

Flu Upwelling long-wave radiation (W m-2) 

Fn Net radiation (W m-2) 

Fsd Downwelling short-wave radiation (W m-2) 

Fsu Upwelling short-wave radiation (W m-2) 

ps Surface pressure (kPa) 

Sws Soil water content (m m-1) 

Ta Air temperature (C) 

Ts Soil temperature (C) 

Ws Wind speed (m s-1) 

Wd Wind direction (deg) 

Precip Precipitation (mm) 

    Fluxes:  
Fc  CO2 flux (µmol m-2 s-1) 

Fh Sensible heat flux (W m-2) 

Fe Latent heat flux (W m-2) 

  

 221 

The datasets whereby each environmental variable was gap-filled are shown in Table 3. For each of 222 

these variables, the same variable of the ancillary source was used to fill the gaps. For instance, to gap-223 

fill Ah, the Ah records of AWS, ACCESS-R and BIOS2 were used. To gap-fill the missing values of 224 

fluxes, i.e. Fc, Fh and Fe, eight drivers were used as follows: Ta, Ws, Sws, Fg, VPD, Fn, q and Ts based 225 

on trial and error. Different libraries of Python Programming Language (ver. 3.6.4) were utilised for 226 

training and testing the algorithms, i.e. xgboost for XGB, fbprophet for FBP, statsmodels for PD and 227 

sklearn for the rest of algorithms.  Each algorithm was tuned up individually using gird search, and 228 

the number of nodes, layers, irritations, etc. were chosen therefor.  229 

 230 

 231 
Table 3. The ancillary sources whereby each environmental driver was gap-filled. 232 

List of variables (y) Ancillary Source 

    Drivers:  
Ah AWS, ACCESS-R, BIOS2 

Fa ACCESS-R, BIOS2 

Fg ACCESS-R, BIOS2 

Fld ACCESS-R, BIOS2 

Flu ACCESS-R, BIOS2 

Fn ACCESS-R, BIOS2 

Fsd ACCESS-R, BIOS2 

Fsu ACCESS-R, BIOS2 

ps AWS, ACCESS-R 

Sws ACCESS-R, BIOS2 
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Ta AWS, ACCESS-R, BIOS2 

Ts ACCESS-R, BIOS2 

Ws AWS, ACCESS-R 

Wd AWS, ACCESS-R 

Precip AWS, ACCESS-R, BIOS2 

  

 233 

 234 

2.2. Gap-filling algorithms 235 

 236 

Eight imputation algorithms for estimating 15 environmental drivers and 3 major fluxes were 237 

picked out to make the comparison. These algorithms were used in a way that a variety of approaches 238 

were tested, from a standard method like ANNs, to the newer algorithms which rarely or never been 239 

used in the field, such as Extreme Gradient Boosting and panel data. According to the literature, since 240 

the performance of ANNs had been either equal or slightly better than MDS (Kim et al., 2020; Moffat 241 

et al., 2007), we did not use MDS. 242 

 243 

Artificial Neural Networks (ANN) 244 

Rooted in the 1950s, artificial neural networks are ML methods inspired by biological neural 245 

networks and are classified as supervised learning methods (Dreyfus, 1990; Farley and Clark, 1954). 246 

ANN work based on several connected units called nodes, which are used to mimic the functionality 247 

of a neuron in an animal brain by sending and receiving signals to other nodes. The ANN technique 248 

used in this paper was Multi-layer Perceptron regressor, which optimises the squared-loss using 249 

stochastic gradient descent.  Sklearn.neural_network.MLPRegressor was used to apply this method 250 

in Python, and its hyperparameters were 800 and 500 for “hidden_layer_sizes” and “max_iter”, 251 

respectively based on grid search. ANN are one of the current standard approaches for gap-filling in 252 

FLUXNET and in this research were picked out as a performance reference for other algorithms. 253 

 254 

Classical Linear Regression (CLR) 255 

A classical linear regression is an equation developed to estimate the value of the dependent 256 

variable (y) based on independent values (xi). In contrast, each xi has its specific coefficient and an 257 

overall intercept value. In this method, these coefficients are determined by minimising the squared 258 

residuals (errors) of estimated vs observed values, called least squares. A CLR algorithm can be 259 

formulated as follows (Freedman, 2009): 260 

 y = α + β1X1 + β2X2 + β3X3 + … + βiXi+ ɛ (1) 

where y is the dependent variable, α is the interception, Xs are independent variables, and βi is 261 

coefficient of Xi, and ɛ is the error term. We chose this algorithm as a baseline to find out how better 262 

more complicated algorithms can estimate dependent variables comparatively.  263 

https://doi.org/10.5194/gi-2020-21
Preprint. Discussion started: 7 September 2020
c© Author(s) 2020. CC BY 4.0 License.



9 

 

Random Forests (RF) 264 

Random forest, a supervised ML algorithm, used for both classification and regression, 265 

consists of multiple trees constructed systematically by pseudorandomly selecting subsets of 266 

components of the feature vector, that is, trees constructed in randomly chosen subspaces (Ho, 1998). 267 

RF algorithm has been developed to control the overcome over-fitting problem, a commonplace 268 

limitation of its preceding decision tree-based methods (Ho, 1995, 1998). 269 

Sklearn.ensemble.RandomForestRegressor was used to apply this method in Python, and the 270 

hyperparameters used were 5 and 1000 for “max_depth” and “n_estimators”, respectively based on 271 

grid search. 272 

 273 

Support Vector Regression (SVR)  274 

As a non-linear method, support vector regression was developed based on Vanpik’s concept 275 

of support vectors theory (Drucker et al., 1997). An SVR algorithm is trained by trying to solve the 276 

following problem: 277 

 278 

minimise 
1

2
 ‖𝑤‖2 279 

subject to (
𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜀,
⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀,

) 280 

where xi and yi are training sample and target value in a row. The inner product plus intercept 281 

⟨𝑤, 𝑥𝑖⟩ + 𝑏 is the prediction for that sample, and ε is a free parameter that serves as a threshold. 282 

sklearn.svm.SVR was used to apply this method in Python, and the hyperparameters that used were 283 

1 and 0.001 for “C” and “gamma”, respectively based on grid search. 284 

Elastic net regularisation (ELN) 285 

The elastic net is a linear regularised regression method that exerts small amounts of bias by 286 

adding two penalty components to the regressed line to decline the coefficients of independent 287 

variables and thus, provides better long-term predictions. Given that these two penalty components 288 

come from ridge regression and LASSO, the elastic net is considered as a hybrid model consists of 289 

ridge and LASSO regressions, overcoming the limitations of both. The estimates from the ELN method 290 

can be formulated as below (Zou and Hastie, 2005): 291 

 𝛽̂(𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡) =
(|𝛽̂(𝑂𝐿𝑆)| −

λ1
2⁄ )

1 + λ2
𝑠𝑔𝑛{𝛽̂(𝑂𝐿𝑆)} (2) 

 292 

where 𝛽̂ is the coefficient of each ELN independent variable, λ1 and λ2 are penalty coefficients of 293 

LASSO and ridge regression respectively, 𝛽̂(𝑂𝐿𝑆)  is the coefficient of an independent variable 294 

calculated based on ordinary least squares, and sgn stands for the sign function: 295 
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 𝑠𝑔𝑛(𝑥) = {
1        𝑥 > 0
0        𝑥 = 0
 −1     𝑥 < 0

 (3) 

 296 

The ELN regression is good at addressing situations when the training datasets have small samples 297 

or when there are correlations between parameters. sklearn.linear_model.ElasticNet was used to 298 

apply this method in Python, and the hyperparameters used were as follows: {'alpha': 0.01, 299 

'fit_intercept': True, 'max_iter': 5000, 'normalize': False} based on grid search. 300 

 301 

Panel data (PD) 302 

Panel data is a multidimensional statistical method, mainly used in econometrics to analyse 303 

datasets, which involve time series of observations amongst individual cross-sections (Baltagi, 1995) 304 

usually based on ordinary least squares (OLS) or generalised least squares (GLS). A two-way panel 305 

data model consists of two extra components above a CLR as follows (Baltagi, 1995; Hsiao et al., 2002; 306 

Wooldridge, 2008): 307 

   (4) 

 𝑦𝑖𝑡 = 𝛼 + 𝛽𝑋𝑖𝑡 + 𝜇𝑖 + λ𝑡 (5) 

where i and t denote the cross-section and time series dimension in a row, y is a dependent-variable 308 

vector, X is an independent variable matrix, α is a scalar, β is the coefficient of the independent-309 

variable matrix, µi is the unobservable individual-specific effect, and λt is the unobservable time-310 

specific effect. Panel data abilities to provide a holistic analysis of different individuals, as well as 311 

determining the specific impact of every single time caused its superiority over CLR.  312 

Extreme Gradient Boost (XGB) 313 

Extreme gradient boost is a reinforced method of Gradient Boost introduced in 1999 that works based 314 

on parallel boosted decision trees and similar to RF can be used for a variety of data processing 315 

purposes including classification and regression (Friedman, 2002; Jerome H. Friedman, 2001; Ye et al., 316 

2009). XGB method is resistive to over-fitting and provides a robust, portable and scalable algorithm 317 

for large-scale boosting decision-trees-based techniques. 318 

sklearn.ensemble.GradientBoostingRegressor was used to apply this method in Python, and its 319 

hyperparameters were chosen based on grid search as follows: {'learning_rate': 0.001, 'max_depth': 8, 320 

'reg_alpha': 0.1, 'subsample': 0.5}. 321 

 322 

The Prophet Forecasting Model (FBP) 323 

The Prophet Forecasting Model, also known as “prophet”, is a time series forecasting model 324 

developed by Facebook to manage the common features of business time series and designed to have 325 

1,2,..., ; 1,2,...,it it ity X u i N t T     
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intuitive parameters that can be adjusted without knowing the details of underlying model (Taylor 326 

and Letham, 2017). A decomposable time series model was used (Harvey and Peters, 1990) to develop 327 

this model, with three main components: trend, seasonality, and holidays as the equation below 328 

(Taylor and Letham, 2018): 329 

 y(t) = g(t) + s(t) + h(t) (6) 

 330 

where g(t) is the trend function, which models mom-periodic changes, s(t) is a function to represent 331 

periodic changes, e.g. seasonality, and h(t) assesses the effects of potential anomalies which occur over 332 

one or more days, e.g. holidays. 333 

 334 

2.3. The gap scenarios 335 

To find out the effect of gap size on the performance of our gap-filling algorithms, we trained 336 

each of them using nine different window lengths (i.e. 1, 5, 10, 20, 30, 60, 90, 180 and 365 days). The 337 

gap size for each trained algorithm was chosen as the same size of the corresponding training window, 338 

e.g. the gap size for a 20-day training window was 20 days and so on. As such, in every scenario, the 339 

entire data of 2013 were used step by step to test the performance of the algorithms as follows: at the 340 

first step of each scenario, the gap began from 1 Jan  2013, while its corresponding training window 341 

was the same size but came from the preceding period. For instance, for a 30-day gap, the first step 342 

included training an algorithm based on the data of Dec 2012 and the testing period of the first month 343 

of 2013. In the second step, the data of the first month of 2013 were used for training, while the data 344 

of the second month of 2013 was considered as a gap, and this went to the end of 2013 consecutively. 345 

As such, for the last step, the training window was the second last 30 days of 2013, and its 346 

corresponding gap was the last 30 days of 2013. The only exception of the mentioned training strategy 347 

was FBP as it needed a training dataset with at least a year to be developed. Therefore, here, the 348 

training data for each gap was all data prior to that gap since the beginning of 2011. Overall, 18 349 

variables, nine window lengths and eight gap-filling methods across five flux towers resulted in 6480 350 

computations. 351 

2.4. Statistical performance measures 352 

Different statistical metrics were used to evaluate the performance of algorithms and enable 353 

comparison between measured values from the flux towers with each gap-filling algorithm prediction. 354 

These metrics included the coefficient of determination (R-squared) to measure the square of the 355 

coefficient of multiple correlations (Devore, 1991), the variance of measured and modelled values (S2) 356 

to indicate how well algorithms could follow the variations of the recorded data, the root mean square 357 

error (RMSE), the mean bias error (MBE) to capture distribution and bias of residuals, variance ratio 358 

(VR) to compare the variance of estimated values with those of measured, and the Index of Agreement 359 

to compare the sum of the squared error to the potential error (Bennett et al., 2013). Abbreviations and 360 

formulas of these metrics are illustrated as follows (Bennett et al., 2013):  361 
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 𝑅2 =
[∑(𝑝𝑖 − 𝑝̅)(𝑜𝑖 − 𝑜̅)]2

∑(𝑝𝑖 − 𝑝̅)2 ∑(𝑜𝑖 − 𝑜̅)2
 (7) 

 362 

 S2 =
∑(𝑥𝑖 − 𝑥̅)

N − 1
 (8) 

 363 

 
𝑅𝑀𝑆𝐸 = √

∑(𝑝𝑖 − 𝑜𝑖)2

N − 1
 

(9) 

 364 

 365 

 MBE =
∑ 𝑜𝑖 − 𝑝𝑖

N − 1
 (10) 

 366 

 VR=
𝜎𝑝

2

𝜎𝑜
2 (11) 

 367 

 𝐼𝑜𝐴𝑑 = 1 −
∑ (𝑜𝑖 − 𝑝𝑖)

2𝑛
𝑖=1

∑ (|𝑝𝑖 − 𝑜̅| + ||𝑜𝑖 − 𝑜̅|)2𝑛
𝑖=1

 (12) 

 368 

where oi and pi are individual measured and predicted values respectively, 𝑜̅ and 𝑝 are the means of 369 

o and p, and σ2 is the variance.  S2 is calculated separately for the observed and predicted values with 370 

the respective values defined as x that represents every observed or predicted value. All of these 371 

metrics were calculated for each of the gap scenarios, and then the results of different windows were 372 

concatenated. Afterwards, the yearly metrics were calculated to avoid Simpson’s paradox or any 373 

relevant averaging issue as described by (Kock and Gaskins, 2016). Moreover, the average of daily 374 

and seasonal differences between the estimated and measured values, as well as the associated 375 

variance were calculated and plotted.  376 

3. Results 377 

 378 

3.1. Fluxes 379 

3.1.1 Fc 380 

 Even though factors such as Fg and Fn are fluxes, we dealt with them as environmental drivers 381 

since they drive the three major fluxes. The metrics used to evaluate the performance of the algorithms 382 

(RMSE, R2, MBE, IoAd and VR) (Table 4) illustrated that overall, the performance of these algorithms, 383 

particularly the ML ones, was similar. The algorithms, however, showed different levels of sensitivity 384 

to training/testing window length, e.g. the ANNs showed less sensitivity, whereas the FBP showed 385 

https://doi.org/10.5194/gi-2020-21
Preprint. Discussion started: 7 September 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

the most sensitivity (Figure 1). The XGB provided the lowest values of RMSE and one of the highest 386 

R2, while the FBP and ELN had the lowest and highest values of RMSE and R2, respectively. 387 

Table 4. The average amounts of performance metrics for each gap-filling algorithm regarding Fc, which includes all window 388 
lengths and sites, ranked by RMSE using the Tukey’s HSD test at the level of 5 per cent. 389 

Algorithm Mean RMSE Mean R2 Mean MBE Mean IoAd Mean VR 

XGB 3.53 a 0.56 -0.44 0.89 0.59 

RF 3.56 a 0.54 -0.38 0.90 0.70 

ANNs 3.57 a 0.52 -0.34 0.89 0.68 

SVR 3.81 b 0.47 -0.33 0.86 0.79 

PD 3.89 b 0.45 -0.36 0.80 0.53 

CLR 3.92 b,c 0.46 -0.37 0.80 0.54 

ELN 4.01 c 0.40 -0.38 0.72 0.37 

FBP 4.15 d 0.44 -0.06 0.77 0.68 

 390 

These outcomes were expected for the XGB as it uses a more regularised model formalisation to 391 

control over-fitting (Chen and Guestrin, 2016) that leads to better performance. The relatively poor 392 

performance of FBP was also foreseen for unlike other algorithms, FBP did not use any feature to 393 

estimate flux values, other than the previous time series of flux values. However, the weaker 394 

performance of the ELN compared to CLR was unforeseen due to by adding two penalty components 395 

to the regressed line, and the ELN is supposed to improve the long term prediction compared to the 396 

traditional linear regression methods. Tukey’s HSD (honestly significant difference) test at the level 397 

of five per cent was applied to the results to find out whether the difference amongst the algorithms 398 

was significant (Table 4). Where the null hypothesis was there is no significant difference between the 399 

mean values of the RMSE. According to the results, there were significant differences between certain 400 

algorithms, and the XGB, RF and ANNs were different from the rest, showing that these three 401 

performed considerably better. Tukey’s HSD test, however, did not reject the second error probability 402 

between RF, XGB and ANNs meaning that the three algorithms were not significantly different from 403 

each other. This result agrees with the results of (Falge et al., 2001) and (Moffat et al., 2007) in the sense 404 

that ANNs are one of the best available algorithms, and there is no significant difference amongst the 405 

appropriate algorithms. Nonetheless, it is worth mentioning that Tukey’s HSD is well known as a 406 

conservative test. That being said, despite no meaningful difference based on Tukey’s HSD, XGB and 407 

RF might have performed better than ANN, as the superiority of RF in gap-filling of methane flux has 408 

recently been claimed by (Kim et al., 2020).  409 

 410 
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 411 

Figure 1. A heat map of mean RMSE values of Fc across all sites based on 8 algorithms and 9 window lengths in 2013. 412 

 413 

To address the first objectives of this paper, finding out the sensitivity of each algorithm to the 414 

training and testing window length, we used the averaged RMSE, R2 and MBE for each window length 415 

and gap size, using the output of all algorithms for all sites (Table 5). The outcome illustrates that the 416 

longer the window length got, the bigger the amounts of RMSE became.  Yet, no such pattern was 417 

recognisable for the R2 and MBE, particularly for the window lengths equal to or shorter than 60 days. 418 

As a result, based on our scenarios (using the same length for training window and gap size), choosing 419 

any training windows longer than 60 days, i.e. 90, 180 and 365 days, made the performance of the 420 
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algorithms worst. The phenomenon can be justified by the idea that longer windows do not let the 421 

algorithms to accommodate seasonal changes and therefore, different physiological behaviour of 422 

the canopy. 423 

Table 5. The average amounts of RMSE, R2, and MBE for Fc gap-filling based on the window length including the outcome of all 424 
sites; the differences of RMSE values were tested using the Tukey’s HSD test at the level of 5 per cent. 425 

Window length Mean RMSE Mean R2 Mean MBE 

1-day 3.74 a 0.49 -0.26 

5-days 3.77 a 0.49 -0.31 

10-days 3.77 a 0.49 -0.29 

20-days 3.79 a 0.48 -0.31 

30-days 3.80 a 0.48 -0.31 

60-days 3.79 a 0.48 -0.35 

90-days 3.81 a 0.48 -0.39 

180-days 3.88 a 0.47 -0.41 

365-days 3.90 a 0.46 -0.37 

 426 

Besides, the metrics of the top three algorithms, XGB, RF and ANNs, did not show any sizeable 427 

difference for the window lengths shorter than 60 days. As such, finding the ideal window length, at 428 

least at this stage, is not distinctly noticeable and should rely on the local knowledge of each specific 429 

site. Nevertheless, as mentioned earlier, the ideal window generally cannot be longer than 60 days, 430 

unless for a monotonic ecosystem without a dramatic change during the year. According to the MBE 431 

values, mainly, all algorithms had negative amounts of MBE, showing overestimation of the Fc values. 432 

This bias varied from tower to tower and depended on the window lengths. For instance, absolute 433 

amounts of the MBE were bigger in Gingin and Tumbarumba, while considerably smaller (closer to 434 

zero) at AliceSprings Mulga and Calperum (results not shown). The lower leaf area index of the two 435 

later sites, and thus their smaller amounts of photosynthesis is likely to be the reason that justifies the 436 

outcome. FBP, nonetheless, provided substantially lower mean bias (-0.06) compared to the other 437 

algorithms, which varied between -0.33 and -0.44.  438 

Observations from the EC technique often include extremely low or high values, especially at 439 

night, when some of the theoretical assumptions might be violated. The nature of the EC technique 440 

associated with its practical challenges, often makes it difficult to distinguish between the good data 441 

and the noise (Aubinet et al., 2012; Burba and Anderson, 2010). This problem seems to affect the 442 

outcomes of the gap-filling algorithms in this research, as none of them performed ideally in capturing 443 

the observed variance (Figure 2). Even though RMSE, R2 and IoAd showed the superiority of the XGB, 444 

RF and ANNs, the variance ratio between the estimated and measured values revealed different 445 

information (Table 4), which is also recognisable in Figure 2. The variance ratios (VR) showed that 446 

SVR captured the extreme values of Fc better than the other algorithms, 0.79 on average. The XGB, on 447 
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the other hand, provided smaller VR (0.59) compared with those of the RF (0.70) and ANNs (0.68), 448 

especially for the window lengths longer than 10 days (not shown). 449 

 450 

Figure 2. Measured vs estimated values of Fc for Calperum based on the 30-day window during June (Austral winter) 2013 451 

This substantial smaller VR calls into question the ability of XGB to provide a solid gap-filling for long 452 

gaps. The linear algorithms, CLR, PD, and ELN, performed worse with respect to the VR compared 453 

to the ML algorithms. The estimated versus measured values of Fc for Calperum during June 2013 454 

(Figure 2) confirms the information achieved by the VR. Based on the figure, and VR of 0.79, the SVR 455 

captured the extreme values of Fc the best, whereas the ELN, as expected, performed the worst (0.37). 456 

Although the XGB (VR of 0.59) provided relatively well while estimating the maximum values 457 

(respiration), it was not capable of assessing the minimum values, thereby provided a constant 458 

overestimation of NEE during the day. The RF (VR of 0.70), in contrast, captured both negative and 459 

positive extremes better than the XGB, while the performance of the ANNs (VR of 0.68) was 460 
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somewhere in between. The rest of the algorithms performed poorly, particularly during the night, 461 

except the FBP. It is noteworthy that CLR, PD, and ELN frequently predicted nocturnal 462 

photosynthesis.  463 

Apart from the objectives of this paper, tracing the performance of gap-filling algorithms 464 

based on the hourly time step and seasonality has been as of the research interests. Thus, as an aside, 465 

the differences between the average of estimations and measured values, as well as the difference 466 

between the variances for the top three algorithms (XGB, RF and ANNs) were calculated for the 24-h 467 

and seasonal ranges. These algorithms showed different anomalies in different towers and hours of 468 

the day, except for Tumbarumba, where the patterns of anomalies were almost similar (Figure 3).  The 469 

average variance of differences was slightly lower during the night while the largest values of 470 

anomalies usually occurred around noon, as expected due to the bigger variations of carbon uptake 471 

caused by photosynthesis. Here, the RF and XGB performed better than ANNs, with the curves closer 472 

to the basis, except for Tumbarumba. According to the seasonal anomalies, however, the algorithms 473 

showed more similarities and closer outcomes, particularly for Tumbarumba, where all three 474 

overestimated Fc values for the whole year (Figure 4). Similar to the 24-hour scale, the anomaly values 475 

varied from site to site based on the season and the algorithm. Although the performance of the 476 

algorithms was less here as against the daily scale, it seems that the XGB and RF still show superiority 477 

over the ANNs. Apart from Tumbarumba, XGB, RF and ANNs showed a significant bias during 478 

spring (July, August and September) in Howard Springs, when the site receives lower precipitation 479 

due to the dry season.  480 

 481 

 482 

 483 

 484 

  485 

 486 

 487 

 488 

 489 

 490 
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            491 

Figure 3. 24-h Anomalies of XGB, RF and ANNs based on the Fc average of differences, and associated variances between the 492 
estimated and measured values for all towers during 2013. 493 

494 
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 495 

Figure 4. Seasonal anomalies of XGB, RF and ANNs based on the Fc averages of differences, and the associated variances 496 
between the estimated and measured values for all towers during 2013 (Jan, Feb and Mar as Summer, Apr, May and Jun as 497 
Autumn, Jul, Aug and Sep as winter). 498 
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3.1.2 Fe 499 

 The performance of algorithms for Fe was similar to that for Fc regarding RMSE, MBE and R2, 500 

as shown in Table 6. This similarity was not surprising since these processes are partially coupled via 501 

stomatal conductance (Scanlon and Kustas, 2010; Scanlon and Sahu, 2008). Again, the top three ML 502 

algorithms performed better, with a significant superiority of the XGB and RF, as shown by the 503 

Tukey’s HSD (Table 6). Besides, the null hypothesis was not rejected while comparing FBP and SVR, 504 

whereas the better performance of the other algorithms was confirmed.  As a result, the FBP and SVR 505 

provided the most unsatisfactory results in estimating Fe, according to the average values of the 506 

RMSE. No significant improvement in RMSE occurred when the window lengths of training and 507 

testing became shorter than 90 days, meaning that the performance of the algorithms did not vary 508 

considerably from a 60-day to a one-day window. The results of CLR and PD were very similar to 509 

those for Fc, showed lower RMSE and higher R2 values as against ELN, but the ELN led to slight lower 510 

MBE. The MBE values also showed moderately high values for the SVR, meaning that there was an 511 

absolute bias in its outcome, which might be related to overfitting. The source of the bias shown by 512 

the SVR algorithm (Figure 5), was because it could not capture the minimum values appropriately, 513 

resulting in a considerable overestimation. A common issue in estimating Fe values, which had 514 

affected all algorithms other than the FBP, was not assessing the negative values. In contrast to Fc 515 

results, the ANNs did not perform as solid as the XGB and RF, which could be due to not being able 516 

to capture the maximum values as satisfying as its rivals were.  517 

Table 6. The average of metrics for Fe gap-filling based on the algorithms, ranked by RMSE using the Tukey’s HSD test at the 518 
level of 5 per cent. 519 

Algorithm (Fe) Mean RMSE Mean R2 Mean MBE 

XGB  37.27 a 0.69 -3.19 

RF  37.98 a 0.68 -3.00 

ANNs 40.62 b 0.61 -3.48 

PD  42.45 b,c 0.58 -5.50 

CLR  42.67 b,c 0.58 -5.95 

Eln  43.48 c 0.53 -5.00 

SVR  48.42 d 0.53 -21.08 

FBP  49.46 d 0.44 2.03 

 520 

    521 
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 522 

Figure 5. Measured vs estimated values of Fe for Calperum based on a 60-day window during June 2013 523 

 524 

3.1.3 Fh 525 

As with the other flux results, the metrics (RMSE, R2 and MBE) showed slight superiority of 526 

XGB and RF, as well as the inferiority of the SVR and FBP over the other algorithms (Table 7). 527 

Likewise, the SVR provided relatively large negative values of MBE, showing considerable 528 

overestimation. The Tukey’s HSD test of the average RMSE values confirmed that the performance of 529 

the FBP was significantly different from the rest at the level of 5 per cent, making FBP the weakest 530 

performer for Fh. On the other hand, even though there was no significant difference amongst the 531 

XGB, ANNs and RF, the first one was considerably superior over the other five algorithms as regards 532 

the Tukey’s HSD test. Like Fe, estimated values of Fh using SVR had a negative bias (Figure 6) because 533 

it was not able to provide appropriate estimations of Fh negative values. In contrast, the ANNs 534 

performed the best in capturing the minimum values, while the XGB and RF performed relatively 535 

well, close to each other. Despite this superiority in assessing the minimum amounts, ANNs did not 536 

carry out as solid as XGB and RF concerning the overall values, resulted in higher RMSE. Finally, 537 

similar to the other fluxes, the PD performed slightly better than the CLR and ELN.  538 

Table 7. The average metrics for Fh gap-filling based on the algorithms, ranked by RMSE using the Tukey’s HSD test at the level 539 
of 5 per cent. 540 

Algorithm (Fh) Mean RMSE Mean R2 Mean MBE 

XGB 37.26 a 0.93 -1.00 

RF 38.08 a,b 0.93 -1.35 

ANNs 40.48 a,b,c 0.92 -0.41 

PD 41.83 b,c  0.92 -0.27 

CLR 42.14 b,c  0.92 -0.05 

Eln 42.28 b,c  0.92 0.04 

SVR 43.98 c 0.91 -8.28 

FBP 67.19 d 0.74 1.25 
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 541 

Figure 6. Measured vs estimated values of Fh for Calperum based on a 60-day window during June 2013 542 

    543 

3.2. Meteorological and Environmental Drivers 544 

 Since meteorological and environmental drivers are needed to fill the gaps of the three 545 

substantial fluxes, Fc, Fe and Fh, the eight algorithms were used to fill the gaps of these drivers. The 546 

metrics of R2, RMSE, and MBE were calculated for all five towers and nine window lengths (16 547 

meteorological and environmental drivers and three fluxes). Overall, for most meteorological drivers, 548 

the linear algorithms, especially the CLR and PD, performed slightly better than the ML algorithms 549 

such as the XGB, RF, ANNs and SVR, except for Ah, Fg and Fn. This unexpected superiority can be 550 

explained based on the two following reasons. Firstly, unlike the fluxes, the input and output features 551 

were the same here, e.g. Ta for Ta, which led to strong correlations (e.g. up to 0.99 for atmospheric 552 

pressure - ps) as well as strong linear relationships between the independent and dependent features. 553 

These strong correlations helped the linear algorithms to perform well, while nullified the ability of 554 

ML algorithms to capture non-linear behaviour of complicated problems. Second, the slight inferiority 555 

of ML algorithms could be due to data noise where simple linear algorithms such as the CLR are 556 

usually less sensitive to the noise relatively. Therefore, over-fitting is not an issue for them when the 557 

number of observations is big enough (i.e. at least 10 to 20 observations per parameter (Harrell, 2014)). 558 

The exceptions were Ah, Fn and Fg, for which values were estimated more accurately by the XGB, 559 

ANNs and RF, especially the latest one (the RMSE of 30.23 versus 35.24 provided by the RF and CLR 560 

for Fg, respectively). Tukey’s HSD test for the mean RMSE values of Fg confirmed that The XGB, 561 

ANNs and RF provided better results at the level of 5 per cent, while, like all other fluxes and drivers, 562 

the FBP confirmed to be the worst algorithm (Table 8). Yet, according to the same test for the other 563 

drivers, there was not any significant difference between the algorithms, other than the FBP, which 564 

provided the most significant mean values of the RMSE (results not shown). Importantly, though, 565 

none of the algorithms offered adequate estimations for soil moisture (Sws), particularly in drier 566 

regions. This weak performance happened because Sws changes dramatically during rainfall in a 567 
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pulsed manner often from zero to saturation in short space of time, whereas, the algorithms had been 568 

trained based on the datasets mostly reflecting non-rainy periods. These datasets, consequently, could 569 

not fit the algorithms in a way that they could estimate Sws accurately when precipitation occurs and 570 

the soil moisture increases dramatically. For instance, in a  wet region like Tumbarumba, where the 571 

soil faces rainy days frequently, the time series are much less spikey. Thus, the overall performance 572 

was better in these regions compared with the drier ones, e.g. R2 of 0.43 and 0.25 on average for 573 

Tumbarumba and Calperum, respectively. Besides, the dataset used to gap-fill the soil moisture was 574 

a model derivation from gridded data or regional reanalysis and therefore, can be not close to reality. 575 

Another challenge of estimating soil moisture comes from the low spatial coherence of soil moisture 576 

is that it can be extremely different just a couple of hundred metres away, due to storms, topography, 577 

soil structure heterogeneity, etc. (Reichle et al., 2004; Sahoo et al., 2008). 578 

 579 

Table 8. The average amounts of RMSE for Fg gap-filling based on the algorithms, using the Tukey’s HSD test at the level of 5 580 
per cent. 581 

Algorithm 

(Fg) 

Mean 

RMSE 

RF a 30.17 

XGB a, b 30.70 

ANNs b, c 30.86 

SVR c 32.77 

CLR d 34.93 

PD d 34.94 

ELN d 34.94 

FBP e 39.10 

  582 

4. Discussion 583 

All algorithms performed similarly in estimating the meteorological and environmental drivers 584 

(turbulent fluxes included) across all stations, except the FBP, which performed poorly for it did not 585 

use any ancillary data. The best results were achieved using training/gap windows of 60 days or 586 

shorter, while the worst results obtained for the most extended window, 365 days. Although most of 587 

the algorithms performed almost equally well in estimating of meteorological and environmental 588 

drivers, the linear algorithms, the CLR, ELN and PD, performed slightly better (not significant using 589 

a Tukey’s HSD test, though). The only clear exception was Fg, which the RF provided more accurate 590 

and robust estimations. The ML algorithms, on the other hand, showed their superiority over the 591 

linear algorithms while estimating the main fluxes, Fc, Fe and Fh. For Fc, the XGB, RF and ANNs 592 

performed significantly better than the SVR, FBP and all linear algorithms, i.e. the CLR, PD and ELN. 593 

The superiority of the ML algorithms, as well as their close performance,  agreed with the results of 594 

previous researches, e.g. (Falge et al., 2001; Moffat et al., 2007), that showed the superiority of non-595 

linear algorithms and no significant difference amongst the top algorithms in estimating Fc. Besides, 596 

the slight superiorities of RF over ANNs, mainly unnoticeable by a conservative test like Tukey’s HSD, 597 

confirms RF performs better regarding the EC flux gap-filling (Kim et al., 2020). 598 
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The XGB was the most novel ML algorithm used in this research and based on the most 599 

performance metrics provided comparatively robust results in estimating the fluxes. However, the 600 

XGB failed to capture the minimum values of Fc as against the SVR and RF, and thus, provided biased 601 

results, while assessing the maximum values of Fc well. In estimating the meteorological drivers, the 602 

XGB did not show any superiority over the other algorithms, especially the linear ones. Hence, we do 603 

not recommend the XGB as an alternative to the current alternative algorithms, especially for long 604 

gaps. Nevertheless, because of its local superiorities, this algorithm is suitable to use in an ensemble 605 

model alongside the algorithms with different weakness points.   606 

The RF was the best all-around algorithm amongst the eight algorithms used in this study, 607 

providing the best estimates of the fluxes (similar to XGB) but also captured both minimum and 608 

maximum values of Fc. Unlike the RF, all other algorithms generally struggled with estimating either 609 

minimum or maximum values of major fluxes, comparatively. It also provided the best results for Fg, 610 

where the linear algorithms did not perform well. Another advantage of the RF over the XGB was that 611 

it required less time (approximately a quarter) for training, which was a challenge while using the 612 

XGB. 613 

The ANNs estimated the fluxes better than the linear algorithms, notably for Fc, yet not as 614 

robust as the XGB and RF in general. For Fc and Fh, the ANNs provided bias, mainly due to 615 

overestimation of minimum values when the window lengths were 90 days or longer. However, since 616 

the superiority of the XGB and RF was not considerable, it is difficult at this point to suggest using 617 

XGB or RF as better alternatives. That is because ANNs have been checking out for a long time in 618 

different locations and considered as one of the most reliable algorithms in the field for more than a 619 

decade (Aubinet et al., 2012; Hagen et al., 2006; Kunwor et al., 2017; Moffat et al., 2007). Furthermore, 620 

there are a wide variety of different ANNs algorithms used in the field (Beringer et al., 2016b; Hagen 621 

et al., 2006; Isaac et al., 2017; Kunwor et al., 2017; Moffat et al., 2007), and this minor superiority of RF 622 

and XGB cannot be generalised without enough additional proves. As such, we suggest other 623 

researches to use the RF, especially regarding Fh and Fc alongside the ANNs to find out which one 624 

performs better in the challenging scenarios, e.g. when the gaps are long. Another option is to develop 625 

ensemble models using since, according to the literature, there is no room to improve the results 626 

substantially based on a single algorithm (Moffat et al., 2007). 627 

On the other hand, a model with a higher level of flexibility is required in the field (Hagen et 628 

al., 2006; Kunwor et al., 2017; Richardson and Hollinger, 2007). Finally, according to the environmental 629 

drivers, The ANNs, like the other ML algorithms, could not show a consistent superiority over the 630 

linear algorithms. Therefore, we do not recommend using ML algorithms in such scenarios, except for 631 

Fg, for which RF seems to be a better option.  632 

The SVR showed consistent inferiority over the other ML algorithms and did not fulfilled our 633 

expectations, neither for the meteorological drivers nor for the major fluxes. The only strength of the 634 

SVR  was that it captured the extreme values better than any other algorithm, as revealed in the plots 635 

of Fc. However, according to its larger RMSE amounts, the mentioned advantage seems to be achieved 636 

suspiciously and might have occurred due to over-fitting. This dubious performance shows the SVR 637 

is more vulnerable to the over-fitting issues regarding these types of data. Hence, we suggest the SVR 638 
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not to be used in any kind of environmental modelling related to the reviewed drivers and fluxes, 639 

whatsoever. 640 

The CLR, the simplest algorithm used in this research, provided a comparatively acceptable 641 

performance in estimating the meteorological drivers, except for Fg. This algorithm, however, could 642 

not perform well in assessing the fluxes, especially Fc, mainly because of its inability to capture the 643 

extreme values caused by the non-linear nature of Fc. Overall, considering the CLR simplicity, 644 

resource-saving and robust performance for drivers, this algorithm seems to be the most suitable way 645 

to fill the gaps of meteorological parameters in similar scenarios, where the same ancillary dataset is 646 

available.  647 

The PD performed slightly better than the CLR, yet it could not fulfil the expectations to show 648 

a significant superiority over the other linear algorithms used in the research. This unforeseen weak 649 

performance can be explained due to a couple of reasons. First, one of the assumptions of using the 650 

PD is that the behaviour of the cross-sections, here towers, is similarly under the similar conditions 651 

(the independent variables), and the only thing leads to the difference is the specific characteristics of 652 

each individual cross-section. Contrariwise, it seems that the five towers selected in this research 653 

violated this assumption due to their absolute different ecosystems. Based on the previous studies in 654 

which the PD performed satisfying (Izady et al., 2013, 2016; Mahabbati et al., 2017), (Izady et al., 2016) 655 

and (Mahabbati et al., 2017), it appears that a decent level of homogeneity is vital for the PD to perform 656 

satisfactorily. As in all previous cases, the ecosystem of the cross-sections had significant similarities, 657 

and the distance between them were tens to hundreds of kilometres, not thousands. Therefore, the 658 

characteristics of cross-sections, such as radiation, climate, rainfall, etc. had considerable more 659 

similarity and homogeneity compared with the towers used in this research. Finally, it is worth 660 

mentioning that PD has been commonly used to analyse the time series with a time resolution of 661 

weekly or longer, with some exceptional daily-scale cases. In this research, the resolution of data was 662 

half-hourly instead, which dramatically increased the computational demands of the algorithm, led 663 

to days of processing for a single run. This demand happened because the algorithm creates a dummy 664 

variable for each time step and the relevant matrix of variables becomes too large to compute by a 665 

regular PC. Considering the expenses of this algorithm, we recommend other researches not to use 666 

PD when the time resolution is shorter than daily. Despite the limitation, we still encourage further 667 

using of PD whenever there is a decent level of homogeneity amongst the cross-sections and the time 668 

resolution is daily or longer (ideally weekly or monthly).  669 

 The ELN, as a hybrid linear model, did not show any superiority over the CLR, despite its 670 

modifications to provide more accurate estimations. Even though ELN performed well in estimating 671 

the drivers with slight supremacy in some occasions, e.g. Fld, the CLR is a more proper algorithm to 672 

choose for gap-filling the drivers due to its simplicity and less calculation requirement.  673 

The FBP was a unique algorithm used in this research, as it did not use any independent 674 

variables to estimate the values of drivers and fluxes.  The FBP performance was significantly more 675 

unsatisfactory than the other algorithms. Therefore FBP cannot be considered as a reliable alternative 676 

for current algorithms to fill the gaps, especially the long ones.     677 
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5. Conclusions 678 

 Eight different gap-filling algorithms for estimating 16 meteorological drivers as well as the 679 

three key ecosystem turbulent fluxes (sensible heat flux (Fh), latent heat flux (Fe), and net carbon flux 680 

(Fc)) were investigated and their performance evaluated based on the datasets of five towers in 681 

Australia. Overall, three ML algorithms, XGB, RF and ANNs, performed nearly equally well and 682 

significantly better than their linear rivals (the CLR, PD, and ELN) in estimating the flux values. 683 

However, the linear algorithms performed almost as equally well as the ML algorithms in assessing 684 

the meteorological drivers. Amongst these eight algorithms, the RF showed the highest level of 685 

robustness and reliability in estimating the Fc, as its closest rival, the XGB, could not capture the 686 

minimum values equally well, despite providing slightly better RMSE and R2. The PD was expected 687 

to perform better than the linear methods and hoped to compete with the ML algorithms in estimating 688 

the fluxes, but it failed to do so. The SVR was the only ML algorithm that did not perform at the same 689 

level as the rest ML algorithms and was suspected of enduring over-fitting issues. Considering the 690 

outcomes of the other researches undertaken in the OzFlux Network, e.g. (Cleverly et al., 2013; Isaac 691 

et al., 2017), none of the ML algorithms used in this research was proven to provide substantially 692 

better flux estimations compared with the standard method (ANNs). Nonetheless, amongst the 693 

algorithms tested in this research, the RF showed some potential capabilities as an alternative due to 694 

its more consistent performance regarding the long gaps. Eventually, we recommend suggestions 695 

below to improve the results for similar prospective researches, as well as the QC and gap-filling 696 

procedure of OzFlux Network: 697 

1) Since the RF remained more consistent compared to its competitors -including the ANNs-, It is a 698 

good idea to use RF alongside the commonly used algorithms in the challenging scenarios, such as 699 

long gaps, to figure out whether this superiority can be generalised. 700 

2) It appears that, even after three levels of quality control process done by the PyFluxPro platform, 701 

the data are still noisy. This noisy data are an essential source of both uncertainty and inaccuracy of 702 

the outcome, regardless of the algorithm used to gap-fill the data. As a result, another level of quality 703 

control methods, such as Wavelets or Matrix Factorialisation, in addition to the current classical ones 704 

used by the PyFluxPro and other similar platforms, can probably improve the data quality and thereby 705 

improve the final imputation results. 706 

3) For future researches, using recurrent neural networks (RNNs) instead of feedforward neural 707 

networks (FFNN) could improve the predictions. That is likely because RNNs help the model to 708 

consider temporal dynamic behaviour of time series, as unlike FFNN, wherein the activations flow 709 

only from the input layer to the output layer, RNNs also have neuron connections pointing backwards 710 

(Géron, 2019). This demand to an algorithm capable of considering time has been mentioned in 711 

previous researches as one of the reasons why testing the new algorithms is needed (Richardson and 712 

Hollinger, 2007). 713 

3) Developing ensemble models using algorithms with different weaknesses and strengths may also 714 

enhance the results where a single algorithm shows performance deficiency.  715 
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4) Given that some of the environmental drivers affect the Fc differently during the day versus night, 716 

separating the diurnal and nocturnal datasets to train the algorithms possibly entails an improvement 717 

in the outcome. Mainly because of the u* threshold filtering and other problems associated with the 718 

nocturnal period, the portion of diurnal data is generally, by far, outweighs the nocturnal data portion, 719 

which potentially leads to a bias in the algorithm.  720 

5) The same solution as number 4 is suggested for soil moisture estimation, as the behaviour of the 721 

system on sunny days is utterly different from its conduct during the rainy periods. Moreover, the 722 

system memory and the antecedent condition are undeniable features associated with soil moisture 723 

(Ogle et al., 2015). Therefore, using the models that are capable of addressing these considerations are 724 

more likely to improve the estimations.  725 

 726 

6. Data availability 727 

The data were used in this research are available through the following sources: The L3 and L4 728 

data are accessible from the OzFlux data portal (http://data.ozflux.org.au/portal). Current ACCESS-R 729 

and data are available from the BoM OPeNDAP server (https://www.opendap.org/). Likewise, the 730 

data coming from the BoM AWS are accessible from (http://www.bom.gov.au/climate/data). Lastly, 731 

the BIOS2 data are accessible from the ECMWF datasets portal 732 

(https://www.ecmwf.int/en/forecasts/datasets). All data used in this research are available in this 733 

repository address: (https://research-repository.uwa.edu.au/en/datasets/a-comparison-of-gap-filling-734 

algorithms-for-eddy-covariance-fluxes); DOI: 10.26182/5f292ee80a0c0. 735 
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